ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 435 by tim, Fri Mar 11 15:55:17 2005 UTC vs.
Revision 945 by gezelter, Tue Apr 25 02:09:01 2006 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "UseTheForce/fCutoffPolicy.h"
57 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 + #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60   #include "UseTheForce/doForces_interface.h"
61 < #include "UseTheForce/notifyCutoffs_interface.h"
61 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
63   #include "utils/MemoryUtils.hpp"
64   #include "utils/simError.h"
65   #include "selection/SelectionManager.hpp"
66 + #include "io/ForceFieldOptions.hpp"
67 + #include "UseTheForce/ForceField.hpp"
68  
69   #ifdef IS_MPI
70   #include "UseTheForce/mpiComponentPlan.h"
# Line 64 | Line 72 | namespace oopse {
72   #endif
73  
74   namespace oopse {
75 +  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
76 +    std::map<int, std::set<int> >::iterator i = container.find(index);
77 +    std::set<int> result;
78 +    if (i != container.end()) {
79 +        result = i->second;
80 +    }
81  
82 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
83 <                                ForceField* ff, Globals* simParams) :
84 <                                forceField_(ff), simParams_(simParams),
85 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
86 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
87 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
88 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
89 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
90 <                                sman_(NULL), fortranInitialized_(false) {
82 >    return result;
83 >  }
84 >  
85 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
86 >    forceField_(ff), simParams_(simParams),
87 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
88 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
89 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
90 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
91 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
92 >    sman_(NULL), fortranInitialized_(false) {
93  
94 <            
95 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
96 <    MoleculeStamp* molStamp;
97 <    int nMolWithSameStamp;
98 <    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
99 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
100 <    CutoffGroupStamp* cgStamp;    
101 <    RigidBodyStamp* rbStamp;
102 <    int nRigidAtoms = 0;
103 <    
104 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
105 <        molStamp = i->first;
90 <        nMolWithSameStamp = i->second;
94 >      MoleculeStamp* molStamp;
95 >      int nMolWithSameStamp;
96 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
97 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
98 >      CutoffGroupStamp* cgStamp;    
99 >      RigidBodyStamp* rbStamp;
100 >      int nRigidAtoms = 0;
101 >      std::vector<Component*> components = simParams->getComponents();
102 >      
103 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
104 >        molStamp = (*i)->getMoleculeStamp();
105 >        nMolWithSameStamp = (*i)->getNMol();
106          
107          addMoleculeStamp(molStamp, nMolWithSameStamp);
108  
109          //calculate atoms in molecules
110          nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
111  
97
112          //calculate atoms in cutoff groups
113          int nAtomsInGroups = 0;
114          int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
115          
116          for (int j=0; j < nCutoffGroupsInStamp; j++) {
117 <            cgStamp = molStamp->getCutoffGroup(j);
118 <            nAtomsInGroups += cgStamp->getNMembers();
117 >          cgStamp = molStamp->getCutoffGroupStamp(j);
118 >          nAtomsInGroups += cgStamp->getNMembers();
119          }
120  
121          nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
122 +
123          nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
124  
125          //calculate atoms in rigid bodies
# Line 112 | Line 127 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
127          int nRigidBodiesInStamp = molStamp->getNRigidBodies();
128          
129          for (int j=0; j < nRigidBodiesInStamp; j++) {
130 <            rbStamp = molStamp->getRigidBody(j);
131 <            nAtomsInRigidBodies += rbStamp->getNMembers();
130 >          rbStamp = molStamp->getRigidBodyStamp(j);
131 >          nAtomsInRigidBodies += rbStamp->getNMembers();
132          }
133  
134          nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
135          nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
136          
137 <    }
137 >      }
138  
139 <    //every free atom (atom does not belong to cutoff groups) is a cutoff group
140 <    //therefore the total number of cutoff groups in the system is equal to
141 <    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
142 <    //file plus the number of cutoff groups defined in meta-data file
143 <    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
139 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
140 >      //group therefore the total number of cutoff groups in the system is
141 >      //equal to the total number of atoms minus number of atoms belong to
142 >      //cutoff group defined in meta-data file plus the number of cutoff
143 >      //groups defined in meta-data file
144 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
145  
146 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
147 <    //therefore the total number of  integrable objects in the system is equal to
148 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
149 <    //file plus the number of  rigid bodies defined in meta-data file
150 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
146 >      //every free atom (atom does not belong to rigid bodies) is an
147 >      //integrable object therefore the total number of integrable objects
148 >      //in the system is equal to the total number of atoms minus number of
149 >      //atoms belong to rigid body defined in meta-data file plus the number
150 >      //of rigid bodies defined in meta-data file
151 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
152 >                                                + nGlobalRigidBodies_;
153 >  
154 >      nGlobalMols_ = molStampIds_.size();
155  
136    nGlobalMols_ = molStampIds_.size();
137
156   #ifdef IS_MPI    
157 <    molToProcMap_.resize(nGlobalMols_);
157 >      molToProcMap_.resize(nGlobalMols_);
158   #endif
159  
160 < }
160 >    }
161  
162 < SimInfo::~SimInfo() {
162 >  SimInfo::~SimInfo() {
163      std::map<int, Molecule*>::iterator i;
164      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
165 <        delete i->second;
165 >      delete i->second;
166      }
167      molecules_.clear();
168 <    
151 <    MemoryUtils::deletePointers(moleculeStamps_);
152 <    
168 >      
169      delete sman_;
170      delete simParams_;
171      delete forceField_;
172 < }
172 >  }
173  
174 < int SimInfo::getNGlobalConstraints() {
174 >  int SimInfo::getNGlobalConstraints() {
175      int nGlobalConstraints;
176   #ifdef IS_MPI
177      MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
# Line 164 | Line 180 | int SimInfo::getNGlobalConstraints() {
180      nGlobalConstraints =  nConstraints_;
181   #endif
182      return nGlobalConstraints;
183 < }
183 >  }
184  
185 < bool SimInfo::addMolecule(Molecule* mol) {
185 >  bool SimInfo::addMolecule(Molecule* mol) {
186      MoleculeIterator i;
187  
188      i = molecules_.find(mol->getGlobalIndex());
189      if (i == molecules_.end() ) {
190  
191 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
191 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
192          
193 <        nAtoms_ += mol->getNAtoms();
194 <        nBonds_ += mol->getNBonds();
195 <        nBends_ += mol->getNBends();
196 <        nTorsions_ += mol->getNTorsions();
197 <        nRigidBodies_ += mol->getNRigidBodies();
198 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
199 <        nCutoffGroups_ += mol->getNCutoffGroups();
200 <        nConstraints_ += mol->getNConstraintPairs();
193 >      nAtoms_ += mol->getNAtoms();
194 >      nBonds_ += mol->getNBonds();
195 >      nBends_ += mol->getNBends();
196 >      nTorsions_ += mol->getNTorsions();
197 >      nRigidBodies_ += mol->getNRigidBodies();
198 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
199 >      nCutoffGroups_ += mol->getNCutoffGroups();
200 >      nConstraints_ += mol->getNConstraintPairs();
201  
202 <        addExcludePairs(mol);
202 >      addExcludePairs(mol);
203          
204 <        return true;
204 >      return true;
205      } else {
206 <        return false;
206 >      return false;
207      }
208 < }
208 >  }
209  
210 < bool SimInfo::removeMolecule(Molecule* mol) {
210 >  bool SimInfo::removeMolecule(Molecule* mol) {
211      MoleculeIterator i;
212      i = molecules_.find(mol->getGlobalIndex());
213  
214      if (i != molecules_.end() ) {
215  
216 <        assert(mol == i->second);
216 >      assert(mol == i->second);
217          
218 <        nAtoms_ -= mol->getNAtoms();
219 <        nBonds_ -= mol->getNBonds();
220 <        nBends_ -= mol->getNBends();
221 <        nTorsions_ -= mol->getNTorsions();
222 <        nRigidBodies_ -= mol->getNRigidBodies();
223 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
224 <        nCutoffGroups_ -= mol->getNCutoffGroups();
225 <        nConstraints_ -= mol->getNConstraintPairs();
218 >      nAtoms_ -= mol->getNAtoms();
219 >      nBonds_ -= mol->getNBonds();
220 >      nBends_ -= mol->getNBends();
221 >      nTorsions_ -= mol->getNTorsions();
222 >      nRigidBodies_ -= mol->getNRigidBodies();
223 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
224 >      nCutoffGroups_ -= mol->getNCutoffGroups();
225 >      nConstraints_ -= mol->getNConstraintPairs();
226  
227 <        removeExcludePairs(mol);
228 <        molecules_.erase(mol->getGlobalIndex());
227 >      removeExcludePairs(mol);
228 >      molecules_.erase(mol->getGlobalIndex());
229  
230 <        delete mol;
230 >      delete mol;
231          
232 <        return true;
232 >      return true;
233      } else {
234 <        return false;
234 >      return false;
235      }
236  
237  
238 < }    
238 >  }    
239  
240          
241 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
241 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
242      i = molecules_.begin();
243      return i == molecules_.end() ? NULL : i->second;
244 < }    
244 >  }    
245  
246 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
246 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
247      ++i;
248      return i == molecules_.end() ? NULL : i->second;    
249 < }
249 >  }
250  
251  
252 < void SimInfo::calcNdf() {
252 >  void SimInfo::calcNdf() {
253      int ndf_local;
254      MoleculeIterator i;
255      std::vector<StuntDouble*>::iterator j;
# Line 243 | Line 259 | void SimInfo::calcNdf() {
259      ndf_local = 0;
260      
261      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
262 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
263 <               integrableObject = mol->nextIntegrableObject(j)) {
262 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
263 >           integrableObject = mol->nextIntegrableObject(j)) {
264  
265 <            ndf_local += 3;
265 >        ndf_local += 3;
266  
267 <            if (integrableObject->isDirectional()) {
268 <                if (integrableObject->isLinear()) {
269 <                    ndf_local += 2;
270 <                } else {
271 <                    ndf_local += 3;
272 <                }
273 <            }
267 >        if (integrableObject->isDirectional()) {
268 >          if (integrableObject->isLinear()) {
269 >            ndf_local += 2;
270 >          } else {
271 >            ndf_local += 3;
272 >          }
273 >        }
274              
275 <        }//end for (integrableObject)
276 <    }// end for (mol)
275 >      }
276 >    }
277      
278      // n_constraints is local, so subtract them on each processor
279      ndf_local -= nConstraints_;
# Line 272 | Line 288 | void SimInfo::calcNdf() {
288      // entire system:
289      ndf_ = ndf_ - 3 - nZconstraint_;
290  
291 < }
291 >  }
292  
293 < void SimInfo::calcNdfRaw() {
293 >  int SimInfo::getFdf() {
294 > #ifdef IS_MPI
295 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
296 > #else
297 >    fdf_ = fdf_local;
298 > #endif
299 >    return fdf_;
300 >  }
301 >    
302 >  void SimInfo::calcNdfRaw() {
303      int ndfRaw_local;
304  
305      MoleculeIterator i;
# Line 286 | Line 311 | void SimInfo::calcNdfRaw() {
311      ndfRaw_local = 0;
312      
313      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
314 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
315 <               integrableObject = mol->nextIntegrableObject(j)) {
314 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
315 >           integrableObject = mol->nextIntegrableObject(j)) {
316  
317 <            ndfRaw_local += 3;
317 >        ndfRaw_local += 3;
318  
319 <            if (integrableObject->isDirectional()) {
320 <                if (integrableObject->isLinear()) {
321 <                    ndfRaw_local += 2;
322 <                } else {
323 <                    ndfRaw_local += 3;
324 <                }
325 <            }
319 >        if (integrableObject->isDirectional()) {
320 >          if (integrableObject->isLinear()) {
321 >            ndfRaw_local += 2;
322 >          } else {
323 >            ndfRaw_local += 3;
324 >          }
325 >        }
326              
327 <        }
327 >      }
328      }
329      
330   #ifdef IS_MPI
# Line 307 | Line 332 | void SimInfo::calcNdfRaw() {
332   #else
333      ndfRaw_ = ndfRaw_local;
334   #endif
335 < }
335 >  }
336  
337 < void SimInfo::calcNdfTrans() {
337 >  void SimInfo::calcNdfTrans() {
338      int ndfTrans_local;
339  
340      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 323 | Line 348 | void SimInfo::calcNdfTrans() {
348  
349      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
350  
351 < }
351 >  }
352  
353 < void SimInfo::addExcludePairs(Molecule* mol) {
353 >  void SimInfo::addExcludePairs(Molecule* mol) {
354      std::vector<Bond*>::iterator bondIter;
355      std::vector<Bend*>::iterator bendIter;
356      std::vector<Torsion*>::iterator torsionIter;
# Line 336 | Line 361 | void SimInfo::addExcludePairs(Molecule* mol) {
361      int b;
362      int c;
363      int d;
364 +
365 +    std::map<int, std::set<int> > atomGroups;
366 +
367 +    Molecule::RigidBodyIterator rbIter;
368 +    RigidBody* rb;
369 +    Molecule::IntegrableObjectIterator ii;
370 +    StuntDouble* integrableObject;
371      
372 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
373 +           integrableObject = mol->nextIntegrableObject(ii)) {
374 +
375 +      if (integrableObject->isRigidBody()) {
376 +          rb = static_cast<RigidBody*>(integrableObject);
377 +          std::vector<Atom*> atoms = rb->getAtoms();
378 +          std::set<int> rigidAtoms;
379 +          for (int i = 0; i < atoms.size(); ++i) {
380 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
381 +          }
382 +          for (int i = 0; i < atoms.size(); ++i) {
383 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
384 +          }      
385 +      } else {
386 +        std::set<int> oneAtomSet;
387 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
388 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
389 +      }
390 +    }  
391 +
392 +    
393 +    
394      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
395 <        a = bond->getAtomA()->getGlobalIndex();
396 <        b = bond->getAtomB()->getGlobalIndex();        
397 <        exclude_.addPair(a, b);
395 >      a = bond->getAtomA()->getGlobalIndex();
396 >      b = bond->getAtomB()->getGlobalIndex();        
397 >      exclude_.addPair(a, b);
398      }
399  
400      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
401 <        a = bend->getAtomA()->getGlobalIndex();
402 <        b = bend->getAtomB()->getGlobalIndex();        
403 <        c = bend->getAtomC()->getGlobalIndex();
401 >      a = bend->getAtomA()->getGlobalIndex();
402 >      b = bend->getAtomB()->getGlobalIndex();        
403 >      c = bend->getAtomC()->getGlobalIndex();
404 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
405 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
406 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
407  
408 <        exclude_.addPair(a, b);
409 <        exclude_.addPair(a, c);
410 <        exclude_.addPair(b, c);        
408 >      exclude_.addPairs(rigidSetA, rigidSetB);
409 >      exclude_.addPairs(rigidSetA, rigidSetC);
410 >      exclude_.addPairs(rigidSetB, rigidSetC);
411 >      
412 >      //exclude_.addPair(a, b);
413 >      //exclude_.addPair(a, c);
414 >      //exclude_.addPair(b, c);        
415      }
416  
417      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
418 <        a = torsion->getAtomA()->getGlobalIndex();
419 <        b = torsion->getAtomB()->getGlobalIndex();        
420 <        c = torsion->getAtomC()->getGlobalIndex();        
421 <        d = torsion->getAtomD()->getGlobalIndex();        
418 >      a = torsion->getAtomA()->getGlobalIndex();
419 >      b = torsion->getAtomB()->getGlobalIndex();        
420 >      c = torsion->getAtomC()->getGlobalIndex();        
421 >      d = torsion->getAtomD()->getGlobalIndex();        
422 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
423 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
424 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
425 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
426  
427 <        exclude_.addPair(a, b);
428 <        exclude_.addPair(a, c);
429 <        exclude_.addPair(a, d);
430 <        exclude_.addPair(b, c);
431 <        exclude_.addPair(b, d);
432 <        exclude_.addPair(c, d);        
427 >      exclude_.addPairs(rigidSetA, rigidSetB);
428 >      exclude_.addPairs(rigidSetA, rigidSetC);
429 >      exclude_.addPairs(rigidSetA, rigidSetD);
430 >      exclude_.addPairs(rigidSetB, rigidSetC);
431 >      exclude_.addPairs(rigidSetB, rigidSetD);
432 >      exclude_.addPairs(rigidSetC, rigidSetD);
433 >
434 >      /*
435 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
436 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
437 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
438 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
439 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
440 >      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
441 >        
442 >      
443 >      exclude_.addPair(a, b);
444 >      exclude_.addPair(a, c);
445 >      exclude_.addPair(a, d);
446 >      exclude_.addPair(b, c);
447 >      exclude_.addPair(b, d);
448 >      exclude_.addPair(c, d);        
449 >      */
450      }
451  
370    Molecule::RigidBodyIterator rbIter;
371    RigidBody* rb;
452      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
453 <        std::vector<Atom*> atoms = rb->getAtoms();
454 <        for (int i = 0; i < atoms.size() -1 ; ++i) {
455 <            for (int j = i + 1; j < atoms.size(); ++j) {
456 <                a = atoms[i]->getGlobalIndex();
457 <                b = atoms[j]->getGlobalIndex();
458 <                exclude_.addPair(a, b);
459 <            }
460 <        }
453 >      std::vector<Atom*> atoms = rb->getAtoms();
454 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
455 >        for (int j = i + 1; j < atoms.size(); ++j) {
456 >          a = atoms[i]->getGlobalIndex();
457 >          b = atoms[j]->getGlobalIndex();
458 >          exclude_.addPair(a, b);
459 >        }
460 >      }
461      }        
462  
463 < }
463 >  }
464  
465 < void SimInfo::removeExcludePairs(Molecule* mol) {
465 >  void SimInfo::removeExcludePairs(Molecule* mol) {
466      std::vector<Bond*>::iterator bondIter;
467      std::vector<Bend*>::iterator bendIter;
468      std::vector<Torsion*>::iterator torsionIter;
# Line 393 | Line 473 | void SimInfo::removeExcludePairs(Molecule* mol) {
473      int b;
474      int c;
475      int d;
476 +
477 +    std::map<int, std::set<int> > atomGroups;
478 +
479 +    Molecule::RigidBodyIterator rbIter;
480 +    RigidBody* rb;
481 +    Molecule::IntegrableObjectIterator ii;
482 +    StuntDouble* integrableObject;
483      
484 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
485 +           integrableObject = mol->nextIntegrableObject(ii)) {
486 +
487 +      if (integrableObject->isRigidBody()) {
488 +          rb = static_cast<RigidBody*>(integrableObject);
489 +          std::vector<Atom*> atoms = rb->getAtoms();
490 +          std::set<int> rigidAtoms;
491 +          for (int i = 0; i < atoms.size(); ++i) {
492 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
493 +          }
494 +          for (int i = 0; i < atoms.size(); ++i) {
495 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
496 +          }      
497 +      } else {
498 +        std::set<int> oneAtomSet;
499 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
500 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
501 +      }
502 +    }  
503 +
504 +    
505      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
506 <        a = bond->getAtomA()->getGlobalIndex();
507 <        b = bond->getAtomB()->getGlobalIndex();        
508 <        exclude_.removePair(a, b);
506 >      a = bond->getAtomA()->getGlobalIndex();
507 >      b = bond->getAtomB()->getGlobalIndex();        
508 >      exclude_.removePair(a, b);
509      }
510  
511      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
512 <        a = bend->getAtomA()->getGlobalIndex();
513 <        b = bend->getAtomB()->getGlobalIndex();        
514 <        c = bend->getAtomC()->getGlobalIndex();
512 >      a = bend->getAtomA()->getGlobalIndex();
513 >      b = bend->getAtomB()->getGlobalIndex();        
514 >      c = bend->getAtomC()->getGlobalIndex();
515  
516 <        exclude_.removePair(a, b);
517 <        exclude_.removePair(a, c);
518 <        exclude_.removePair(b, c);        
516 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
517 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
518 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
519 >
520 >      exclude_.removePairs(rigidSetA, rigidSetB);
521 >      exclude_.removePairs(rigidSetA, rigidSetC);
522 >      exclude_.removePairs(rigidSetB, rigidSetC);
523 >      
524 >      //exclude_.removePair(a, b);
525 >      //exclude_.removePair(a, c);
526 >      //exclude_.removePair(b, c);        
527      }
528  
529      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
530 <        a = torsion->getAtomA()->getGlobalIndex();
531 <        b = torsion->getAtomB()->getGlobalIndex();        
532 <        c = torsion->getAtomC()->getGlobalIndex();        
533 <        d = torsion->getAtomD()->getGlobalIndex();        
530 >      a = torsion->getAtomA()->getGlobalIndex();
531 >      b = torsion->getAtomB()->getGlobalIndex();        
532 >      c = torsion->getAtomC()->getGlobalIndex();        
533 >      d = torsion->getAtomD()->getGlobalIndex();        
534  
535 <        exclude_.removePair(a, b);
536 <        exclude_.removePair(a, c);
537 <        exclude_.removePair(a, d);
538 <        exclude_.removePair(b, c);
539 <        exclude_.removePair(b, d);
540 <        exclude_.removePair(c, d);        
535 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
536 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
537 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
538 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
539 >
540 >      exclude_.removePairs(rigidSetA, rigidSetB);
541 >      exclude_.removePairs(rigidSetA, rigidSetC);
542 >      exclude_.removePairs(rigidSetA, rigidSetD);
543 >      exclude_.removePairs(rigidSetB, rigidSetC);
544 >      exclude_.removePairs(rigidSetB, rigidSetD);
545 >      exclude_.removePairs(rigidSetC, rigidSetD);
546 >
547 >      /*
548 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
549 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
550 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
551 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
552 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
553 >      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
554 >
555 >      
556 >      exclude_.removePair(a, b);
557 >      exclude_.removePair(a, c);
558 >      exclude_.removePair(a, d);
559 >      exclude_.removePair(b, c);
560 >      exclude_.removePair(b, d);
561 >      exclude_.removePair(c, d);        
562 >      */
563      }
564  
427    Molecule::RigidBodyIterator rbIter;
428    RigidBody* rb;
565      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
566 <        std::vector<Atom*> atoms = rb->getAtoms();
567 <        for (int i = 0; i < atoms.size() -1 ; ++i) {
568 <            for (int j = i + 1; j < atoms.size(); ++j) {
569 <                a = atoms[i]->getGlobalIndex();
570 <                b = atoms[j]->getGlobalIndex();
571 <                exclude_.removePair(a, b);
572 <            }
573 <        }
566 >      std::vector<Atom*> atoms = rb->getAtoms();
567 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
568 >        for (int j = i + 1; j < atoms.size(); ++j) {
569 >          a = atoms[i]->getGlobalIndex();
570 >          b = atoms[j]->getGlobalIndex();
571 >          exclude_.removePair(a, b);
572 >        }
573 >      }
574      }        
575  
576 < }
576 >  }
577  
578  
579 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
579 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
580      int curStampId;
581  
582      //index from 0
# Line 448 | Line 584 | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp
584  
585      moleculeStamps_.push_back(molStamp);
586      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
587 < }
587 >  }
588  
589 < void SimInfo::update() {
589 >  void SimInfo::update() {
590  
591      setupSimType();
592  
# Line 463 | Line 599 | void SimInfo::update() {
599      //setup fortran force field
600      /** @deprecate */    
601      int isError = 0;
602 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
602 >    
603 >    setupElectrostaticSummationMethod( isError );
604 >    setupSwitchingFunction();
605 >
606      if(isError){
607 <        sprintf( painCave.errMsg,
608 <         "ForceField error: There was an error initializing the forceField in fortran.\n" );
609 <        painCave.isFatal = 1;
610 <        simError();
607 >      sprintf( painCave.errMsg,
608 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
609 >      painCave.isFatal = 1;
610 >      simError();
611      }
612    
613      
# Line 479 | Line 618 | void SimInfo::update() {
618      calcNdfTrans();
619  
620      fortranInitialized_ = true;
621 < }
621 >  }
622  
623 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
623 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
624      SimInfo::MoleculeIterator mi;
625      Molecule* mol;
626      Molecule::AtomIterator ai;
# Line 490 | Line 629 | std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
629  
630      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
631  
632 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
633 <            atomTypes.insert(atom->getAtomType());
634 <        }
632 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
633 >        atomTypes.insert(atom->getAtomType());
634 >      }
635          
636      }
637  
638      return atomTypes;        
639 < }
639 >  }
640  
641 < void SimInfo::setupSimType() {
641 >  void SimInfo::setupSimType() {
642      std::set<AtomType*>::iterator i;
643      std::set<AtomType*> atomTypes;
644      atomTypes = getUniqueAtomTypes();
# Line 507 | Line 646 | void SimInfo::setupSimType() {
646      int useLennardJones = 0;
647      int useElectrostatic = 0;
648      int useEAM = 0;
649 +    int useSC = 0;
650      int useCharge = 0;
651      int useDirectional = 0;
652      int useDipole = 0;
653      int useGayBerne = 0;
654      int useSticky = 0;
655 +    int useStickyPower = 0;
656      int useShape = 0;
657      int useFLARB = 0; //it is not in AtomType yet
658      int useDirectionalAtom = 0;    
659      int useElectrostatics = 0;
660      //usePBC and useRF are from simParams
661 <    int usePBC = simParams_->getPBC();
662 <    int useRF = simParams_->getUseRF();
661 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
662 >    int useRF;
663 >    int useSF;
664 >    std::string myMethod;
665  
666 +    // set the useRF logical
667 +    useRF = 0;
668 +    useSF = 0;
669 +
670 +
671 +    if (simParams_->haveElectrostaticSummationMethod()) {
672 +      std::string myMethod = simParams_->getElectrostaticSummationMethod();
673 +      toUpper(myMethod);
674 +      if (myMethod == "REACTION_FIELD") {
675 +        useRF=1;
676 +      } else {
677 +        if (myMethod == "SHIFTED_FORCE") {
678 +          useSF = 1;
679 +        }
680 +      }
681 +    }
682 +
683      //loop over all of the atom types
684      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
685 <        useLennardJones |= (*i)->isLennardJones();
686 <        useElectrostatic |= (*i)->isElectrostatic();
687 <        useEAM |= (*i)->isEAM();
688 <        useCharge |= (*i)->isCharge();
689 <        useDirectional |= (*i)->isDirectional();
690 <        useDipole |= (*i)->isDipole();
691 <        useGayBerne |= (*i)->isGayBerne();
692 <        useSticky |= (*i)->isSticky();
693 <        useShape |= (*i)->isShape();
685 >      useLennardJones |= (*i)->isLennardJones();
686 >      useElectrostatic |= (*i)->isElectrostatic();
687 >      useEAM |= (*i)->isEAM();
688 >      useSC |= (*i)->isSC();
689 >      useCharge |= (*i)->isCharge();
690 >      useDirectional |= (*i)->isDirectional();
691 >      useDipole |= (*i)->isDipole();
692 >      useGayBerne |= (*i)->isGayBerne();
693 >      useSticky |= (*i)->isSticky();
694 >      useStickyPower |= (*i)->isStickyPower();
695 >      useShape |= (*i)->isShape();
696      }
697  
698 <    if (useSticky || useDipole || useGayBerne || useShape) {
699 <        useDirectionalAtom = 1;
698 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
699 >      useDirectionalAtom = 1;
700      }
701  
702      if (useCharge || useDipole) {
703 <        useElectrostatics = 1;
703 >      useElectrostatics = 1;
704      }
705  
706   #ifdef IS_MPI    
# Line 565 | Line 727 | void SimInfo::setupSimType() {
727      temp = useSticky;
728      MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
729  
730 +    temp = useStickyPower;
731 +    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
732 +    
733      temp = useGayBerne;
734      MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
735  
736      temp = useEAM;
737      MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
738  
739 +    temp = useSC;
740 +    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
741 +    
742      temp = useShape;
743      MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
744  
# Line 579 | Line 747 | void SimInfo::setupSimType() {
747  
748      temp = useRF;
749      MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
750 <    
750 >
751 >    temp = useSF;
752 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
753 >
754   #endif
755  
756      fInfo_.SIM_uses_PBC = usePBC;    
# Line 589 | Line 760 | void SimInfo::setupSimType() {
760      fInfo_.SIM_uses_Charges = useCharge;
761      fInfo_.SIM_uses_Dipoles = useDipole;
762      fInfo_.SIM_uses_Sticky = useSticky;
763 +    fInfo_.SIM_uses_StickyPower = useStickyPower;
764      fInfo_.SIM_uses_GayBerne = useGayBerne;
765      fInfo_.SIM_uses_EAM = useEAM;
766 +    fInfo_.SIM_uses_SC = useSC;
767      fInfo_.SIM_uses_Shapes = useShape;
768      fInfo_.SIM_uses_FLARB = useFLARB;
769      fInfo_.SIM_uses_RF = useRF;
770 +    fInfo_.SIM_uses_SF = useSF;
771  
772 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
773 <
774 <        if (simParams_->haveDielectric()) {
775 <            fInfo_.dielect = simParams_->getDielectric();
776 <        } else {
777 <            sprintf(painCave.errMsg,
778 <                    "SimSetup Error: No Dielectric constant was set.\n"
779 <                    "\tYou are trying to use Reaction Field without"
780 <                    "\tsetting a dielectric constant!\n");
781 <            painCave.isFatal = 1;
782 <            simError();
783 <        }
610 <        
611 <    } else {
612 <        fInfo_.dielect = 0.0;
772 >    if( myMethod == "REACTION_FIELD") {
773 >      
774 >      if (simParams_->haveDielectric()) {
775 >        fInfo_.dielect = simParams_->getDielectric();
776 >      } else {
777 >        sprintf(painCave.errMsg,
778 >                "SimSetup Error: No Dielectric constant was set.\n"
779 >                "\tYou are trying to use Reaction Field without"
780 >                "\tsetting a dielectric constant!\n");
781 >        painCave.isFatal = 1;
782 >        simError();
783 >      }      
784      }
785  
786 < }
786 >  }
787  
788 < void SimInfo::setupFortranSim() {
788 >  void SimInfo::setupFortranSim() {
789      int isError;
790      int nExclude;
791      std::vector<int> fortranGlobalGroupMembership;
# Line 624 | Line 795 | void SimInfo::setupFortranSim() {
795  
796      //globalGroupMembership_ is filled by SimCreator    
797      for (int i = 0; i < nGlobalAtoms_; i++) {
798 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
798 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
799      }
800  
801      //calculate mass ratio of cutoff group
# Line 641 | Line 812 | void SimInfo::setupFortranSim() {
812      mfact.reserve(getNCutoffGroups());
813      
814      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
815 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
815 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
816  
817 <            totalMass = cg->getMass();
818 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
819 <                        mfact.push_back(atom->getMass()/totalMass);
820 <            }
817 >        totalMass = cg->getMass();
818 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
819 >          // Check for massless groups - set mfact to 1 if true
820 >          if (totalMass != 0)
821 >            mfact.push_back(atom->getMass()/totalMass);
822 >          else
823 >            mfact.push_back( 1.0 );
824 >        }
825  
826 <        }      
826 >      }      
827      }
828  
829      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
# Line 658 | Line 833 | void SimInfo::setupFortranSim() {
833      identArray.reserve(getNAtoms());
834      
835      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
836 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
837 <            identArray.push_back(atom->getIdent());
838 <        }
836 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
837 >        identArray.push_back(atom->getIdent());
838 >      }
839      }    
840  
841      //fill molMembershipArray
842      //molMembershipArray is filled by SimCreator    
843      std::vector<int> molMembershipArray(nGlobalAtoms_);
844      for (int i = 0; i < nGlobalAtoms_; i++) {
845 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
845 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
846      }
847      
848      //setup fortran simulation
# Line 675 | Line 850 | void SimInfo::setupFortranSim() {
850      int* globalExcludes = NULL;
851      int* excludeList = exclude_.getExcludeList();
852      setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
853 <                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
854 <                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
853 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
854 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
855  
856      if( isError ){
857  
858 <        sprintf( painCave.errMsg,
859 <                 "There was an error setting the simulation information in fortran.\n" );
860 <        painCave.isFatal = 1;
861 <        painCave.severity = OOPSE_ERROR;
862 <        simError();
858 >      sprintf( painCave.errMsg,
859 >               "There was an error setting the simulation information in fortran.\n" );
860 >      painCave.isFatal = 1;
861 >      painCave.severity = OOPSE_ERROR;
862 >      simError();
863      }
864  
865   #ifdef IS_MPI
866      sprintf( checkPointMsg,
867 <       "succesfully sent the simulation information to fortran.\n");
867 >             "succesfully sent the simulation information to fortran.\n");
868      MPIcheckPoint();
869   #endif // is_mpi
870 < }
870 >  }
871  
872  
873   #ifdef IS_MPI
874 < void SimInfo::setupFortranParallel() {
874 >  void SimInfo::setupFortranParallel() {
875      
876      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
877      std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
# Line 712 | Line 887 | void SimInfo::setupFortranParallel() {
887  
888      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
889  
890 <        //local index(index in DataStorge) of atom is important
891 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
892 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
893 <        }
890 >      //local index(index in DataStorge) of atom is important
891 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
892 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
893 >      }
894  
895 <        //local index of cutoff group is trivial, it only depends on the order of travesing
896 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
897 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
898 <        }        
895 >      //local index of cutoff group is trivial, it only depends on the order of travesing
896 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
897 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
898 >      }        
899          
900      }
901  
# Line 740 | Line 915 | void SimInfo::setupFortranParallel() {
915                      &localToGlobalCutoffGroupIndex[0], &isError);
916  
917      if (isError) {
918 <        sprintf(painCave.errMsg,
919 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
920 <        painCave.isFatal = 1;
921 <        simError();
918 >      sprintf(painCave.errMsg,
919 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
920 >      painCave.isFatal = 1;
921 >      simError();
922      }
923  
924      sprintf(checkPointMsg, " mpiRefresh successful.\n");
925      MPIcheckPoint();
926  
927  
928 < }
928 >  }
929  
930   #endif
931  
932 < double SimInfo::calcMaxCutoffRadius() {
932 >  void SimInfo::setupCutoff() {          
933 >    
934 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
935  
936 +    // Check the cutoff policy
937 +    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
938  
939 <    std::set<AtomType*> atomTypes;
940 <    std::set<AtomType*>::iterator i;
941 <    std::vector<double> cutoffRadius;
942 <
943 <    //get the unique atom types
765 <    atomTypes = getUniqueAtomTypes();
766 <
767 <    //query the max cutoff radius among these atom types
768 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
769 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
939 >    std::string myPolicy;
940 >    if (forceFieldOptions_.haveCutoffPolicy()){
941 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
942 >    }else if (simParams_->haveCutoffPolicy()) {
943 >      myPolicy = simParams_->getCutoffPolicy();
944      }
945  
946 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
947 < #ifdef IS_MPI
948 <    //pick the max cutoff radius among the processors
949 < #endif
946 >    if (!myPolicy.empty()){
947 >      toUpper(myPolicy);
948 >      if (myPolicy == "MIX") {
949 >        cp = MIX_CUTOFF_POLICY;
950 >      } else {
951 >        if (myPolicy == "MAX") {
952 >          cp = MAX_CUTOFF_POLICY;
953 >        } else {
954 >          if (myPolicy == "TRADITIONAL") {            
955 >            cp = TRADITIONAL_CUTOFF_POLICY;
956 >          } else {
957 >            // throw error        
958 >            sprintf( painCave.errMsg,
959 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
960 >            painCave.isFatal = 1;
961 >            simError();
962 >          }    
963 >        }          
964 >      }
965 >    }          
966 >    notifyFortranCutoffPolicy(&cp);
967  
968 <    return maxCutoffRadius;
969 < }
970 <
971 < void SimInfo::getCutoff(double& rcut, double& rsw) {
972 <    
973 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
968 >    // Check the Skin Thickness for neighborlists
969 >    double skin;
970 >    if (simParams_->haveSkinThickness()) {
971 >      skin = simParams_->getSkinThickness();
972 >      notifyFortranSkinThickness(&skin);
973 >    }            
974          
975 <        if (!simParams_->haveRcut()){
976 <            sprintf(painCave.errMsg,
975 >    // Check if the cutoff was set explicitly:
976 >    if (simParams_->haveCutoffRadius()) {
977 >      rcut_ = simParams_->getCutoffRadius();
978 >      if (simParams_->haveSwitchingRadius()) {
979 >        rsw_  = simParams_->getSwitchingRadius();
980 >      } else {
981 >        if (fInfo_.SIM_uses_Charges |
982 >            fInfo_.SIM_uses_Dipoles |
983 >            fInfo_.SIM_uses_RF) {
984 >          
985 >          rsw_ = 0.85 * rcut_;
986 >          sprintf(painCave.errMsg,
987 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
988 >                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
989 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
990 >        painCave.isFatal = 0;
991 >        simError();
992 >        } else {
993 >          rsw_ = rcut_;
994 >          sprintf(painCave.errMsg,
995 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
996 >                  "\tOOPSE will use the same value as the cutoffRadius.\n"
997 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
998 >          painCave.isFatal = 0;
999 >          simError();
1000 >        }
1001 >      }
1002 >      
1003 >      notifyFortranCutoffs(&rcut_, &rsw_);
1004 >      
1005 >    } else {
1006 >      
1007 >      // For electrostatic atoms, we'll assume a large safe value:
1008 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1009 >        sprintf(painCave.errMsg,
1010                  "SimCreator Warning: No value was set for the cutoffRadius.\n"
1011                  "\tOOPSE will use a default value of 15.0 angstroms"
1012                  "\tfor the cutoffRadius.\n");
1013 <            painCave.isFatal = 0;
1014 <            simError();
1015 <            rcut = 15.0;
1016 <        } else{
1017 <            rcut = simParams_->getRcut();
1013 >        painCave.isFatal = 0;
1014 >        simError();
1015 >        rcut_ = 15.0;
1016 >      
1017 >        if (simParams_->haveElectrostaticSummationMethod()) {
1018 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1019 >          toUpper(myMethod);
1020 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1021 >            if (simParams_->haveSwitchingRadius()){
1022 >              sprintf(painCave.errMsg,
1023 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
1024 >                      "\teven though the electrostaticSummationMethod was\n"
1025 >                      "\tset to %s\n", myMethod.c_str());
1026 >              painCave.isFatal = 1;
1027 >              simError();            
1028 >            }
1029 >          }
1030          }
1031 <
1032 <        if (!simParams_->haveRsw()){
1033 <            sprintf(painCave.errMsg,
1034 <                "SimCreator Warning: No value was set for switchingRadius.\n"
1035 <                "\tOOPSE will use a default value of\n"
1036 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
1037 <            painCave.isFatal = 0;
1038 <            simError();
1039 <            rsw = 0.95 * rcut;
1040 <        } else{
1041 <            rsw = simParams_->getRsw();
1031 >      
1032 >        if (simParams_->haveSwitchingRadius()){
1033 >          rsw_ = simParams_->getSwitchingRadius();
1034 >        } else {        
1035 >          sprintf(painCave.errMsg,
1036 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1037 >                  "\tOOPSE will use a default value of\n"
1038 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1039 >          painCave.isFatal = 0;
1040 >          simError();
1041 >          rsw_ = 0.85 * rcut_;
1042          }
1043 <
1044 <    } else {
1045 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
1046 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
1043 >        notifyFortranCutoffs(&rcut_, &rsw_);
1044 >      } else {
1045 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1046 >        // We'll punt and let fortran figure out the cutoffs later.
1047          
1048 <        if (simParams_->haveRcut()) {
813 <            rcut = simParams_->getRcut();
814 <        } else {
815 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
816 <            rcut = calcMaxCutoffRadius();
817 <        }
1048 >        notifyFortranYouAreOnYourOwn();
1049  
1050 <        if (simParams_->haveRsw()) {
820 <            rsw  = simParams_->getRsw();
821 <        } else {
822 <            rsw = rcut;
823 <        }
824 <    
1050 >      }
1051      }
1052 < }
1052 >  }
1053  
1054 < void SimInfo::setupCutoff() {
1055 <    getCutoff(rcut_, rsw_);    
1056 <    double rnblist = rcut_ + 1; // skin of neighbor list
1054 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1055 >    
1056 >    int errorOut;
1057 >    int esm =  NONE;
1058 >    int sm = UNDAMPED;
1059 >    double alphaVal;
1060 >    double dielectric;
1061  
1062 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
1063 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
1064 < }
1062 >    errorOut = isError;
1063 >    alphaVal = simParams_->getDampingAlpha();
1064 >    dielectric = simParams_->getDielectric();
1065  
1066 < void SimInfo::addProperty(GenericData* genData) {
1067 <    properties_.addProperty(genData);  
1068 < }
1069 <
1070 < void SimInfo::removeProperty(const std::string& propName) {
1071 <    properties_.removeProperty(propName);  
1072 < }
1073 <
1074 < void SimInfo::clearProperties() {
1075 <    properties_.clearProperties();
1076 < }
1077 <
1078 < std::vector<std::string> SimInfo::getPropertyNames() {
1079 <    return properties_.getPropertyNames();  
1080 < }
1081 <      
1082 < std::vector<GenericData*> SimInfo::getProperties() {
1083 <    return properties_.getProperties();
1084 < }
1085 <
1086 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1087 <    return properties_.getPropertyByName(propName);
1088 < }
1089 <
1090 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1066 >    if (simParams_->haveElectrostaticSummationMethod()) {
1067 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1068 >      toUpper(myMethod);
1069 >      if (myMethod == "NONE") {
1070 >        esm = NONE;
1071 >      } else {
1072 >        if (myMethod == "SWITCHING_FUNCTION") {
1073 >          esm = SWITCHING_FUNCTION;
1074 >        } else {
1075 >          if (myMethod == "SHIFTED_POTENTIAL") {
1076 >            esm = SHIFTED_POTENTIAL;
1077 >          } else {
1078 >            if (myMethod == "SHIFTED_FORCE") {            
1079 >              esm = SHIFTED_FORCE;
1080 >            } else {
1081 >              if (myMethod == "REACTION_FIELD") {            
1082 >                esm = REACTION_FIELD;
1083 >              } else {
1084 >                // throw error        
1085 >                sprintf( painCave.errMsg,
1086 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1087 >                         "\t(Input file specified %s .)\n"
1088 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1089 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1090 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1091 >                painCave.isFatal = 1;
1092 >                simError();
1093 >              }    
1094 >            }          
1095 >          }
1096 >        }
1097 >      }
1098 >    }
1099 >    
1100 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1101 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1102 >      toUpper(myScreen);
1103 >      if (myScreen == "UNDAMPED") {
1104 >        sm = UNDAMPED;
1105 >      } else {
1106 >        if (myScreen == "DAMPED") {
1107 >          sm = DAMPED;
1108 >          if (!simParams_->haveDampingAlpha()) {
1109 >            //throw error
1110 >            sprintf( painCave.errMsg,
1111 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1112 >                     "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1113 >            painCave.isFatal = 0;
1114 >            simError();
1115 >          }
1116 >        } else {
1117 >          // throw error        
1118 >          sprintf( painCave.errMsg,
1119 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1120 >                   "\t(Input file specified %s .)\n"
1121 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1122 >                   "or \"damped\".\n", myScreen.c_str() );
1123 >          painCave.isFatal = 1;
1124 >          simError();
1125 >        }
1126 >      }
1127 >    }
1128 >    
1129 >    // let's pass some summation method variables to fortran
1130 >    setElectrostaticSummationMethod( &esm );
1131 >    setFortranElectrostaticMethod( &esm );
1132 >    setScreeningMethod( &sm );
1133 >    setDampingAlpha( &alphaVal );
1134 >    setReactionFieldDielectric( &dielectric );
1135 >    initFortranFF( &errorOut );
1136 >  }
1137 >
1138 >  void SimInfo::setupSwitchingFunction() {    
1139 >    int ft = CUBIC;
1140 >
1141 >    if (simParams_->haveSwitchingFunctionType()) {
1142 >      std::string funcType = simParams_->getSwitchingFunctionType();
1143 >      toUpper(funcType);
1144 >      if (funcType == "CUBIC") {
1145 >        ft = CUBIC;
1146 >      } else {
1147 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1148 >          ft = FIFTH_ORDER_POLY;
1149 >        } else {
1150 >          // throw error        
1151 >          sprintf( painCave.errMsg,
1152 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1153 >          painCave.isFatal = 1;
1154 >          simError();
1155 >        }          
1156 >      }
1157 >    }
1158 >
1159 >    // send switching function notification to switcheroo
1160 >    setFunctionType(&ft);
1161 >
1162 >  }
1163 >
1164 >  void SimInfo::addProperty(GenericData* genData) {
1165 >    properties_.addProperty(genData);  
1166 >  }
1167 >
1168 >  void SimInfo::removeProperty(const std::string& propName) {
1169 >    properties_.removeProperty(propName);  
1170 >  }
1171 >
1172 >  void SimInfo::clearProperties() {
1173 >    properties_.clearProperties();
1174 >  }
1175 >
1176 >  std::vector<std::string> SimInfo::getPropertyNames() {
1177 >    return properties_.getPropertyNames();  
1178 >  }
1179 >      
1180 >  std::vector<GenericData*> SimInfo::getProperties() {
1181 >    return properties_.getProperties();
1182 >  }
1183 >
1184 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1185 >    return properties_.getPropertyByName(propName);
1186 >  }
1187 >
1188 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1189      if (sman_ == sman) {
1190 <        return;
1190 >      return;
1191      }    
1192      delete sman_;
1193      sman_ = sman;
# Line 873 | Line 1201 | void SimInfo::setSnapshotManager(SnapshotManager* sman
1201  
1202      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1203          
1204 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1205 <            atom->setSnapshotManager(sman_);
1206 <        }
1204 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1205 >        atom->setSnapshotManager(sman_);
1206 >      }
1207          
1208 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1209 <            rb->setSnapshotManager(sman_);
1210 <        }
1208 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1209 >        rb->setSnapshotManager(sman_);
1210 >      }
1211      }    
1212      
1213 < }
1213 >  }
1214  
1215 < Vector3d SimInfo::getComVel(){
1215 >  Vector3d SimInfo::getComVel(){
1216      SimInfo::MoleculeIterator i;
1217      Molecule* mol;
1218  
# Line 893 | Line 1221 | Vector3d SimInfo::getComVel(){
1221      
1222  
1223      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1224 <        double mass = mol->getMass();
1225 <        totalMass += mass;
1226 <        comVel += mass * mol->getComVel();
1224 >      double mass = mol->getMass();
1225 >      totalMass += mass;
1226 >      comVel += mass * mol->getComVel();
1227      }  
1228  
1229   #ifdef IS_MPI
# Line 908 | Line 1236 | Vector3d SimInfo::getComVel(){
1236      comVel /= totalMass;
1237  
1238      return comVel;
1239 < }
1239 >  }
1240  
1241 < Vector3d SimInfo::getCom(){
1241 >  Vector3d SimInfo::getCom(){
1242      SimInfo::MoleculeIterator i;
1243      Molecule* mol;
1244  
# Line 918 | Line 1246 | Vector3d SimInfo::getCom(){
1246      double totalMass = 0.0;
1247      
1248      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1249 <        double mass = mol->getMass();
1250 <        totalMass += mass;
1251 <        com += mass * mol->getCom();
1249 >      double mass = mol->getMass();
1250 >      totalMass += mass;
1251 >      com += mass * mol->getCom();
1252      }  
1253  
1254   #ifdef IS_MPI
# Line 934 | Line 1262 | Vector3d SimInfo::getCom(){
1262  
1263      return com;
1264  
1265 < }        
1265 >  }        
1266  
1267 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1267 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1268  
1269      return o;
1270 < }
1270 >  }
1271 >  
1272 >  
1273 >   /*
1274 >   Returns center of mass and center of mass velocity in one function call.
1275 >   */
1276 >  
1277 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1278 >      SimInfo::MoleculeIterator i;
1279 >      Molecule* mol;
1280 >      
1281 >    
1282 >      double totalMass = 0.0;
1283 >    
1284  
1285 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1286 +         double mass = mol->getMass();
1287 +         totalMass += mass;
1288 +         com += mass * mol->getCom();
1289 +         comVel += mass * mol->getComVel();          
1290 +      }  
1291 +      
1292 + #ifdef IS_MPI
1293 +      double tmpMass = totalMass;
1294 +      Vector3d tmpCom(com);  
1295 +      Vector3d tmpComVel(comVel);
1296 +      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1297 +      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1298 +      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1299 + #endif
1300 +      
1301 +      com /= totalMass;
1302 +      comVel /= totalMass;
1303 +   }        
1304 +  
1305 +   /*
1306 +   Return intertia tensor for entire system and angular momentum Vector.
1307 +
1308 +
1309 +       [  Ixx -Ixy  -Ixz ]
1310 +  J =| -Iyx  Iyy  -Iyz |
1311 +       [ -Izx -Iyz   Izz ]
1312 +    */
1313 +
1314 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1315 +      
1316 +
1317 +      double xx = 0.0;
1318 +      double yy = 0.0;
1319 +      double zz = 0.0;
1320 +      double xy = 0.0;
1321 +      double xz = 0.0;
1322 +      double yz = 0.0;
1323 +      Vector3d com(0.0);
1324 +      Vector3d comVel(0.0);
1325 +      
1326 +      getComAll(com, comVel);
1327 +      
1328 +      SimInfo::MoleculeIterator i;
1329 +      Molecule* mol;
1330 +      
1331 +      Vector3d thisq(0.0);
1332 +      Vector3d thisv(0.0);
1333 +
1334 +      double thisMass = 0.0;
1335 +    
1336 +      
1337 +      
1338 +  
1339 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1340 +        
1341 +         thisq = mol->getCom()-com;
1342 +         thisv = mol->getComVel()-comVel;
1343 +         thisMass = mol->getMass();
1344 +         // Compute moment of intertia coefficients.
1345 +         xx += thisq[0]*thisq[0]*thisMass;
1346 +         yy += thisq[1]*thisq[1]*thisMass;
1347 +         zz += thisq[2]*thisq[2]*thisMass;
1348 +        
1349 +         // compute products of intertia
1350 +         xy += thisq[0]*thisq[1]*thisMass;
1351 +         xz += thisq[0]*thisq[2]*thisMass;
1352 +         yz += thisq[1]*thisq[2]*thisMass;
1353 +            
1354 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1355 +            
1356 +      }  
1357 +      
1358 +      
1359 +      inertiaTensor(0,0) = yy + zz;
1360 +      inertiaTensor(0,1) = -xy;
1361 +      inertiaTensor(0,2) = -xz;
1362 +      inertiaTensor(1,0) = -xy;
1363 +      inertiaTensor(1,1) = xx + zz;
1364 +      inertiaTensor(1,2) = -yz;
1365 +      inertiaTensor(2,0) = -xz;
1366 +      inertiaTensor(2,1) = -yz;
1367 +      inertiaTensor(2,2) = xx + yy;
1368 +      
1369 + #ifdef IS_MPI
1370 +      Mat3x3d tmpI(inertiaTensor);
1371 +      Vector3d tmpAngMom;
1372 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1373 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1374 + #endif
1375 +              
1376 +      return;
1377 +   }
1378 +
1379 +   //Returns the angular momentum of the system
1380 +   Vector3d SimInfo::getAngularMomentum(){
1381 +      
1382 +      Vector3d com(0.0);
1383 +      Vector3d comVel(0.0);
1384 +      Vector3d angularMomentum(0.0);
1385 +      
1386 +      getComAll(com,comVel);
1387 +      
1388 +      SimInfo::MoleculeIterator i;
1389 +      Molecule* mol;
1390 +      
1391 +      Vector3d thisr(0.0);
1392 +      Vector3d thisp(0.0);
1393 +      
1394 +      double thisMass;
1395 +      
1396 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1397 +        thisMass = mol->getMass();
1398 +        thisr = mol->getCom()-com;
1399 +        thisp = (mol->getComVel()-comVel)*thisMass;
1400 +        
1401 +        angularMomentum += cross( thisr, thisp );
1402 +        
1403 +      }  
1404 +      
1405 + #ifdef IS_MPI
1406 +      Vector3d tmpAngMom;
1407 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1408 + #endif
1409 +      
1410 +      return angularMomentum;
1411 +   }
1412 +  
1413 +  
1414   }//end namespace oopse
1415  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines