ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
Revision: 1503
Committed: Sat Oct 2 19:54:41 2010 UTC (14 years, 7 months ago) by gezelter
File size: 52001 byte(s)
Log Message:
Changes to remove more of the low level stuff from the fortran side.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 /**
43 * @file SimInfo.cpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #include <algorithm>
50 #include <set>
51 #include <map>
52
53 #include "brains/SimInfo.hpp"
54 #include "math/Vector3.hpp"
55 #include "primitives/Molecule.hpp"
56 #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
59 #include "UseTheForce/doForces_interface.h"
60 #include "UseTheForce/DarkSide/neighborLists_interface.h"
61 #include "UseTheForce/DarkSide/switcheroo_interface.h"
62 #include "utils/MemoryUtils.hpp"
63 #include "utils/simError.h"
64 #include "selection/SelectionManager.hpp"
65 #include "io/ForceFieldOptions.hpp"
66 #include "UseTheForce/ForceField.hpp"
67
68
69 #ifdef IS_MPI
70 #include "UseTheForce/mpiComponentPlan.h"
71 #include "UseTheForce/DarkSide/simParallel_interface.h"
72 #endif
73
74 namespace OpenMD {
75 std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
76 std::map<int, std::set<int> >::iterator i = container.find(index);
77 std::set<int> result;
78 if (i != container.end()) {
79 result = i->second;
80 }
81
82 return result;
83 }
84
85 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
86 forceField_(ff), simParams_(simParams),
87 ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
88 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
89 nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
90 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0),
91 nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
92 nConstraints_(0), sman_(NULL), fortranInitialized_(false),
93 calcBoxDipole_(false), useAtomicVirial_(true) {
94
95
96 MoleculeStamp* molStamp;
97 int nMolWithSameStamp;
98 int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
99 int nGroups = 0; //total cutoff groups defined in meta-data file
100 CutoffGroupStamp* cgStamp;
101 RigidBodyStamp* rbStamp;
102 int nRigidAtoms = 0;
103
104 std::vector<Component*> components = simParams->getComponents();
105
106 for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
107 molStamp = (*i)->getMoleculeStamp();
108 nMolWithSameStamp = (*i)->getNMol();
109
110 addMoleculeStamp(molStamp, nMolWithSameStamp);
111
112 //calculate atoms in molecules
113 nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
114
115 //calculate atoms in cutoff groups
116 int nAtomsInGroups = 0;
117 int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
118
119 for (int j=0; j < nCutoffGroupsInStamp; j++) {
120 cgStamp = molStamp->getCutoffGroupStamp(j);
121 nAtomsInGroups += cgStamp->getNMembers();
122 }
123
124 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
125
126 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
127
128 //calculate atoms in rigid bodies
129 int nAtomsInRigidBodies = 0;
130 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
131
132 for (int j=0; j < nRigidBodiesInStamp; j++) {
133 rbStamp = molStamp->getRigidBodyStamp(j);
134 nAtomsInRigidBodies += rbStamp->getNMembers();
135 }
136
137 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
138 nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
139
140 }
141
142 //every free atom (atom does not belong to cutoff groups) is a cutoff
143 //group therefore the total number of cutoff groups in the system is
144 //equal to the total number of atoms minus number of atoms belong to
145 //cutoff group defined in meta-data file plus the number of cutoff
146 //groups defined in meta-data file
147 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
148
149 //every free atom (atom does not belong to rigid bodies) is an
150 //integrable object therefore the total number of integrable objects
151 //in the system is equal to the total number of atoms minus number of
152 //atoms belong to rigid body defined in meta-data file plus the number
153 //of rigid bodies defined in meta-data file
154 nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
155 + nGlobalRigidBodies_;
156
157 nGlobalMols_ = molStampIds_.size();
158 molToProcMap_.resize(nGlobalMols_);
159 }
160
161 SimInfo::~SimInfo() {
162 std::map<int, Molecule*>::iterator i;
163 for (i = molecules_.begin(); i != molecules_.end(); ++i) {
164 delete i->second;
165 }
166 molecules_.clear();
167
168 delete sman_;
169 delete simParams_;
170 delete forceField_;
171 }
172
173 int SimInfo::getNGlobalConstraints() {
174 int nGlobalConstraints;
175 #ifdef IS_MPI
176 MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
177 MPI_COMM_WORLD);
178 #else
179 nGlobalConstraints = nConstraints_;
180 #endif
181 return nGlobalConstraints;
182 }
183
184 bool SimInfo::addMolecule(Molecule* mol) {
185 MoleculeIterator i;
186
187 i = molecules_.find(mol->getGlobalIndex());
188 if (i == molecules_.end() ) {
189
190 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
191
192 nAtoms_ += mol->getNAtoms();
193 nBonds_ += mol->getNBonds();
194 nBends_ += mol->getNBends();
195 nTorsions_ += mol->getNTorsions();
196 nInversions_ += mol->getNInversions();
197 nRigidBodies_ += mol->getNRigidBodies();
198 nIntegrableObjects_ += mol->getNIntegrableObjects();
199 nCutoffGroups_ += mol->getNCutoffGroups();
200 nConstraints_ += mol->getNConstraintPairs();
201
202 addInteractionPairs(mol);
203
204 return true;
205 } else {
206 return false;
207 }
208 }
209
210 bool SimInfo::removeMolecule(Molecule* mol) {
211 MoleculeIterator i;
212 i = molecules_.find(mol->getGlobalIndex());
213
214 if (i != molecules_.end() ) {
215
216 assert(mol == i->second);
217
218 nAtoms_ -= mol->getNAtoms();
219 nBonds_ -= mol->getNBonds();
220 nBends_ -= mol->getNBends();
221 nTorsions_ -= mol->getNTorsions();
222 nInversions_ -= mol->getNInversions();
223 nRigidBodies_ -= mol->getNRigidBodies();
224 nIntegrableObjects_ -= mol->getNIntegrableObjects();
225 nCutoffGroups_ -= mol->getNCutoffGroups();
226 nConstraints_ -= mol->getNConstraintPairs();
227
228 removeInteractionPairs(mol);
229 molecules_.erase(mol->getGlobalIndex());
230
231 delete mol;
232
233 return true;
234 } else {
235 return false;
236 }
237
238
239 }
240
241
242 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
243 i = molecules_.begin();
244 return i == molecules_.end() ? NULL : i->second;
245 }
246
247 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
248 ++i;
249 return i == molecules_.end() ? NULL : i->second;
250 }
251
252
253 void SimInfo::calcNdf() {
254 int ndf_local;
255 MoleculeIterator i;
256 std::vector<StuntDouble*>::iterator j;
257 Molecule* mol;
258 StuntDouble* integrableObject;
259
260 ndf_local = 0;
261
262 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
263 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
264 integrableObject = mol->nextIntegrableObject(j)) {
265
266 ndf_local += 3;
267
268 if (integrableObject->isDirectional()) {
269 if (integrableObject->isLinear()) {
270 ndf_local += 2;
271 } else {
272 ndf_local += 3;
273 }
274 }
275
276 }
277 }
278
279 // n_constraints is local, so subtract them on each processor
280 ndf_local -= nConstraints_;
281
282 #ifdef IS_MPI
283 MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
284 #else
285 ndf_ = ndf_local;
286 #endif
287
288 // nZconstraints_ is global, as are the 3 COM translations for the
289 // entire system:
290 ndf_ = ndf_ - 3 - nZconstraint_;
291
292 }
293
294 int SimInfo::getFdf() {
295 #ifdef IS_MPI
296 MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
297 #else
298 fdf_ = fdf_local;
299 #endif
300 return fdf_;
301 }
302
303 void SimInfo::calcNdfRaw() {
304 int ndfRaw_local;
305
306 MoleculeIterator i;
307 std::vector<StuntDouble*>::iterator j;
308 Molecule* mol;
309 StuntDouble* integrableObject;
310
311 // Raw degrees of freedom that we have to set
312 ndfRaw_local = 0;
313
314 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
315 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
316 integrableObject = mol->nextIntegrableObject(j)) {
317
318 ndfRaw_local += 3;
319
320 if (integrableObject->isDirectional()) {
321 if (integrableObject->isLinear()) {
322 ndfRaw_local += 2;
323 } else {
324 ndfRaw_local += 3;
325 }
326 }
327
328 }
329 }
330
331 #ifdef IS_MPI
332 MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
333 #else
334 ndfRaw_ = ndfRaw_local;
335 #endif
336 }
337
338 void SimInfo::calcNdfTrans() {
339 int ndfTrans_local;
340
341 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
342
343
344 #ifdef IS_MPI
345 MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
346 #else
347 ndfTrans_ = ndfTrans_local;
348 #endif
349
350 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
351
352 }
353
354 void SimInfo::addInteractionPairs(Molecule* mol) {
355 ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
356 std::vector<Bond*>::iterator bondIter;
357 std::vector<Bend*>::iterator bendIter;
358 std::vector<Torsion*>::iterator torsionIter;
359 std::vector<Inversion*>::iterator inversionIter;
360 Bond* bond;
361 Bend* bend;
362 Torsion* torsion;
363 Inversion* inversion;
364 int a;
365 int b;
366 int c;
367 int d;
368
369 // atomGroups can be used to add special interaction maps between
370 // groups of atoms that are in two separate rigid bodies.
371 // However, most site-site interactions between two rigid bodies
372 // are probably not special, just the ones between the physically
373 // bonded atoms. Interactions *within* a single rigid body should
374 // always be excluded. These are done at the bottom of this
375 // function.
376
377 std::map<int, std::set<int> > atomGroups;
378 Molecule::RigidBodyIterator rbIter;
379 RigidBody* rb;
380 Molecule::IntegrableObjectIterator ii;
381 StuntDouble* integrableObject;
382
383 for (integrableObject = mol->beginIntegrableObject(ii);
384 integrableObject != NULL;
385 integrableObject = mol->nextIntegrableObject(ii)) {
386
387 if (integrableObject->isRigidBody()) {
388 rb = static_cast<RigidBody*>(integrableObject);
389 std::vector<Atom*> atoms = rb->getAtoms();
390 std::set<int> rigidAtoms;
391 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
392 rigidAtoms.insert(atoms[i]->getGlobalIndex());
393 }
394 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
395 atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
396 }
397 } else {
398 std::set<int> oneAtomSet;
399 oneAtomSet.insert(integrableObject->getGlobalIndex());
400 atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
401 }
402 }
403
404 for (bond= mol->beginBond(bondIter); bond != NULL;
405 bond = mol->nextBond(bondIter)) {
406
407 a = bond->getAtomA()->getGlobalIndex();
408 b = bond->getAtomB()->getGlobalIndex();
409
410 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
411 oneTwoInteractions_.addPair(a, b);
412 } else {
413 excludedInteractions_.addPair(a, b);
414 }
415 }
416
417 for (bend= mol->beginBend(bendIter); bend != NULL;
418 bend = mol->nextBend(bendIter)) {
419
420 a = bend->getAtomA()->getGlobalIndex();
421 b = bend->getAtomB()->getGlobalIndex();
422 c = bend->getAtomC()->getGlobalIndex();
423
424 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
425 oneTwoInteractions_.addPair(a, b);
426 oneTwoInteractions_.addPair(b, c);
427 } else {
428 excludedInteractions_.addPair(a, b);
429 excludedInteractions_.addPair(b, c);
430 }
431
432 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
433 oneThreeInteractions_.addPair(a, c);
434 } else {
435 excludedInteractions_.addPair(a, c);
436 }
437 }
438
439 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
440 torsion = mol->nextTorsion(torsionIter)) {
441
442 a = torsion->getAtomA()->getGlobalIndex();
443 b = torsion->getAtomB()->getGlobalIndex();
444 c = torsion->getAtomC()->getGlobalIndex();
445 d = torsion->getAtomD()->getGlobalIndex();
446
447 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
448 oneTwoInteractions_.addPair(a, b);
449 oneTwoInteractions_.addPair(b, c);
450 oneTwoInteractions_.addPair(c, d);
451 } else {
452 excludedInteractions_.addPair(a, b);
453 excludedInteractions_.addPair(b, c);
454 excludedInteractions_.addPair(c, d);
455 }
456
457 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
458 oneThreeInteractions_.addPair(a, c);
459 oneThreeInteractions_.addPair(b, d);
460 } else {
461 excludedInteractions_.addPair(a, c);
462 excludedInteractions_.addPair(b, d);
463 }
464
465 if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
466 oneFourInteractions_.addPair(a, d);
467 } else {
468 excludedInteractions_.addPair(a, d);
469 }
470 }
471
472 for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
473 inversion = mol->nextInversion(inversionIter)) {
474
475 a = inversion->getAtomA()->getGlobalIndex();
476 b = inversion->getAtomB()->getGlobalIndex();
477 c = inversion->getAtomC()->getGlobalIndex();
478 d = inversion->getAtomD()->getGlobalIndex();
479
480 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
481 oneTwoInteractions_.addPair(a, b);
482 oneTwoInteractions_.addPair(a, c);
483 oneTwoInteractions_.addPair(a, d);
484 } else {
485 excludedInteractions_.addPair(a, b);
486 excludedInteractions_.addPair(a, c);
487 excludedInteractions_.addPair(a, d);
488 }
489
490 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
491 oneThreeInteractions_.addPair(b, c);
492 oneThreeInteractions_.addPair(b, d);
493 oneThreeInteractions_.addPair(c, d);
494 } else {
495 excludedInteractions_.addPair(b, c);
496 excludedInteractions_.addPair(b, d);
497 excludedInteractions_.addPair(c, d);
498 }
499 }
500
501 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
502 rb = mol->nextRigidBody(rbIter)) {
503 std::vector<Atom*> atoms = rb->getAtoms();
504 for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
505 for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
506 a = atoms[i]->getGlobalIndex();
507 b = atoms[j]->getGlobalIndex();
508 excludedInteractions_.addPair(a, b);
509 }
510 }
511 }
512
513 }
514
515 void SimInfo::removeInteractionPairs(Molecule* mol) {
516 ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
517 std::vector<Bond*>::iterator bondIter;
518 std::vector<Bend*>::iterator bendIter;
519 std::vector<Torsion*>::iterator torsionIter;
520 std::vector<Inversion*>::iterator inversionIter;
521 Bond* bond;
522 Bend* bend;
523 Torsion* torsion;
524 Inversion* inversion;
525 int a;
526 int b;
527 int c;
528 int d;
529
530 std::map<int, std::set<int> > atomGroups;
531 Molecule::RigidBodyIterator rbIter;
532 RigidBody* rb;
533 Molecule::IntegrableObjectIterator ii;
534 StuntDouble* integrableObject;
535
536 for (integrableObject = mol->beginIntegrableObject(ii);
537 integrableObject != NULL;
538 integrableObject = mol->nextIntegrableObject(ii)) {
539
540 if (integrableObject->isRigidBody()) {
541 rb = static_cast<RigidBody*>(integrableObject);
542 std::vector<Atom*> atoms = rb->getAtoms();
543 std::set<int> rigidAtoms;
544 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
545 rigidAtoms.insert(atoms[i]->getGlobalIndex());
546 }
547 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
548 atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
549 }
550 } else {
551 std::set<int> oneAtomSet;
552 oneAtomSet.insert(integrableObject->getGlobalIndex());
553 atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
554 }
555 }
556
557 for (bond= mol->beginBond(bondIter); bond != NULL;
558 bond = mol->nextBond(bondIter)) {
559
560 a = bond->getAtomA()->getGlobalIndex();
561 b = bond->getAtomB()->getGlobalIndex();
562
563 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
564 oneTwoInteractions_.removePair(a, b);
565 } else {
566 excludedInteractions_.removePair(a, b);
567 }
568 }
569
570 for (bend= mol->beginBend(bendIter); bend != NULL;
571 bend = mol->nextBend(bendIter)) {
572
573 a = bend->getAtomA()->getGlobalIndex();
574 b = bend->getAtomB()->getGlobalIndex();
575 c = bend->getAtomC()->getGlobalIndex();
576
577 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
578 oneTwoInteractions_.removePair(a, b);
579 oneTwoInteractions_.removePair(b, c);
580 } else {
581 excludedInteractions_.removePair(a, b);
582 excludedInteractions_.removePair(b, c);
583 }
584
585 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
586 oneThreeInteractions_.removePair(a, c);
587 } else {
588 excludedInteractions_.removePair(a, c);
589 }
590 }
591
592 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
593 torsion = mol->nextTorsion(torsionIter)) {
594
595 a = torsion->getAtomA()->getGlobalIndex();
596 b = torsion->getAtomB()->getGlobalIndex();
597 c = torsion->getAtomC()->getGlobalIndex();
598 d = torsion->getAtomD()->getGlobalIndex();
599
600 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
601 oneTwoInteractions_.removePair(a, b);
602 oneTwoInteractions_.removePair(b, c);
603 oneTwoInteractions_.removePair(c, d);
604 } else {
605 excludedInteractions_.removePair(a, b);
606 excludedInteractions_.removePair(b, c);
607 excludedInteractions_.removePair(c, d);
608 }
609
610 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
611 oneThreeInteractions_.removePair(a, c);
612 oneThreeInteractions_.removePair(b, d);
613 } else {
614 excludedInteractions_.removePair(a, c);
615 excludedInteractions_.removePair(b, d);
616 }
617
618 if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
619 oneFourInteractions_.removePair(a, d);
620 } else {
621 excludedInteractions_.removePair(a, d);
622 }
623 }
624
625 for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
626 inversion = mol->nextInversion(inversionIter)) {
627
628 a = inversion->getAtomA()->getGlobalIndex();
629 b = inversion->getAtomB()->getGlobalIndex();
630 c = inversion->getAtomC()->getGlobalIndex();
631 d = inversion->getAtomD()->getGlobalIndex();
632
633 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
634 oneTwoInteractions_.removePair(a, b);
635 oneTwoInteractions_.removePair(a, c);
636 oneTwoInteractions_.removePair(a, d);
637 } else {
638 excludedInteractions_.removePair(a, b);
639 excludedInteractions_.removePair(a, c);
640 excludedInteractions_.removePair(a, d);
641 }
642
643 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
644 oneThreeInteractions_.removePair(b, c);
645 oneThreeInteractions_.removePair(b, d);
646 oneThreeInteractions_.removePair(c, d);
647 } else {
648 excludedInteractions_.removePair(b, c);
649 excludedInteractions_.removePair(b, d);
650 excludedInteractions_.removePair(c, d);
651 }
652 }
653
654 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
655 rb = mol->nextRigidBody(rbIter)) {
656 std::vector<Atom*> atoms = rb->getAtoms();
657 for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
658 for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
659 a = atoms[i]->getGlobalIndex();
660 b = atoms[j]->getGlobalIndex();
661 excludedInteractions_.removePair(a, b);
662 }
663 }
664 }
665
666 }
667
668
669 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
670 int curStampId;
671
672 //index from 0
673 curStampId = moleculeStamps_.size();
674
675 moleculeStamps_.push_back(molStamp);
676 molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
677 }
678
679 void SimInfo::update() {
680
681 setupSimType();
682
683 #ifdef IS_MPI
684 setupFortranParallel();
685 #endif
686
687 setupFortranSim();
688
689 //setup fortran force field
690 /** @deprecate */
691 int isError = 0;
692
693 setupCutoff();
694
695 setupElectrostaticSummationMethod( isError );
696 setupSwitchingFunction();
697 setupAccumulateBoxDipole();
698
699 if(isError){
700 sprintf( painCave.errMsg,
701 "ForceField error: There was an error initializing the forceField in fortran.\n" );
702 painCave.isFatal = 1;
703 simError();
704 }
705
706 calcNdf();
707 calcNdfRaw();
708 calcNdfTrans();
709
710 fortranInitialized_ = true;
711 }
712
713 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
714 SimInfo::MoleculeIterator mi;
715 Molecule* mol;
716 Molecule::AtomIterator ai;
717 Atom* atom;
718 std::set<AtomType*> atomTypes;
719
720 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
721
722 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
723 atomTypes.insert(atom->getAtomType());
724 }
725
726 }
727
728 return atomTypes;
729 }
730
731 void SimInfo::setupSimType() {
732 std::set<AtomType*>::iterator i;
733 std::set<AtomType*> atomTypes;
734 atomTypes = getUniqueAtomTypes();
735
736 int useLennardJones = 0;
737 int useElectrostatic = 0;
738 int useEAM = 0;
739 int useSC = 0;
740 int useCharge = 0;
741 int useDirectional = 0;
742 int useDipole = 0;
743 int useGayBerne = 0;
744 int useSticky = 0;
745 int useStickyPower = 0;
746 int useShape = 0;
747 int useFLARB = 0; //it is not in AtomType yet
748 int useDirectionalAtom = 0;
749 int useElectrostatics = 0;
750 //usePBC and useRF are from simParams
751 int usePBC = simParams_->getUsePeriodicBoundaryConditions();
752 int useRF;
753 int useSF;
754 int useSP;
755 int useBoxDipole;
756
757 std::string myMethod;
758
759 // set the useRF logical
760 useRF = 0;
761 useSF = 0;
762 useSP = 0;
763 useBoxDipole = 0;
764
765
766 if (simParams_->haveElectrostaticSummationMethod()) {
767 std::string myMethod = simParams_->getElectrostaticSummationMethod();
768 toUpper(myMethod);
769 if (myMethod == "REACTION_FIELD"){
770 useRF = 1;
771 } else if (myMethod == "SHIFTED_FORCE"){
772 useSF = 1;
773 } else if (myMethod == "SHIFTED_POTENTIAL"){
774 useSP = 1;
775 }
776 }
777
778 if (simParams_->haveAccumulateBoxDipole())
779 if (simParams_->getAccumulateBoxDipole())
780 useBoxDipole = 1;
781
782 useAtomicVirial_ = simParams_->getUseAtomicVirial();
783
784 //loop over all of the atom types
785 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
786 useLennardJones |= (*i)->isLennardJones();
787 useElectrostatic |= (*i)->isElectrostatic();
788 useEAM |= (*i)->isEAM();
789 useSC |= (*i)->isSC();
790 useCharge |= (*i)->isCharge();
791 useDirectional |= (*i)->isDirectional();
792 useDipole |= (*i)->isDipole();
793 useGayBerne |= (*i)->isGayBerne();
794 useSticky |= (*i)->isSticky();
795 useStickyPower |= (*i)->isStickyPower();
796 useShape |= (*i)->isShape();
797 }
798
799 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
800 useDirectionalAtom = 1;
801 }
802
803 if (useCharge || useDipole) {
804 useElectrostatics = 1;
805 }
806
807 #ifdef IS_MPI
808 int temp;
809
810 temp = usePBC;
811 MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
812
813 temp = useDirectionalAtom;
814 MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
815
816 temp = useLennardJones;
817 MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
818
819 temp = useElectrostatics;
820 MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
821
822 temp = useCharge;
823 MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
824
825 temp = useDipole;
826 MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
827
828 temp = useSticky;
829 MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
830
831 temp = useStickyPower;
832 MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
833
834 temp = useGayBerne;
835 MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
836
837 temp = useEAM;
838 MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
839
840 temp = useSC;
841 MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
842
843 temp = useShape;
844 MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
845
846 temp = useFLARB;
847 MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
848
849 temp = useRF;
850 MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
851
852 temp = useSF;
853 MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
854
855 temp = useSP;
856 MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
857
858 temp = useBoxDipole;
859 MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
860
861 temp = useAtomicVirial_;
862 MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
863
864 #endif
865
866 fInfo_.SIM_uses_PBC = usePBC;
867 fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
868 fInfo_.SIM_uses_LennardJones = useLennardJones;
869 fInfo_.SIM_uses_Electrostatics = useElectrostatics;
870 fInfo_.SIM_uses_Charges = useCharge;
871 fInfo_.SIM_uses_Dipoles = useDipole;
872 fInfo_.SIM_uses_Sticky = useSticky;
873 fInfo_.SIM_uses_StickyPower = useStickyPower;
874 fInfo_.SIM_uses_GayBerne = useGayBerne;
875 fInfo_.SIM_uses_EAM = useEAM;
876 fInfo_.SIM_uses_SC = useSC;
877 fInfo_.SIM_uses_Shapes = useShape;
878 fInfo_.SIM_uses_FLARB = useFLARB;
879 fInfo_.SIM_uses_RF = useRF;
880 fInfo_.SIM_uses_SF = useSF;
881 fInfo_.SIM_uses_SP = useSP;
882 fInfo_.SIM_uses_BoxDipole = useBoxDipole;
883 fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
884 }
885
886 void SimInfo::setupFortranSim() {
887 int isError;
888 int nExclude, nOneTwo, nOneThree, nOneFour;
889 std::vector<int> fortranGlobalGroupMembership;
890
891 isError = 0;
892
893 //globalGroupMembership_ is filled by SimCreator
894 for (int i = 0; i < nGlobalAtoms_; i++) {
895 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
896 }
897
898 //calculate mass ratio of cutoff group
899 std::vector<RealType> mfact;
900 SimInfo::MoleculeIterator mi;
901 Molecule* mol;
902 Molecule::CutoffGroupIterator ci;
903 CutoffGroup* cg;
904 Molecule::AtomIterator ai;
905 Atom* atom;
906 RealType totalMass;
907
908 //to avoid memory reallocation, reserve enough space for mfact
909 mfact.reserve(getNCutoffGroups());
910
911 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
912 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
913
914 totalMass = cg->getMass();
915 for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
916 // Check for massless groups - set mfact to 1 if true
917 if (totalMass != 0)
918 mfact.push_back(atom->getMass()/totalMass);
919 else
920 mfact.push_back( 1.0 );
921 }
922 }
923 }
924
925 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
926 std::vector<int> identArray;
927
928 //to avoid memory reallocation, reserve enough space identArray
929 identArray.reserve(getNAtoms());
930
931 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
932 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
933 identArray.push_back(atom->getIdent());
934 }
935 }
936
937 //fill molMembershipArray
938 //molMembershipArray is filled by SimCreator
939 std::vector<int> molMembershipArray(nGlobalAtoms_);
940 for (int i = 0; i < nGlobalAtoms_; i++) {
941 molMembershipArray[i] = globalMolMembership_[i] + 1;
942 }
943
944 //setup fortran simulation
945
946 nExclude = excludedInteractions_.getSize();
947 nOneTwo = oneTwoInteractions_.getSize();
948 nOneThree = oneThreeInteractions_.getSize();
949 nOneFour = oneFourInteractions_.getSize();
950
951 int* excludeList = excludedInteractions_.getPairList();
952 int* oneTwoList = oneTwoInteractions_.getPairList();
953 int* oneThreeList = oneThreeInteractions_.getPairList();
954 int* oneFourList = oneFourInteractions_.getPairList();
955
956 setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
957 &nExclude, excludeList,
958 &nOneTwo, oneTwoList,
959 &nOneThree, oneThreeList,
960 &nOneFour, oneFourList,
961 &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
962 &fortranGlobalGroupMembership[0], &isError);
963
964 if( isError ){
965
966 sprintf( painCave.errMsg,
967 "There was an error setting the simulation information in fortran.\n" );
968 painCave.isFatal = 1;
969 painCave.severity = OPENMD_ERROR;
970 simError();
971 }
972
973
974 sprintf( checkPointMsg,
975 "succesfully sent the simulation information to fortran.\n");
976
977 errorCheckPoint();
978
979 // Setup number of neighbors in neighbor list if present
980 if (simParams_->haveNeighborListNeighbors()) {
981 int nlistNeighbors = simParams_->getNeighborListNeighbors();
982 setNeighbors(&nlistNeighbors);
983 }
984
985
986 }
987
988
989 void SimInfo::setupFortranParallel() {
990 #ifdef IS_MPI
991 //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
992 std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
993 std::vector<int> localToGlobalCutoffGroupIndex;
994 SimInfo::MoleculeIterator mi;
995 Molecule::AtomIterator ai;
996 Molecule::CutoffGroupIterator ci;
997 Molecule* mol;
998 Atom* atom;
999 CutoffGroup* cg;
1000 mpiSimData parallelData;
1001 int isError;
1002
1003 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1004
1005 //local index(index in DataStorge) of atom is important
1006 for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1007 localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1008 }
1009
1010 //local index of cutoff group is trivial, it only depends on the order of travesing
1011 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1012 localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1013 }
1014
1015 }
1016
1017 //fill up mpiSimData struct
1018 parallelData.nMolGlobal = getNGlobalMolecules();
1019 parallelData.nMolLocal = getNMolecules();
1020 parallelData.nAtomsGlobal = getNGlobalAtoms();
1021 parallelData.nAtomsLocal = getNAtoms();
1022 parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
1023 parallelData.nGroupsLocal = getNCutoffGroups();
1024 parallelData.myNode = worldRank;
1025 MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
1026
1027 //pass mpiSimData struct and index arrays to fortran
1028 setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
1029 &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
1030 &localToGlobalCutoffGroupIndex[0], &isError);
1031
1032 if (isError) {
1033 sprintf(painCave.errMsg,
1034 "mpiRefresh errror: fortran didn't like something we gave it.\n");
1035 painCave.isFatal = 1;
1036 simError();
1037 }
1038
1039 sprintf(checkPointMsg, " mpiRefresh successful.\n");
1040 errorCheckPoint();
1041
1042 #endif
1043 }
1044
1045 void SimInfo::setupCutoff() {
1046
1047 ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
1048
1049 // Check the cutoff policy
1050 int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1051
1052 // Set LJ shifting bools to false
1053 ljsp_ = 0;
1054 ljsf_ = 0;
1055
1056 std::string myPolicy;
1057 if (forceFieldOptions_.haveCutoffPolicy()){
1058 myPolicy = forceFieldOptions_.getCutoffPolicy();
1059 }else if (simParams_->haveCutoffPolicy()) {
1060 myPolicy = simParams_->getCutoffPolicy();
1061 }
1062
1063 if (!myPolicy.empty()){
1064 toUpper(myPolicy);
1065 if (myPolicy == "MIX") {
1066 cp = MIX_CUTOFF_POLICY;
1067 } else {
1068 if (myPolicy == "MAX") {
1069 cp = MAX_CUTOFF_POLICY;
1070 } else {
1071 if (myPolicy == "TRADITIONAL") {
1072 cp = TRADITIONAL_CUTOFF_POLICY;
1073 } else {
1074 // throw error
1075 sprintf( painCave.errMsg,
1076 "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1077 painCave.isFatal = 1;
1078 simError();
1079 }
1080 }
1081 }
1082 }
1083 notifyFortranCutoffPolicy(&cp);
1084
1085 // Check the Skin Thickness for neighborlists
1086 RealType skin;
1087 if (simParams_->haveSkinThickness()) {
1088 skin = simParams_->getSkinThickness();
1089 notifyFortranSkinThickness(&skin);
1090 }
1091
1092 // Check if the cutoff was set explicitly:
1093 if (simParams_->haveCutoffRadius()) {
1094 rcut_ = simParams_->getCutoffRadius();
1095 if (simParams_->haveSwitchingRadius()) {
1096 rsw_ = simParams_->getSwitchingRadius();
1097 } else {
1098 if (fInfo_.SIM_uses_Charges |
1099 fInfo_.SIM_uses_Dipoles |
1100 fInfo_.SIM_uses_RF) {
1101
1102 rsw_ = 0.85 * rcut_;
1103 sprintf(painCave.errMsg,
1104 "SimCreator Warning: No value was set for the switchingRadius.\n"
1105 "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
1106 "\tswitchingRadius = %f. for this simulation\n", rsw_);
1107 painCave.isFatal = 0;
1108 simError();
1109 } else {
1110 rsw_ = rcut_;
1111 sprintf(painCave.errMsg,
1112 "SimCreator Warning: No value was set for the switchingRadius.\n"
1113 "\tOpenMD will use the same value as the cutoffRadius.\n"
1114 "\tswitchingRadius = %f. for this simulation\n", rsw_);
1115 painCave.isFatal = 0;
1116 simError();
1117 }
1118 }
1119
1120 if (simParams_->haveElectrostaticSummationMethod()) {
1121 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1122 toUpper(myMethod);
1123
1124 if (myMethod == "SHIFTED_POTENTIAL") {
1125 ljsp_ = 1;
1126 } else if (myMethod == "SHIFTED_FORCE") {
1127 ljsf_ = 1;
1128 }
1129 }
1130
1131 notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1132
1133 } else {
1134
1135 // For electrostatic atoms, we'll assume a large safe value:
1136 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1137 sprintf(painCave.errMsg,
1138 "SimCreator Warning: No value was set for the cutoffRadius.\n"
1139 "\tOpenMD will use a default value of 15.0 angstroms"
1140 "\tfor the cutoffRadius.\n");
1141 painCave.isFatal = 0;
1142 simError();
1143 rcut_ = 15.0;
1144
1145 if (simParams_->haveElectrostaticSummationMethod()) {
1146 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1147 toUpper(myMethod);
1148
1149 // For the time being, we're tethering the LJ shifted behavior to the
1150 // electrostaticSummationMethod keyword options
1151 if (myMethod == "SHIFTED_POTENTIAL") {
1152 ljsp_ = 1;
1153 } else if (myMethod == "SHIFTED_FORCE") {
1154 ljsf_ = 1;
1155 }
1156 if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1157 if (simParams_->haveSwitchingRadius()){
1158 sprintf(painCave.errMsg,
1159 "SimInfo Warning: A value was set for the switchingRadius\n"
1160 "\teven though the electrostaticSummationMethod was\n"
1161 "\tset to %s\n", myMethod.c_str());
1162 painCave.isFatal = 1;
1163 simError();
1164 }
1165 }
1166 }
1167
1168 if (simParams_->haveSwitchingRadius()){
1169 rsw_ = simParams_->getSwitchingRadius();
1170 } else {
1171 sprintf(painCave.errMsg,
1172 "SimCreator Warning: No value was set for switchingRadius.\n"
1173 "\tOpenMD will use a default value of\n"
1174 "\t0.85 * cutoffRadius for the switchingRadius\n");
1175 painCave.isFatal = 0;
1176 simError();
1177 rsw_ = 0.85 * rcut_;
1178 }
1179
1180 Electrostatic::setElectrostaticCutoffRadius(rcut_, rsw_);
1181 notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1182
1183 } else {
1184 // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1185 // We'll punt and let fortran figure out the cutoffs later.
1186
1187 notifyFortranYouAreOnYourOwn();
1188
1189 }
1190 }
1191 }
1192
1193 void SimInfo::setupElectrostaticSummationMethod( int isError ) {
1194
1195 int errorOut;
1196 ElectrostaticSummationMethod esm = NONE;
1197 ElectrostaticScreeningMethod sm = UNDAMPED;
1198 RealType alphaVal;
1199 RealType dielectric;
1200
1201 errorOut = isError;
1202
1203 if (simParams_->haveElectrostaticSummationMethod()) {
1204 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1205 toUpper(myMethod);
1206 if (myMethod == "NONE") {
1207 esm = NONE;
1208 } else {
1209 if (myMethod == "SWITCHING_FUNCTION") {
1210 esm = SWITCHING_FUNCTION;
1211 } else {
1212 if (myMethod == "SHIFTED_POTENTIAL") {
1213 esm = SHIFTED_POTENTIAL;
1214 } else {
1215 if (myMethod == "SHIFTED_FORCE") {
1216 esm = SHIFTED_FORCE;
1217 } else {
1218 if (myMethod == "REACTION_FIELD") {
1219 esm = REACTION_FIELD;
1220 dielectric = simParams_->getDielectric();
1221 if (!simParams_->haveDielectric()) {
1222 // throw warning
1223 sprintf( painCave.errMsg,
1224 "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1225 "\tA default value of %f will be used for the dielectric.\n", dielectric);
1226 painCave.isFatal = 0;
1227 simError();
1228 }
1229 } else {
1230 // throw error
1231 sprintf( painCave.errMsg,
1232 "SimInfo error: Unknown electrostaticSummationMethod.\n"
1233 "\t(Input file specified %s .)\n"
1234 "\telectrostaticSummationMethod must be one of: \"none\",\n"
1235 "\t\"shifted_potential\", \"shifted_force\", or \n"
1236 "\t\"reaction_field\".\n", myMethod.c_str() );
1237 painCave.isFatal = 1;
1238 simError();
1239 }
1240 }
1241 }
1242 }
1243 }
1244 }
1245
1246 if (simParams_->haveElectrostaticScreeningMethod()) {
1247 std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1248 toUpper(myScreen);
1249 if (myScreen == "UNDAMPED") {
1250 sm = UNDAMPED;
1251 } else {
1252 if (myScreen == "DAMPED") {
1253 sm = DAMPED;
1254 if (!simParams_->haveDampingAlpha()) {
1255 // first set a cutoff dependent alpha value
1256 // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1257 alphaVal = 0.5125 - rcut_* 0.025;
1258 // for values rcut > 20.5, alpha is zero
1259 if (alphaVal < 0) alphaVal = 0;
1260
1261 // throw warning
1262 sprintf( painCave.errMsg,
1263 "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1264 "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1265 painCave.isFatal = 0;
1266 simError();
1267 } else {
1268 alphaVal = simParams_->getDampingAlpha();
1269 }
1270
1271 } else {
1272 // throw error
1273 sprintf( painCave.errMsg,
1274 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1275 "\t(Input file specified %s .)\n"
1276 "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1277 "or \"damped\".\n", myScreen.c_str() );
1278 painCave.isFatal = 1;
1279 simError();
1280 }
1281 }
1282 }
1283
1284
1285 Electrostatic::setElectrostaticSummationMethod( esm );
1286 Electrostatic::setElectrostaticScreeningMethod( sm );
1287 Electrostatic::setDampingAlpha( alphaVal );
1288 Electrostatic::setReactionFieldDielectric( dielectric );
1289 initFortranFF( &errorOut );
1290 }
1291
1292 void SimInfo::setupSwitchingFunction() {
1293 int ft = CUBIC;
1294
1295 if (simParams_->haveSwitchingFunctionType()) {
1296 std::string funcType = simParams_->getSwitchingFunctionType();
1297 toUpper(funcType);
1298 if (funcType == "CUBIC") {
1299 ft = CUBIC;
1300 } else {
1301 if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1302 ft = FIFTH_ORDER_POLY;
1303 } else {
1304 // throw error
1305 sprintf( painCave.errMsg,
1306 "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1307 painCave.isFatal = 1;
1308 simError();
1309 }
1310 }
1311 }
1312
1313 // send switching function notification to switcheroo
1314 setFunctionType(&ft);
1315
1316 }
1317
1318 void SimInfo::setupAccumulateBoxDipole() {
1319
1320 // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1321 if ( simParams_->haveAccumulateBoxDipole() )
1322 if ( simParams_->getAccumulateBoxDipole() ) {
1323 setAccumulateBoxDipole();
1324 calcBoxDipole_ = true;
1325 }
1326
1327 }
1328
1329 void SimInfo::addProperty(GenericData* genData) {
1330 properties_.addProperty(genData);
1331 }
1332
1333 void SimInfo::removeProperty(const std::string& propName) {
1334 properties_.removeProperty(propName);
1335 }
1336
1337 void SimInfo::clearProperties() {
1338 properties_.clearProperties();
1339 }
1340
1341 std::vector<std::string> SimInfo::getPropertyNames() {
1342 return properties_.getPropertyNames();
1343 }
1344
1345 std::vector<GenericData*> SimInfo::getProperties() {
1346 return properties_.getProperties();
1347 }
1348
1349 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1350 return properties_.getPropertyByName(propName);
1351 }
1352
1353 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1354 if (sman_ == sman) {
1355 return;
1356 }
1357 delete sman_;
1358 sman_ = sman;
1359
1360 Molecule* mol;
1361 RigidBody* rb;
1362 Atom* atom;
1363 SimInfo::MoleculeIterator mi;
1364 Molecule::RigidBodyIterator rbIter;
1365 Molecule::AtomIterator atomIter;;
1366
1367 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1368
1369 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1370 atom->setSnapshotManager(sman_);
1371 }
1372
1373 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1374 rb->setSnapshotManager(sman_);
1375 }
1376 }
1377
1378 }
1379
1380 Vector3d SimInfo::getComVel(){
1381 SimInfo::MoleculeIterator i;
1382 Molecule* mol;
1383
1384 Vector3d comVel(0.0);
1385 RealType totalMass = 0.0;
1386
1387
1388 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1389 RealType mass = mol->getMass();
1390 totalMass += mass;
1391 comVel += mass * mol->getComVel();
1392 }
1393
1394 #ifdef IS_MPI
1395 RealType tmpMass = totalMass;
1396 Vector3d tmpComVel(comVel);
1397 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1398 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1399 #endif
1400
1401 comVel /= totalMass;
1402
1403 return comVel;
1404 }
1405
1406 Vector3d SimInfo::getCom(){
1407 SimInfo::MoleculeIterator i;
1408 Molecule* mol;
1409
1410 Vector3d com(0.0);
1411 RealType totalMass = 0.0;
1412
1413 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1414 RealType mass = mol->getMass();
1415 totalMass += mass;
1416 com += mass * mol->getCom();
1417 }
1418
1419 #ifdef IS_MPI
1420 RealType tmpMass = totalMass;
1421 Vector3d tmpCom(com);
1422 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1423 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1424 #endif
1425
1426 com /= totalMass;
1427
1428 return com;
1429
1430 }
1431
1432 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1433
1434 return o;
1435 }
1436
1437
1438 /*
1439 Returns center of mass and center of mass velocity in one function call.
1440 */
1441
1442 void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1443 SimInfo::MoleculeIterator i;
1444 Molecule* mol;
1445
1446
1447 RealType totalMass = 0.0;
1448
1449
1450 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1451 RealType mass = mol->getMass();
1452 totalMass += mass;
1453 com += mass * mol->getCom();
1454 comVel += mass * mol->getComVel();
1455 }
1456
1457 #ifdef IS_MPI
1458 RealType tmpMass = totalMass;
1459 Vector3d tmpCom(com);
1460 Vector3d tmpComVel(comVel);
1461 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1462 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1463 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1464 #endif
1465
1466 com /= totalMass;
1467 comVel /= totalMass;
1468 }
1469
1470 /*
1471 Return intertia tensor for entire system and angular momentum Vector.
1472
1473
1474 [ Ixx -Ixy -Ixz ]
1475 J =| -Iyx Iyy -Iyz |
1476 [ -Izx -Iyz Izz ]
1477 */
1478
1479 void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1480
1481
1482 RealType xx = 0.0;
1483 RealType yy = 0.0;
1484 RealType zz = 0.0;
1485 RealType xy = 0.0;
1486 RealType xz = 0.0;
1487 RealType yz = 0.0;
1488 Vector3d com(0.0);
1489 Vector3d comVel(0.0);
1490
1491 getComAll(com, comVel);
1492
1493 SimInfo::MoleculeIterator i;
1494 Molecule* mol;
1495
1496 Vector3d thisq(0.0);
1497 Vector3d thisv(0.0);
1498
1499 RealType thisMass = 0.0;
1500
1501
1502
1503
1504 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1505
1506 thisq = mol->getCom()-com;
1507 thisv = mol->getComVel()-comVel;
1508 thisMass = mol->getMass();
1509 // Compute moment of intertia coefficients.
1510 xx += thisq[0]*thisq[0]*thisMass;
1511 yy += thisq[1]*thisq[1]*thisMass;
1512 zz += thisq[2]*thisq[2]*thisMass;
1513
1514 // compute products of intertia
1515 xy += thisq[0]*thisq[1]*thisMass;
1516 xz += thisq[0]*thisq[2]*thisMass;
1517 yz += thisq[1]*thisq[2]*thisMass;
1518
1519 angularMomentum += cross( thisq, thisv ) * thisMass;
1520
1521 }
1522
1523
1524 inertiaTensor(0,0) = yy + zz;
1525 inertiaTensor(0,1) = -xy;
1526 inertiaTensor(0,2) = -xz;
1527 inertiaTensor(1,0) = -xy;
1528 inertiaTensor(1,1) = xx + zz;
1529 inertiaTensor(1,2) = -yz;
1530 inertiaTensor(2,0) = -xz;
1531 inertiaTensor(2,1) = -yz;
1532 inertiaTensor(2,2) = xx + yy;
1533
1534 #ifdef IS_MPI
1535 Mat3x3d tmpI(inertiaTensor);
1536 Vector3d tmpAngMom;
1537 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1538 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1539 #endif
1540
1541 return;
1542 }
1543
1544 //Returns the angular momentum of the system
1545 Vector3d SimInfo::getAngularMomentum(){
1546
1547 Vector3d com(0.0);
1548 Vector3d comVel(0.0);
1549 Vector3d angularMomentum(0.0);
1550
1551 getComAll(com,comVel);
1552
1553 SimInfo::MoleculeIterator i;
1554 Molecule* mol;
1555
1556 Vector3d thisr(0.0);
1557 Vector3d thisp(0.0);
1558
1559 RealType thisMass;
1560
1561 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1562 thisMass = mol->getMass();
1563 thisr = mol->getCom()-com;
1564 thisp = (mol->getComVel()-comVel)*thisMass;
1565
1566 angularMomentum += cross( thisr, thisp );
1567
1568 }
1569
1570 #ifdef IS_MPI
1571 Vector3d tmpAngMom;
1572 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1573 #endif
1574
1575 return angularMomentum;
1576 }
1577
1578 StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1579 return IOIndexToIntegrableObject.at(index);
1580 }
1581
1582 void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1583 IOIndexToIntegrableObject= v;
1584 }
1585
1586 /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1587 based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1588 where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1589 V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1590 */
1591 void SimInfo::getGyrationalVolume(RealType &volume){
1592 Mat3x3d intTensor;
1593 RealType det;
1594 Vector3d dummyAngMom;
1595 RealType sysconstants;
1596 RealType geomCnst;
1597
1598 geomCnst = 3.0/2.0;
1599 /* Get the inertial tensor and angular momentum for free*/
1600 getInertiaTensor(intTensor,dummyAngMom);
1601
1602 det = intTensor.determinant();
1603 sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1604 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1605 return;
1606 }
1607
1608 void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1609 Mat3x3d intTensor;
1610 Vector3d dummyAngMom;
1611 RealType sysconstants;
1612 RealType geomCnst;
1613
1614 geomCnst = 3.0/2.0;
1615 /* Get the inertial tensor and angular momentum for free*/
1616 getInertiaTensor(intTensor,dummyAngMom);
1617
1618 detI = intTensor.determinant();
1619 sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1620 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1621 return;
1622 }
1623 /*
1624 void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1625 assert( v.size() == nAtoms_ + nRigidBodies_);
1626 sdByGlobalIndex_ = v;
1627 }
1628
1629 StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1630 //assert(index < nAtoms_ + nRigidBodies_);
1631 return sdByGlobalIndex_.at(index);
1632 }
1633 */
1634 }//end namespace OpenMD
1635

Properties

Name Value
svn:keywords Author Id Revision Date