ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 879 by chrisfen, Wed Feb 1 21:06:43 2006 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1535 by gezelter, Fri Dec 31 18:31:56 2010 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 53 | Line 53
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 < #include "UseTheForce/fCutoffPolicy.h"
57 < #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 < #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 < #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60 < #include "UseTheForce/doForces_interface.h"
61 < #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 < #include "UseTheForce/DarkSide/switcheroo_interface.h"
56 > #include "primitives/StuntDouble.hpp"
57 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61   #include "io/ForceFieldOptions.hpp"
62   #include "UseTheForce/ForceField.hpp"
63 + #include "nonbonded/SwitchingFunction.hpp"
64  
65   #ifdef IS_MPI
66   #include "UseTheForce/mpiComponentPlan.h"
67   #include "UseTheForce/DarkSide/simParallel_interface.h"
68   #endif
69  
70 < namespace oopse {
71 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
76 <    std::map<int, std::set<int> >::iterator i = container.find(index);
77 <    std::set<int> result;
78 <    if (i != container.end()) {
79 <        result = i->second;
80 <    }
81 <
82 <    return result;
83 <  }
70 > using namespace std;
71 > namespace OpenMD {
72    
73    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
74      forceField_(ff), simParams_(simParams),
75 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
75 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
76      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
77      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
78 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
79 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
80 <    sman_(NULL), fortranInitialized_(false) {
81 <
82 <      MoleculeStamp* molStamp;
83 <      int nMolWithSameStamp;
84 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
85 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
86 <      CutoffGroupStamp* cgStamp;    
87 <      RigidBodyStamp* rbStamp;
88 <      int nRigidAtoms = 0;
89 <      std::vector<Component*> components = simParams->getComponents();
78 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
79 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
80 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
81 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
82 >    
83 >    MoleculeStamp* molStamp;
84 >    int nMolWithSameStamp;
85 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
87 >    CutoffGroupStamp* cgStamp;    
88 >    RigidBodyStamp* rbStamp;
89 >    int nRigidAtoms = 0;
90 >    
91 >    vector<Component*> components = simParams->getComponents();
92 >    
93 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
94 >      molStamp = (*i)->getMoleculeStamp();
95 >      nMolWithSameStamp = (*i)->getNMol();
96        
97 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
98 <        molStamp = (*i)->getMoleculeStamp();
99 <        nMolWithSameStamp = (*i)->getNMol();
100 <        
101 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
102 <
103 <        //calculate atoms in molecules
104 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
105 <
106 <        //calculate atoms in cutoff groups
107 <        int nAtomsInGroups = 0;
108 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
115 <        
116 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
117 <          cgStamp = molStamp->getCutoffGroupStamp(j);
118 <          nAtomsInGroups += cgStamp->getNMembers();
119 <        }
120 <
121 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
122 <
123 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
124 <
125 <        //calculate atoms in rigid bodies
126 <        int nAtomsInRigidBodies = 0;
127 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
128 <        
129 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
130 <          rbStamp = molStamp->getRigidBodyStamp(j);
131 <          nAtomsInRigidBodies += rbStamp->getNMembers();
132 <        }
133 <
134 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
135 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
136 <        
97 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
98 >      
99 >      //calculate atoms in molecules
100 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
101 >      
102 >      //calculate atoms in cutoff groups
103 >      int nAtomsInGroups = 0;
104 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
105 >      
106 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
107 >        cgStamp = molStamp->getCutoffGroupStamp(j);
108 >        nAtomsInGroups += cgStamp->getNMembers();
109        }
110 <
111 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
112 <      //group therefore the total number of cutoff groups in the system is
113 <      //equal to the total number of atoms minus number of atoms belong to
114 <      //cutoff group defined in meta-data file plus the number of cutoff
115 <      //groups defined in meta-data file
116 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
117 <
118 <      //every free atom (atom does not belong to rigid bodies) is an
119 <      //integrable object therefore the total number of integrable objects
120 <      //in the system is equal to the total number of atoms minus number of
121 <      //atoms belong to rigid body defined in meta-data file plus the number
122 <      //of rigid bodies defined in meta-data file
123 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
124 <                                                + nGlobalRigidBodies_;
125 <  
126 <      nGlobalMols_ = molStampIds_.size();
155 <
156 < #ifdef IS_MPI    
157 <      molToProcMap_.resize(nGlobalMols_);
158 < #endif
159 <
110 >      
111 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
112 >      
113 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
114 >      
115 >      //calculate atoms in rigid bodies
116 >      int nAtomsInRigidBodies = 0;
117 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
118 >      
119 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
120 >        rbStamp = molStamp->getRigidBodyStamp(j);
121 >        nAtomsInRigidBodies += rbStamp->getNMembers();
122 >      }
123 >      
124 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
125 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
126 >      
127      }
128 <
128 >    
129 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
130 >    //group therefore the total number of cutoff groups in the system is
131 >    //equal to the total number of atoms minus number of atoms belong to
132 >    //cutoff group defined in meta-data file plus the number of cutoff
133 >    //groups defined in meta-data file
134 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
135 >    
136 >    //every free atom (atom does not belong to rigid bodies) is an
137 >    //integrable object therefore the total number of integrable objects
138 >    //in the system is equal to the total number of atoms minus number of
139 >    //atoms belong to rigid body defined in meta-data file plus the number
140 >    //of rigid bodies defined in meta-data file
141 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
142 >      + nGlobalRigidBodies_;
143 >    
144 >    nGlobalMols_ = molStampIds_.size();
145 >    molToProcMap_.resize(nGlobalMols_);
146 >  }
147 >  
148    SimInfo::~SimInfo() {
149 <    std::map<int, Molecule*>::iterator i;
149 >    map<int, Molecule*>::iterator i;
150      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
151        delete i->second;
152      }
# Line 171 | Line 157 | namespace oopse {
157      delete forceField_;
158    }
159  
174  int SimInfo::getNGlobalConstraints() {
175    int nGlobalConstraints;
176 #ifdef IS_MPI
177    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
178                  MPI_COMM_WORLD);    
179 #else
180    nGlobalConstraints =  nConstraints_;
181 #endif
182    return nGlobalConstraints;
183  }
160  
161    bool SimInfo::addMolecule(Molecule* mol) {
162      MoleculeIterator i;
163 <
163 >    
164      i = molecules_.find(mol->getGlobalIndex());
165      if (i == molecules_.end() ) {
166 <
167 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
168 <        
166 >      
167 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
168 >      
169        nAtoms_ += mol->getNAtoms();
170        nBonds_ += mol->getNBonds();
171        nBends_ += mol->getNBends();
172        nTorsions_ += mol->getNTorsions();
173 +      nInversions_ += mol->getNInversions();
174        nRigidBodies_ += mol->getNRigidBodies();
175        nIntegrableObjects_ += mol->getNIntegrableObjects();
176        nCutoffGroups_ += mol->getNCutoffGroups();
177        nConstraints_ += mol->getNConstraintPairs();
178 <
179 <      addExcludePairs(mol);
180 <        
178 >      
179 >      addInteractionPairs(mol);
180 >      
181        return true;
182      } else {
183        return false;
184      }
185    }
186 <
186 >  
187    bool SimInfo::removeMolecule(Molecule* mol) {
188      MoleculeIterator i;
189      i = molecules_.find(mol->getGlobalIndex());
# Line 219 | Line 196 | namespace oopse {
196        nBonds_ -= mol->getNBonds();
197        nBends_ -= mol->getNBends();
198        nTorsions_ -= mol->getNTorsions();
199 +      nInversions_ -= mol->getNInversions();
200        nRigidBodies_ -= mol->getNRigidBodies();
201        nIntegrableObjects_ -= mol->getNIntegrableObjects();
202        nCutoffGroups_ -= mol->getNCutoffGroups();
203        nConstraints_ -= mol->getNConstraintPairs();
204  
205 <      removeExcludePairs(mol);
205 >      removeInteractionPairs(mol);
206        molecules_.erase(mol->getGlobalIndex());
207  
208        delete mol;
# Line 233 | Line 211 | namespace oopse {
211      } else {
212        return false;
213      }
236
237
214    }    
215  
216          
# Line 252 | Line 228 | namespace oopse {
228    void SimInfo::calcNdf() {
229      int ndf_local;
230      MoleculeIterator i;
231 <    std::vector<StuntDouble*>::iterator j;
231 >    vector<StuntDouble*>::iterator j;
232      Molecule* mol;
233      StuntDouble* integrableObject;
234  
# Line 290 | Line 266 | namespace oopse {
266  
267    }
268  
269 +  int SimInfo::getFdf() {
270 + #ifdef IS_MPI
271 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
272 + #else
273 +    fdf_ = fdf_local;
274 + #endif
275 +    return fdf_;
276 +  }
277 +    
278    void SimInfo::calcNdfRaw() {
279      int ndfRaw_local;
280  
281      MoleculeIterator i;
282 <    std::vector<StuntDouble*>::iterator j;
282 >    vector<StuntDouble*>::iterator j;
283      Molecule* mol;
284      StuntDouble* integrableObject;
285  
# Line 341 | Line 326 | namespace oopse {
326  
327    }
328  
329 <  void SimInfo::addExcludePairs(Molecule* mol) {
330 <    std::vector<Bond*>::iterator bondIter;
331 <    std::vector<Bend*>::iterator bendIter;
332 <    std::vector<Torsion*>::iterator torsionIter;
329 >  void SimInfo::addInteractionPairs(Molecule* mol) {
330 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
331 >    vector<Bond*>::iterator bondIter;
332 >    vector<Bend*>::iterator bendIter;
333 >    vector<Torsion*>::iterator torsionIter;
334 >    vector<Inversion*>::iterator inversionIter;
335      Bond* bond;
336      Bend* bend;
337      Torsion* torsion;
338 +    Inversion* inversion;
339      int a;
340      int b;
341      int c;
342      int d;
343  
344 <    std::map<int, std::set<int> > atomGroups;
344 >    // atomGroups can be used to add special interaction maps between
345 >    // groups of atoms that are in two separate rigid bodies.
346 >    // However, most site-site interactions between two rigid bodies
347 >    // are probably not special, just the ones between the physically
348 >    // bonded atoms.  Interactions *within* a single rigid body should
349 >    // always be excluded.  These are done at the bottom of this
350 >    // function.
351  
352 +    map<int, set<int> > atomGroups;
353      Molecule::RigidBodyIterator rbIter;
354      RigidBody* rb;
355      Molecule::IntegrableObjectIterator ii;
356      StuntDouble* integrableObject;
357      
358 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
359 <           integrableObject = mol->nextIntegrableObject(ii)) {
360 <
358 >    for (integrableObject = mol->beginIntegrableObject(ii);
359 >         integrableObject != NULL;
360 >         integrableObject = mol->nextIntegrableObject(ii)) {
361 >      
362        if (integrableObject->isRigidBody()) {
363 <          rb = static_cast<RigidBody*>(integrableObject);
364 <          std::vector<Atom*> atoms = rb->getAtoms();
365 <          std::set<int> rigidAtoms;
366 <          for (int i = 0; i < atoms.size(); ++i) {
367 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
368 <          }
369 <          for (int i = 0; i < atoms.size(); ++i) {
370 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
371 <          }      
372 <      } else {
373 <        std::set<int> oneAtomSet;
363 >        rb = static_cast<RigidBody*>(integrableObject);
364 >        vector<Atom*> atoms = rb->getAtoms();
365 >        set<int> rigidAtoms;
366 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
367 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
368 >        }
369 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
370 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
371 >        }      
372 >      } else {
373 >        set<int> oneAtomSet;
374          oneAtomSet.insert(integrableObject->getGlobalIndex());
375 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
375 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
376        }
377      }  
378 +          
379 +    for (bond= mol->beginBond(bondIter); bond != NULL;
380 +         bond = mol->nextBond(bondIter)) {
381  
383    
384    
385    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
382        a = bond->getAtomA()->getGlobalIndex();
383 <      b = bond->getAtomB()->getGlobalIndex();        
384 <      exclude_.addPair(a, b);
383 >      b = bond->getAtomB()->getGlobalIndex();  
384 >    
385 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
386 >        oneTwoInteractions_.addPair(a, b);
387 >      } else {
388 >        excludedInteractions_.addPair(a, b);
389 >      }
390      }
391  
392 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
392 >    for (bend= mol->beginBend(bendIter); bend != NULL;
393 >         bend = mol->nextBend(bendIter)) {
394 >
395        a = bend->getAtomA()->getGlobalIndex();
396        b = bend->getAtomB()->getGlobalIndex();        
397        c = bend->getAtomC()->getGlobalIndex();
395      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
396      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
397      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
398
399      exclude_.addPairs(rigidSetA, rigidSetB);
400      exclude_.addPairs(rigidSetA, rigidSetC);
401      exclude_.addPairs(rigidSetB, rigidSetC);
398        
399 <      //exclude_.addPair(a, b);
400 <      //exclude_.addPair(a, c);
401 <      //exclude_.addPair(b, c);        
399 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
400 >        oneTwoInteractions_.addPair(a, b);      
401 >        oneTwoInteractions_.addPair(b, c);
402 >      } else {
403 >        excludedInteractions_.addPair(a, b);
404 >        excludedInteractions_.addPair(b, c);
405 >      }
406 >
407 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
408 >        oneThreeInteractions_.addPair(a, c);      
409 >      } else {
410 >        excludedInteractions_.addPair(a, c);
411 >      }
412      }
413  
414 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
414 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
415 >         torsion = mol->nextTorsion(torsionIter)) {
416 >
417        a = torsion->getAtomA()->getGlobalIndex();
418        b = torsion->getAtomB()->getGlobalIndex();        
419        c = torsion->getAtomC()->getGlobalIndex();        
420 <      d = torsion->getAtomD()->getGlobalIndex();        
413 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
414 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
415 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
416 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
420 >      d = torsion->getAtomD()->getGlobalIndex();      
421  
422 <      exclude_.addPairs(rigidSetA, rigidSetB);
423 <      exclude_.addPairs(rigidSetA, rigidSetC);
424 <      exclude_.addPairs(rigidSetA, rigidSetD);
425 <      exclude_.addPairs(rigidSetB, rigidSetC);
426 <      exclude_.addPairs(rigidSetB, rigidSetD);
427 <      exclude_.addPairs(rigidSetC, rigidSetD);
422 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
423 >        oneTwoInteractions_.addPair(a, b);      
424 >        oneTwoInteractions_.addPair(b, c);
425 >        oneTwoInteractions_.addPair(c, d);
426 >      } else {
427 >        excludedInteractions_.addPair(a, b);
428 >        excludedInteractions_.addPair(b, c);
429 >        excludedInteractions_.addPair(c, d);
430 >      }
431  
432 <      /*
433 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
434 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
435 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
436 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
437 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
438 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
439 <        
440 <      
441 <      exclude_.addPair(a, b);
442 <      exclude_.addPair(a, c);
443 <      exclude_.addPair(a, d);
444 <      exclude_.addPair(b, c);
438 <      exclude_.addPair(b, d);
439 <      exclude_.addPair(c, d);        
440 <      */
432 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
433 >        oneThreeInteractions_.addPair(a, c);      
434 >        oneThreeInteractions_.addPair(b, d);      
435 >      } else {
436 >        excludedInteractions_.addPair(a, c);
437 >        excludedInteractions_.addPair(b, d);
438 >      }
439 >
440 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
441 >        oneFourInteractions_.addPair(a, d);      
442 >      } else {
443 >        excludedInteractions_.addPair(a, d);
444 >      }
445      }
446  
447 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
448 <      std::vector<Atom*> atoms = rb->getAtoms();
449 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
450 <        for (int j = i + 1; j < atoms.size(); ++j) {
447 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
448 >         inversion = mol->nextInversion(inversionIter)) {
449 >
450 >      a = inversion->getAtomA()->getGlobalIndex();
451 >      b = inversion->getAtomB()->getGlobalIndex();        
452 >      c = inversion->getAtomC()->getGlobalIndex();        
453 >      d = inversion->getAtomD()->getGlobalIndex();        
454 >
455 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
456 >        oneTwoInteractions_.addPair(a, b);      
457 >        oneTwoInteractions_.addPair(a, c);
458 >        oneTwoInteractions_.addPair(a, d);
459 >      } else {
460 >        excludedInteractions_.addPair(a, b);
461 >        excludedInteractions_.addPair(a, c);
462 >        excludedInteractions_.addPair(a, d);
463 >      }
464 >
465 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
466 >        oneThreeInteractions_.addPair(b, c);    
467 >        oneThreeInteractions_.addPair(b, d);    
468 >        oneThreeInteractions_.addPair(c, d);      
469 >      } else {
470 >        excludedInteractions_.addPair(b, c);
471 >        excludedInteractions_.addPair(b, d);
472 >        excludedInteractions_.addPair(c, d);
473 >      }
474 >    }
475 >
476 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
477 >         rb = mol->nextRigidBody(rbIter)) {
478 >      vector<Atom*> atoms = rb->getAtoms();
479 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
480 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
481            a = atoms[i]->getGlobalIndex();
482            b = atoms[j]->getGlobalIndex();
483 <          exclude_.addPair(a, b);
483 >          excludedInteractions_.addPair(a, b);
484          }
485        }
486      }        
487  
488    }
489  
490 <  void SimInfo::removeExcludePairs(Molecule* mol) {
491 <    std::vector<Bond*>::iterator bondIter;
492 <    std::vector<Bend*>::iterator bendIter;
493 <    std::vector<Torsion*>::iterator torsionIter;
490 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
491 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
492 >    vector<Bond*>::iterator bondIter;
493 >    vector<Bend*>::iterator bendIter;
494 >    vector<Torsion*>::iterator torsionIter;
495 >    vector<Inversion*>::iterator inversionIter;
496      Bond* bond;
497      Bend* bend;
498      Torsion* torsion;
499 +    Inversion* inversion;
500      int a;
501      int b;
502      int c;
503      int d;
504  
505 <    std::map<int, std::set<int> > atomGroups;
469 <
505 >    map<int, set<int> > atomGroups;
506      Molecule::RigidBodyIterator rbIter;
507      RigidBody* rb;
508      Molecule::IntegrableObjectIterator ii;
509      StuntDouble* integrableObject;
510      
511 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
512 <           integrableObject = mol->nextIntegrableObject(ii)) {
513 <
511 >    for (integrableObject = mol->beginIntegrableObject(ii);
512 >         integrableObject != NULL;
513 >         integrableObject = mol->nextIntegrableObject(ii)) {
514 >      
515        if (integrableObject->isRigidBody()) {
516 <          rb = static_cast<RigidBody*>(integrableObject);
517 <          std::vector<Atom*> atoms = rb->getAtoms();
518 <          std::set<int> rigidAtoms;
519 <          for (int i = 0; i < atoms.size(); ++i) {
520 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
521 <          }
522 <          for (int i = 0; i < atoms.size(); ++i) {
523 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
524 <          }      
516 >        rb = static_cast<RigidBody*>(integrableObject);
517 >        vector<Atom*> atoms = rb->getAtoms();
518 >        set<int> rigidAtoms;
519 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
520 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
521 >        }
522 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
523 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
524 >        }      
525        } else {
526 <        std::set<int> oneAtomSet;
526 >        set<int> oneAtomSet;
527          oneAtomSet.insert(integrableObject->getGlobalIndex());
528 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
528 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
529        }
530      }  
531  
532 <    
533 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
532 >    for (bond= mol->beginBond(bondIter); bond != NULL;
533 >         bond = mol->nextBond(bondIter)) {
534 >      
535        a = bond->getAtomA()->getGlobalIndex();
536 <      b = bond->getAtomB()->getGlobalIndex();        
537 <      exclude_.removePair(a, b);
536 >      b = bond->getAtomB()->getGlobalIndex();  
537 >    
538 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
539 >        oneTwoInteractions_.removePair(a, b);
540 >      } else {
541 >        excludedInteractions_.removePair(a, b);
542 >      }
543      }
544  
545 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
545 >    for (bend= mol->beginBend(bendIter); bend != NULL;
546 >         bend = mol->nextBend(bendIter)) {
547 >
548        a = bend->getAtomA()->getGlobalIndex();
549        b = bend->getAtomB()->getGlobalIndex();        
550        c = bend->getAtomC()->getGlobalIndex();
506
507      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
508      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
509      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
510
511      exclude_.removePairs(rigidSetA, rigidSetB);
512      exclude_.removePairs(rigidSetA, rigidSetC);
513      exclude_.removePairs(rigidSetB, rigidSetC);
551        
552 <      //exclude_.removePair(a, b);
553 <      //exclude_.removePair(a, c);
554 <      //exclude_.removePair(b, c);        
552 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
553 >        oneTwoInteractions_.removePair(a, b);      
554 >        oneTwoInteractions_.removePair(b, c);
555 >      } else {
556 >        excludedInteractions_.removePair(a, b);
557 >        excludedInteractions_.removePair(b, c);
558 >      }
559 >
560 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
561 >        oneThreeInteractions_.removePair(a, c);      
562 >      } else {
563 >        excludedInteractions_.removePair(a, c);
564 >      }
565      }
566  
567 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
567 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
568 >         torsion = mol->nextTorsion(torsionIter)) {
569 >
570        a = torsion->getAtomA()->getGlobalIndex();
571        b = torsion->getAtomB()->getGlobalIndex();        
572        c = torsion->getAtomC()->getGlobalIndex();        
573 <      d = torsion->getAtomD()->getGlobalIndex();        
573 >      d = torsion->getAtomD()->getGlobalIndex();      
574 >  
575 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
576 >        oneTwoInteractions_.removePair(a, b);      
577 >        oneTwoInteractions_.removePair(b, c);
578 >        oneTwoInteractions_.removePair(c, d);
579 >      } else {
580 >        excludedInteractions_.removePair(a, b);
581 >        excludedInteractions_.removePair(b, c);
582 >        excludedInteractions_.removePair(c, d);
583 >      }
584  
585 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
586 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
587 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
588 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
585 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
586 >        oneThreeInteractions_.removePair(a, c);      
587 >        oneThreeInteractions_.removePair(b, d);      
588 >      } else {
589 >        excludedInteractions_.removePair(a, c);
590 >        excludedInteractions_.removePair(b, d);
591 >      }
592  
593 <      exclude_.removePairs(rigidSetA, rigidSetB);
594 <      exclude_.removePairs(rigidSetA, rigidSetC);
595 <      exclude_.removePairs(rigidSetA, rigidSetD);
596 <      exclude_.removePairs(rigidSetB, rigidSetC);
597 <      exclude_.removePairs(rigidSetB, rigidSetD);
598 <      exclude_.removePairs(rigidSetC, rigidSetD);
593 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
594 >        oneFourInteractions_.removePair(a, d);      
595 >      } else {
596 >        excludedInteractions_.removePair(a, d);
597 >      }
598 >    }
599  
600 <      /*
601 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
540 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
541 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
542 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
543 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
544 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
600 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
601 >         inversion = mol->nextInversion(inversionIter)) {
602  
603 <      
604 <      exclude_.removePair(a, b);
605 <      exclude_.removePair(a, c);
606 <      exclude_.removePair(a, d);
607 <      exclude_.removePair(b, c);
608 <      exclude_.removePair(b, d);
609 <      exclude_.removePair(c, d);        
610 <      */
603 >      a = inversion->getAtomA()->getGlobalIndex();
604 >      b = inversion->getAtomB()->getGlobalIndex();        
605 >      c = inversion->getAtomC()->getGlobalIndex();        
606 >      d = inversion->getAtomD()->getGlobalIndex();        
607 >
608 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
609 >        oneTwoInteractions_.removePair(a, b);      
610 >        oneTwoInteractions_.removePair(a, c);
611 >        oneTwoInteractions_.removePair(a, d);
612 >      } else {
613 >        excludedInteractions_.removePair(a, b);
614 >        excludedInteractions_.removePair(a, c);
615 >        excludedInteractions_.removePair(a, d);
616 >      }
617 >
618 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
619 >        oneThreeInteractions_.removePair(b, c);    
620 >        oneThreeInteractions_.removePair(b, d);    
621 >        oneThreeInteractions_.removePair(c, d);      
622 >      } else {
623 >        excludedInteractions_.removePair(b, c);
624 >        excludedInteractions_.removePair(b, d);
625 >        excludedInteractions_.removePair(c, d);
626 >      }
627      }
628  
629 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
630 <      std::vector<Atom*> atoms = rb->getAtoms();
631 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
632 <        for (int j = i + 1; j < atoms.size(); ++j) {
629 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
630 >         rb = mol->nextRigidBody(rbIter)) {
631 >      vector<Atom*> atoms = rb->getAtoms();
632 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
633 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
634            a = atoms[i]->getGlobalIndex();
635            b = atoms[j]->getGlobalIndex();
636 <          exclude_.removePair(a, b);
636 >          excludedInteractions_.removePair(a, b);
637          }
638        }
639      }        
640 <
640 >    
641    }
642 <
643 <
642 >  
643 >  
644    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
645      int curStampId;
646 <
646 >    
647      //index from 0
648      curStampId = moleculeStamps_.size();
649  
# Line 577 | Line 651 | namespace oopse {
651      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
652    }
653  
580  void SimInfo::update() {
654  
655 <    setupSimType();
656 <
657 < #ifdef IS_MPI
658 <    setupFortranParallel();
659 < #endif
660 <
661 <    setupFortranSim();
662 <
663 <    //setup fortran force field
591 <    /** @deprecate */    
592 <    int isError = 0;
593 <    
594 <    setupElectrostaticSummationMethod( isError );
595 <    setupSwitchingFunction();
596 <
597 <    if(isError){
598 <      sprintf( painCave.errMsg,
599 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
600 <      painCave.isFatal = 1;
601 <      simError();
602 <    }
603 <  
604 <    
605 <    setupCutoff();
606 <
655 >  /**
656 >   * update
657 >   *
658 >   *  Performs the global checks and variable settings after the
659 >   *  objects have been created.
660 >   *
661 >   */
662 >  void SimInfo::update() {  
663 >    setupSimVariables();
664      calcNdf();
665      calcNdfRaw();
666      calcNdfTrans();
610
611    fortranInitialized_ = true;
667    }
668 <
669 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
668 >  
669 >  /**
670 >   * getSimulatedAtomTypes
671 >   *
672 >   * Returns an STL set of AtomType* that are actually present in this
673 >   * simulation.  Must query all processors to assemble this information.
674 >   *
675 >   */
676 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
677      SimInfo::MoleculeIterator mi;
678      Molecule* mol;
679      Molecule::AtomIterator ai;
680      Atom* atom;
681 <    std::set<AtomType*> atomTypes;
682 <
683 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
622 <
681 >    set<AtomType*> atomTypes;
682 >    
683 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
684        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
685          atomTypes.insert(atom->getAtomType());
686 <      }
687 <        
627 <    }
686 >      }      
687 >    }    
688  
689 <    return atomTypes;        
690 <  }
689 > #ifdef IS_MPI
690 >
691 >    // loop over the found atom types on this processor, and add their
692 >    // numerical idents to a vector:
693 >
694 >    vector<int> foundTypes;
695 >    set<AtomType*>::iterator i;
696 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
697 >      foundTypes.push_back( (*i)->getIdent() );
698 >
699 >    // count_local holds the number of found types on this processor
700 >    int count_local = foundTypes.size();
701  
702 <  void SimInfo::setupSimType() {
703 <    std::set<AtomType*>::iterator i;
704 <    std::set<AtomType*> atomTypes;
705 <    atomTypes = getUniqueAtomTypes();
636 <    
637 <    int useLennardJones = 0;
638 <    int useElectrostatic = 0;
639 <    int useEAM = 0;
640 <    int useSC = 0;
641 <    int useCharge = 0;
642 <    int useDirectional = 0;
643 <    int useDipole = 0;
644 <    int useGayBerne = 0;
645 <    int useSticky = 0;
646 <    int useStickyPower = 0;
647 <    int useShape = 0;
648 <    int useFLARB = 0; //it is not in AtomType yet
649 <    int useDirectionalAtom = 0;    
650 <    int useElectrostatics = 0;
651 <    //usePBC and useRF are from simParams
652 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
653 <    int useRF;
654 <    int useSF;
655 <    std::string myMethod;
702 >    // count holds the total number of found types on all processors
703 >    // (some will be redundant with the ones found locally):
704 >    int count;
705 >    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
706  
707 <    // set the useRF logical
708 <    useRF = 0;
709 <    useSF = 0;
707 >    // create a vector to hold the globally found types, and resize it:
708 >    vector<int> ftGlobal;
709 >    ftGlobal.resize(count);
710 >    vector<int> counts;
711  
712 +    int nproc = MPI::COMM_WORLD.Get_size();
713 +    counts.resize(nproc);
714 +    vector<int> disps;
715 +    disps.resize(nproc);
716  
717 <    if (simParams_->haveElectrostaticSummationMethod()) {
718 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
719 <      toUpper(myMethod);
720 <      if (myMethod == "REACTION_FIELD") {
721 <        useRF=1;
722 <      } else {
723 <        if (myMethod == "SHIFTED_FORCE") {
724 <          useSF = 1;
725 <        }
717 >    // now spray out the foundTypes to all the other processors:
718 >    
719 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
720 >                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
721 >
722 >    // foundIdents is a stl set, so inserting an already found ident
723 >    // will have no effect.
724 >    set<int> foundIdents;
725 >    vector<int>::iterator j;
726 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
727 >      foundIdents.insert((*j));
728 >    
729 >    // now iterate over the foundIdents and get the actual atom types
730 >    // that correspond to these:
731 >    set<int>::iterator it;
732 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
733 >      atomTypes.insert( forceField_->getAtomType((*it)) );
734 >
735 > #endif
736 >    
737 >    return atomTypes;        
738 >  }
739 >
740 >  void SimInfo::setupSimVariables() {
741 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
742 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
743 >    calcBoxDipole_ = false;
744 >    if ( simParams_->haveAccumulateBoxDipole() )
745 >      if ( simParams_->getAccumulateBoxDipole() ) {
746 >        calcBoxDipole_ = true;      
747        }
672    }
748  
749 +    set<AtomType*>::iterator i;
750 +    set<AtomType*> atomTypes;
751 +    atomTypes = getSimulatedAtomTypes();    
752 +    int usesElectrostatic = 0;
753 +    int usesMetallic = 0;
754 +    int usesDirectional = 0;
755      //loop over all of the atom types
756      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
757 <      useLennardJones |= (*i)->isLennardJones();
758 <      useElectrostatic |= (*i)->isElectrostatic();
759 <      useEAM |= (*i)->isEAM();
679 <      useSC |= (*i)->isSC();
680 <      useCharge |= (*i)->isCharge();
681 <      useDirectional |= (*i)->isDirectional();
682 <      useDipole |= (*i)->isDipole();
683 <      useGayBerne |= (*i)->isGayBerne();
684 <      useSticky |= (*i)->isSticky();
685 <      useStickyPower |= (*i)->isStickyPower();
686 <      useShape |= (*i)->isShape();
757 >      usesElectrostatic |= (*i)->isElectrostatic();
758 >      usesMetallic |= (*i)->isMetal();
759 >      usesDirectional |= (*i)->isDirectional();
760      }
761  
689    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
690      useDirectionalAtom = 1;
691    }
692
693    if (useCharge || useDipole) {
694      useElectrostatics = 1;
695    }
696
762   #ifdef IS_MPI    
763      int temp;
764 +    temp = usesDirectional;
765 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
766  
767 <    temp = usePBC;
768 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
767 >    temp = usesMetallic;
768 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
769  
770 <    temp = useDirectionalAtom;
771 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
705 <
706 <    temp = useLennardJones;
707 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
708 <
709 <    temp = useElectrostatics;
710 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
711 <
712 <    temp = useCharge;
713 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
714 <
715 <    temp = useDipole;
716 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
717 <
718 <    temp = useSticky;
719 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
720 <
721 <    temp = useStickyPower;
722 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
723 <    
724 <    temp = useGayBerne;
725 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
726 <
727 <    temp = useEAM;
728 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
729 <
730 <    temp = useSC;
731 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
732 <    
733 <    temp = useShape;
734 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
735 <
736 <    temp = useFLARB;
737 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
738 <
739 <    temp = useRF;
740 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
741 <
742 <    temp = useSF;
743 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
744 <
770 >    temp = usesElectrostatic;
771 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
772   #endif
773 <
774 <    fInfo_.SIM_uses_PBC = usePBC;    
775 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
776 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
777 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
778 <    fInfo_.SIM_uses_Charges = useCharge;
752 <    fInfo_.SIM_uses_Dipoles = useDipole;
753 <    fInfo_.SIM_uses_Sticky = useSticky;
754 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
755 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
756 <    fInfo_.SIM_uses_EAM = useEAM;
757 <    fInfo_.SIM_uses_SC = useSC;
758 <    fInfo_.SIM_uses_Shapes = useShape;
759 <    fInfo_.SIM_uses_FLARB = useFLARB;
760 <    fInfo_.SIM_uses_RF = useRF;
761 <    fInfo_.SIM_uses_SF = useSF;
762 <
763 <    if( myMethod == "REACTION_FIELD") {
764 <      
765 <      if (simParams_->haveDielectric()) {
766 <        fInfo_.dielect = simParams_->getDielectric();
767 <      } else {
768 <        sprintf(painCave.errMsg,
769 <                "SimSetup Error: No Dielectric constant was set.\n"
770 <                "\tYou are trying to use Reaction Field without"
771 <                "\tsetting a dielectric constant!\n");
772 <        painCave.isFatal = 1;
773 <        simError();
774 <      }      
775 <    }
776 <
773 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
774 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
775 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
776 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
777 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
778 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
779    }
780  
781 <  void SimInfo::setupFortranSim() {
781 >  void SimInfo::setupFortran() {
782      int isError;
783 <    int nExclude;
784 <    std::vector<int> fortranGlobalGroupMembership;
783 >    int nExclude, nOneTwo, nOneThree, nOneFour;
784 >    vector<int> fortranGlobalGroupMembership;
785      
784    nExclude = exclude_.getSize();
786      isError = 0;
787  
788      //globalGroupMembership_ is filled by SimCreator    
# Line 790 | Line 791 | namespace oopse {
791      }
792  
793      //calculate mass ratio of cutoff group
794 <    std::vector<double> mfact;
794 >    vector<RealType> mfact;
795      SimInfo::MoleculeIterator mi;
796      Molecule* mol;
797      Molecule::CutoffGroupIterator ci;
798      CutoffGroup* cg;
799      Molecule::AtomIterator ai;
800      Atom* atom;
801 <    double totalMass;
801 >    RealType totalMass;
802  
803      //to avoid memory reallocation, reserve enough space for mfact
804      mfact.reserve(getNCutoffGroups());
# Line 813 | Line 814 | namespace oopse {
814            else
815              mfact.push_back( 1.0 );
816          }
816
817        }      
818      }
819  
820 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
821 <    std::vector<int> identArray;
820 >    //fill ident array of local atoms (it is actually ident of
821 >    //AtomType, it is so confusing !!!)
822 >    vector<int> identArray;
823  
824      //to avoid memory reallocation, reserve enough space identArray
825      identArray.reserve(getNAtoms());
# Line 831 | Line 832 | namespace oopse {
832  
833      //fill molMembershipArray
834      //molMembershipArray is filled by SimCreator    
835 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
835 >    vector<int> molMembershipArray(nGlobalAtoms_);
836      for (int i = 0; i < nGlobalAtoms_; i++) {
837        molMembershipArray[i] = globalMolMembership_[i] + 1;
838      }
839      
840      //setup fortran simulation
840    int nGlobalExcludes = 0;
841    int* globalExcludes = NULL;
842    int* excludeList = exclude_.getExcludeList();
843    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
844                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
845                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
841  
842 <    if( isError ){
842 >    nExclude = excludedInteractions_.getSize();
843 >    nOneTwo = oneTwoInteractions_.getSize();
844 >    nOneThree = oneThreeInteractions_.getSize();
845 >    nOneFour = oneFourInteractions_.getSize();
846  
847 +    int* excludeList = excludedInteractions_.getPairList();
848 +    int* oneTwoList = oneTwoInteractions_.getPairList();
849 +    int* oneThreeList = oneThreeInteractions_.getPairList();
850 +    int* oneFourList = oneFourInteractions_.getPairList();
851 +
852 +    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
853 +                   &nExclude, excludeList,
854 +                   &nOneTwo, oneTwoList,
855 +                   &nOneThree, oneThreeList,
856 +                   &nOneFour, oneFourList,
857 +                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
858 +                   &fortranGlobalGroupMembership[0], &isError);
859 +    
860 +    if( isError ){
861 +      
862        sprintf( painCave.errMsg,
863                 "There was an error setting the simulation information in fortran.\n" );
864        painCave.isFatal = 1;
865 <      painCave.severity = OOPSE_ERROR;
865 >      painCave.severity = OPENMD_ERROR;
866        simError();
867      }
868 <
869 < #ifdef IS_MPI
868 >    
869 >    
870      sprintf( checkPointMsg,
871               "succesfully sent the simulation information to fortran.\n");
859    MPIcheckPoint();
860 #endif // is_mpi
861  }
862
863
864 #ifdef IS_MPI
865  void SimInfo::setupFortranParallel() {
872      
873 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
874 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
875 <    std::vector<int> localToGlobalCutoffGroupIndex;
876 <    SimInfo::MoleculeIterator mi;
877 <    Molecule::AtomIterator ai;
878 <    Molecule::CutoffGroupIterator ci;
879 <    Molecule* mol;
880 <    Atom* atom;
881 <    CutoffGroup* cg;
873 >    errorCheckPoint();
874 >    
875 >    // Setup number of neighbors in neighbor list if present
876 >    if (simParams_->haveNeighborListNeighbors()) {
877 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
878 >      setNeighbors(&nlistNeighbors);
879 >    }
880 >  
881 > #ifdef IS_MPI    
882 >    //SimInfo is responsible for creating localToGlobalAtomIndex and
883 >    //localToGlobalGroupIndex
884 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
885 >    vector<int> localToGlobalCutoffGroupIndex;
886      mpiSimData parallelData;
877    int isError;
887  
888      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
889  
# Line 913 | Line 922 | namespace oopse {
922      }
923  
924      sprintf(checkPointMsg, " mpiRefresh successful.\n");
925 <    MPIcheckPoint();
917 <
918 <
919 <  }
920 <
925 >    errorCheckPoint();
926   #endif
927 <
923 <  void SimInfo::setupCutoff() {          
924 <    
925 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
926 <
927 <    // Check the cutoff policy
928 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
929 <
930 <    std::string myPolicy;
931 <    if (forceFieldOptions_.haveCutoffPolicy()){
932 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
933 <    }else if (simParams_->haveCutoffPolicy()) {
934 <      myPolicy = simParams_->getCutoffPolicy();
935 <    }
936 <
937 <    if (!myPolicy.empty()){
938 <      toUpper(myPolicy);
939 <      if (myPolicy == "MIX") {
940 <        cp = MIX_CUTOFF_POLICY;
941 <      } else {
942 <        if (myPolicy == "MAX") {
943 <          cp = MAX_CUTOFF_POLICY;
944 <        } else {
945 <          if (myPolicy == "TRADITIONAL") {            
946 <            cp = TRADITIONAL_CUTOFF_POLICY;
947 <          } else {
948 <            // throw error        
949 <            sprintf( painCave.errMsg,
950 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
951 <            painCave.isFatal = 1;
952 <            simError();
953 <          }    
954 <        }          
955 <      }
956 <    }          
957 <    notifyFortranCutoffPolicy(&cp);
958 <
959 <    // Check the Skin Thickness for neighborlists
960 <    double skin;
961 <    if (simParams_->haveSkinThickness()) {
962 <      skin = simParams_->getSkinThickness();
963 <      notifyFortranSkinThickness(&skin);
964 <    }            
965 <        
966 <    // Check if the cutoff was set explicitly:
967 <    if (simParams_->haveCutoffRadius()) {
968 <      rcut_ = simParams_->getCutoffRadius();
969 <      if (simParams_->haveSwitchingRadius()) {
970 <        rsw_  = simParams_->getSwitchingRadius();
971 <      } else {
972 <        if (fInfo_.SIM_uses_Charges |
973 <            fInfo_.SIM_uses_Dipoles |
974 <            fInfo_.SIM_uses_RF) {
975 <          
976 <          rsw_ = 0.85 * rcut_;
977 <          sprintf(painCave.errMsg,
978 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
979 <                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
980 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
981 <        painCave.isFatal = 0;
982 <        simError();
983 <        } else {
984 <          rsw_ = rcut_;
985 <          sprintf(painCave.errMsg,
986 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
987 <                  "\tOOPSE will use the same value as the cutoffRadius.\n"
988 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
989 <          painCave.isFatal = 0;
990 <          simError();
991 <        }
992 <      }
993 <      
994 <      notifyFortranCutoffs(&rcut_, &rsw_);
995 <      
996 <    } else {
997 <      
998 <      // For electrostatic atoms, we'll assume a large safe value:
999 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1000 <        sprintf(painCave.errMsg,
1001 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1002 <                "\tOOPSE will use a default value of 15.0 angstroms"
1003 <                "\tfor the cutoffRadius.\n");
1004 <        painCave.isFatal = 0;
1005 <        simError();
1006 <        rcut_ = 15.0;
1007 <      
1008 <        if (simParams_->haveElectrostaticSummationMethod()) {
1009 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1010 <          toUpper(myMethod);
1011 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1012 <            if (simParams_->haveSwitchingRadius()){
1013 <              sprintf(painCave.errMsg,
1014 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1015 <                      "\teven though the electrostaticSummationMethod was\n"
1016 <                      "\tset to %s\n", myMethod.c_str());
1017 <              painCave.isFatal = 1;
1018 <              simError();            
1019 <            }
1020 <          }
1021 <        }
1022 <      
1023 <        if (simParams_->haveSwitchingRadius()){
1024 <          rsw_ = simParams_->getSwitchingRadius();
1025 <        } else {        
1026 <          sprintf(painCave.errMsg,
1027 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1028 <                  "\tOOPSE will use a default value of\n"
1029 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1030 <          painCave.isFatal = 0;
1031 <          simError();
1032 <          rsw_ = 0.85 * rcut_;
1033 <        }
1034 <        notifyFortranCutoffs(&rcut_, &rsw_);
1035 <      } else {
1036 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1037 <        // We'll punt and let fortran figure out the cutoffs later.
1038 <        
1039 <        notifyFortranYouAreOnYourOwn();
1040 <
1041 <      }
1042 <    }
927 >    fortranInitialized_ = true;
928    }
929  
1045  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1046    
1047    int errorOut;
1048    int esm =  NONE;
1049    int sm = UNDAMPED;
1050    double alphaVal;
1051    double dielectric;
1052
1053    errorOut = isError;
1054    alphaVal = simParams_->getDampingAlpha();
1055    dielectric = simParams_->getDielectric();
1056
1057    if (simParams_->haveElectrostaticSummationMethod()) {
1058      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1059      toUpper(myMethod);
1060      if (myMethod == "NONE") {
1061        esm = NONE;
1062      } else {
1063        if (myMethod == "SWITCHING_FUNCTION") {
1064          esm = SWITCHING_FUNCTION;
1065        } else {
1066          if (myMethod == "SHIFTED_POTENTIAL") {
1067            esm = SHIFTED_POTENTIAL;
1068          } else {
1069            if (myMethod == "SHIFTED_FORCE") {            
1070              esm = SHIFTED_FORCE;
1071            } else {
1072              if (myMethod == "REACTION_FIELD") {            
1073                esm = REACTION_FIELD;
1074              } else {
1075                // throw error        
1076                sprintf( painCave.errMsg,
1077                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1078                         "\t(Input file specified %s .)\n"
1079                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1080                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1081                         "\t\"reaction_field\".\n", myMethod.c_str() );
1082                painCave.isFatal = 1;
1083                simError();
1084              }    
1085            }          
1086          }
1087        }
1088      }
1089    }
1090    
1091    if (simParams_->haveElectrostaticScreeningMethod()) {
1092      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1093      toUpper(myScreen);
1094      if (myScreen == "UNDAMPED") {
1095        sm = UNDAMPED;
1096      } else {
1097        if (myScreen == "DAMPED") {
1098          sm = DAMPED;
1099          if (!simParams_->haveDampingAlpha()) {
1100            //throw error
1101            sprintf( painCave.errMsg,
1102                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1103                     "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1104            painCave.isFatal = 0;
1105            simError();
1106          }
1107        } else {
1108          // throw error        
1109          sprintf( painCave.errMsg,
1110                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1111                   "\t(Input file specified %s .)\n"
1112                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1113                   "or \"damped\".\n", myScreen.c_str() );
1114          painCave.isFatal = 1;
1115          simError();
1116        }
1117      }
1118    }
1119    
1120    // let's pass some summation method variables to fortran
1121    setElectrostaticSummationMethod( &esm );
1122    setFortranElectrostaticMethod( &esm );
1123    setScreeningMethod( &sm );
1124    setDampingAlpha( &alphaVal );
1125    setReactionFieldDielectric( &dielectric );
1126    initFortranFF( &errorOut );
1127  }
1128
1129  void SimInfo::setupSwitchingFunction() {    
1130    int ft = CUBIC;
1131
1132    if (simParams_->haveSwitchingFunctionType()) {
1133      std::string funcType = simParams_->getSwitchingFunctionType();
1134      toUpper(funcType);
1135      if (funcType == "CUBIC") {
1136        ft = CUBIC;
1137      } else {
1138        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1139          ft = FIFTH_ORDER_POLY;
1140        } else {
1141          // throw error        
1142          sprintf( painCave.errMsg,
1143                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1144          painCave.isFatal = 1;
1145          simError();
1146        }          
1147      }
1148    }
1149
1150    // send switching function notification to switcheroo
1151    setFunctionType(&ft);
1152
1153  }
1154
930    void SimInfo::addProperty(GenericData* genData) {
931      properties_.addProperty(genData);  
932    }
933  
934 <  void SimInfo::removeProperty(const std::string& propName) {
934 >  void SimInfo::removeProperty(const string& propName) {
935      properties_.removeProperty(propName);  
936    }
937  
# Line 1164 | Line 939 | namespace oopse {
939      properties_.clearProperties();
940    }
941  
942 <  std::vector<std::string> SimInfo::getPropertyNames() {
942 >  vector<string> SimInfo::getPropertyNames() {
943      return properties_.getPropertyNames();  
944    }
945        
946 <  std::vector<GenericData*> SimInfo::getProperties() {
946 >  vector<GenericData*> SimInfo::getProperties() {
947      return properties_.getProperties();
948    }
949  
950 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
950 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
951      return properties_.getPropertyByName(propName);
952    }
953  
# Line 1208 | Line 983 | namespace oopse {
983      Molecule* mol;
984  
985      Vector3d comVel(0.0);
986 <    double totalMass = 0.0;
986 >    RealType totalMass = 0.0;
987      
988  
989      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
990 <      double mass = mol->getMass();
990 >      RealType mass = mol->getMass();
991        totalMass += mass;
992        comVel += mass * mol->getComVel();
993      }  
994  
995   #ifdef IS_MPI
996 <    double tmpMass = totalMass;
996 >    RealType tmpMass = totalMass;
997      Vector3d tmpComVel(comVel);    
998 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
999 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
998 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
999 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1000   #endif
1001  
1002      comVel /= totalMass;
# Line 1234 | Line 1009 | namespace oopse {
1009      Molecule* mol;
1010  
1011      Vector3d com(0.0);
1012 <    double totalMass = 0.0;
1012 >    RealType totalMass = 0.0;
1013      
1014      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1015 <      double mass = mol->getMass();
1015 >      RealType mass = mol->getMass();
1016        totalMass += mass;
1017        com += mass * mol->getCom();
1018      }  
1019  
1020   #ifdef IS_MPI
1021 <    double tmpMass = totalMass;
1021 >    RealType tmpMass = totalMass;
1022      Vector3d tmpCom(com);    
1023 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1024 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1023 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1024 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1025   #endif
1026  
1027      com /= totalMass;
# Line 1255 | Line 1030 | namespace oopse {
1030  
1031    }        
1032  
1033 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1033 >  ostream& operator <<(ostream& o, SimInfo& info) {
1034  
1035      return o;
1036    }
# Line 1270 | Line 1045 | namespace oopse {
1045        Molecule* mol;
1046        
1047      
1048 <      double totalMass = 0.0;
1048 >      RealType totalMass = 0.0;
1049      
1050  
1051        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1052 <         double mass = mol->getMass();
1052 >         RealType mass = mol->getMass();
1053           totalMass += mass;
1054           com += mass * mol->getCom();
1055           comVel += mass * mol->getComVel();          
1056        }  
1057        
1058   #ifdef IS_MPI
1059 <      double tmpMass = totalMass;
1059 >      RealType tmpMass = totalMass;
1060        Vector3d tmpCom(com);  
1061        Vector3d tmpComVel(comVel);
1062 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1063 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1064 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1062 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1063 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1064 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1065   #endif
1066        
1067        com /= totalMass;
# Line 1298 | Line 1073 | namespace oopse {
1073  
1074  
1075         [  Ixx -Ixy  -Ixz ]
1076 <  J =| -Iyx  Iyy  -Iyz |
1076 >    J =| -Iyx  Iyy  -Iyz |
1077         [ -Izx -Iyz   Izz ]
1078      */
1079  
1080     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1081        
1082  
1083 <      double xx = 0.0;
1084 <      double yy = 0.0;
1085 <      double zz = 0.0;
1086 <      double xy = 0.0;
1087 <      double xz = 0.0;
1088 <      double yz = 0.0;
1083 >      RealType xx = 0.0;
1084 >      RealType yy = 0.0;
1085 >      RealType zz = 0.0;
1086 >      RealType xy = 0.0;
1087 >      RealType xz = 0.0;
1088 >      RealType yz = 0.0;
1089        Vector3d com(0.0);
1090        Vector3d comVel(0.0);
1091        
# Line 1322 | Line 1097 | namespace oopse {
1097        Vector3d thisq(0.0);
1098        Vector3d thisv(0.0);
1099  
1100 <      double thisMass = 0.0;
1100 >      RealType thisMass = 0.0;
1101      
1102        
1103        
# Line 1360 | Line 1135 | namespace oopse {
1135   #ifdef IS_MPI
1136        Mat3x3d tmpI(inertiaTensor);
1137        Vector3d tmpAngMom;
1138 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1139 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1138 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1139 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1140   #endif
1141                
1142        return;
# Line 1382 | Line 1157 | namespace oopse {
1157        Vector3d thisr(0.0);
1158        Vector3d thisp(0.0);
1159        
1160 <      double thisMass;
1160 >      RealType thisMass;
1161        
1162        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1163          thisMass = mol->getMass();
# Line 1395 | Line 1170 | namespace oopse {
1170        
1171   #ifdef IS_MPI
1172        Vector3d tmpAngMom;
1173 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1173 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1174   #endif
1175        
1176        return angularMomentum;
1177     }
1178    
1179 <  
1180 < }//end namespace oopse
1179 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1180 >    return IOIndexToIntegrableObject.at(index);
1181 >  }
1182 >  
1183 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1184 >    IOIndexToIntegrableObject= v;
1185 >  }
1186  
1187 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1188 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1189 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1190 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1191 +  */
1192 +  void SimInfo::getGyrationalVolume(RealType &volume){
1193 +    Mat3x3d intTensor;
1194 +    RealType det;
1195 +    Vector3d dummyAngMom;
1196 +    RealType sysconstants;
1197 +    RealType geomCnst;
1198 +
1199 +    geomCnst = 3.0/2.0;
1200 +    /* Get the inertial tensor and angular momentum for free*/
1201 +    getInertiaTensor(intTensor,dummyAngMom);
1202 +    
1203 +    det = intTensor.determinant();
1204 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1205 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1206 +    return;
1207 +  }
1208 +
1209 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1210 +    Mat3x3d intTensor;
1211 +    Vector3d dummyAngMom;
1212 +    RealType sysconstants;
1213 +    RealType geomCnst;
1214 +
1215 +    geomCnst = 3.0/2.0;
1216 +    /* Get the inertial tensor and angular momentum for free*/
1217 +    getInertiaTensor(intTensor,dummyAngMom);
1218 +    
1219 +    detI = intTensor.determinant();
1220 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1221 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1222 +    return;
1223 +  }
1224 + /*
1225 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1226 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1227 +      sdByGlobalIndex_ = v;
1228 +    }
1229 +
1230 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1231 +      //assert(index < nAtoms_ + nRigidBodies_);
1232 +      return sdByGlobalIndex_.at(index);
1233 +    }  
1234 + */  
1235 +  int SimInfo::getNGlobalConstraints() {
1236 +    int nGlobalConstraints;
1237 + #ifdef IS_MPI
1238 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1239 +                  MPI_COMM_WORLD);    
1240 + #else
1241 +    nGlobalConstraints =  nConstraints_;
1242 + #endif
1243 +    return nGlobalConstraints;
1244 +  }
1245 +
1246 + }//end namespace OpenMD
1247 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 879 by chrisfen, Wed Feb 1 21:06:43 2006 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1535 by gezelter, Fri Dec 31 18:31:56 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines