ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 726 by chrisfen, Fri Nov 11 15:22:11 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1530 by gezelter, Tue Dec 28 21:47:55 2010 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57   #include "UseTheForce/fCutoffPolicy.h"
56 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
58 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
58   #include "UseTheForce/doForces_interface.h"
59 < #include "UseTheForce/DarkSide/electrostatic_interface.h"
61 < #include "UseTheForce/notifyCutoffs_interface.h"
62 < #include "UseTheForce/DarkSide/switcheroo_interface.h"
59 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
60   #include "utils/MemoryUtils.hpp"
61   #include "utils/simError.h"
62   #include "selection/SelectionManager.hpp"
63 + #include "io/ForceFieldOptions.hpp"
64 + #include "UseTheForce/ForceField.hpp"
65 + #include "nonbonded/SwitchingFunction.hpp"
66  
67 +
68   #ifdef IS_MPI
69   #include "UseTheForce/mpiComponentPlan.h"
70   #include "UseTheForce/DarkSide/simParallel_interface.h"
71   #endif
72  
73 < namespace oopse {
74 <
75 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
76 <                   ForceField* ff, Globals* simParams) :
77 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
78 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
73 > using namespace std;
74 > namespace OpenMD {
75 >  
76 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
77 >    forceField_(ff), simParams_(simParams),
78 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
79      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
80      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
81 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
82 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
83 <    sman_(NULL), fortranInitialized_(false) {
84 <
84 <            
85 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
86 <      MoleculeStamp* molStamp;
87 <      int nMolWithSameStamp;
88 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
89 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
90 <      CutoffGroupStamp* cgStamp;    
91 <      RigidBodyStamp* rbStamp;
92 <      int nRigidAtoms = 0;
81 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
82 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
83 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
84 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
85      
86 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
87 <        molStamp = i->first;
88 <        nMolWithSameStamp = i->second;
89 <        
90 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
91 <
92 <        //calculate atoms in molecules
93 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
94 <
95 <
96 <        //calculate atoms in cutoff groups
97 <        int nAtomsInGroups = 0;
98 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
99 <        
100 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
101 <          cgStamp = molStamp->getCutoffGroup(j);
102 <          nAtomsInGroups += cgStamp->getNMembers();
103 <        }
104 <
105 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
106 <
107 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
108 <
109 <        //calculate atoms in rigid bodies
110 <        int nAtomsInRigidBodies = 0;
111 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
120 <        
121 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
122 <          rbStamp = molStamp->getRigidBody(j);
123 <          nAtomsInRigidBodies += rbStamp->getNMembers();
124 <        }
125 <
126 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
127 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
128 <        
86 >    MoleculeStamp* molStamp;
87 >    int nMolWithSameStamp;
88 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
89 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
90 >    CutoffGroupStamp* cgStamp;    
91 >    RigidBodyStamp* rbStamp;
92 >    int nRigidAtoms = 0;
93 >    
94 >    vector<Component*> components = simParams->getComponents();
95 >    
96 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
97 >      molStamp = (*i)->getMoleculeStamp();
98 >      nMolWithSameStamp = (*i)->getNMol();
99 >      
100 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
101 >      
102 >      //calculate atoms in molecules
103 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
104 >      
105 >      //calculate atoms in cutoff groups
106 >      int nAtomsInGroups = 0;
107 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
108 >      
109 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
110 >        cgStamp = molStamp->getCutoffGroupStamp(j);
111 >        nAtomsInGroups += cgStamp->getNMembers();
112        }
113 <
114 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
115 <      //group therefore the total number of cutoff groups in the system is
116 <      //equal to the total number of atoms minus number of atoms belong to
117 <      //cutoff group defined in meta-data file plus the number of cutoff
118 <      //groups defined in meta-data file
119 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
120 <
121 <      //every free atom (atom does not belong to rigid bodies) is an
122 <      //integrable object therefore the total number of integrable objects
123 <      //in the system is equal to the total number of atoms minus number of
124 <      //atoms belong to rigid body defined in meta-data file plus the number
125 <      //of rigid bodies defined in meta-data file
126 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
127 <                                                + nGlobalRigidBodies_;
128 <  
129 <      nGlobalMols_ = molStampIds_.size();
147 <
148 < #ifdef IS_MPI    
149 <      molToProcMap_.resize(nGlobalMols_);
150 < #endif
151 <
113 >      
114 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
115 >      
116 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
117 >      
118 >      //calculate atoms in rigid bodies
119 >      int nAtomsInRigidBodies = 0;
120 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
121 >      
122 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
123 >        rbStamp = molStamp->getRigidBodyStamp(j);
124 >        nAtomsInRigidBodies += rbStamp->getNMembers();
125 >      }
126 >      
127 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
128 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
129 >      
130      }
131 <
131 >    
132 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
133 >    //group therefore the total number of cutoff groups in the system is
134 >    //equal to the total number of atoms minus number of atoms belong to
135 >    //cutoff group defined in meta-data file plus the number of cutoff
136 >    //groups defined in meta-data file
137 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
138 >    
139 >    //every free atom (atom does not belong to rigid bodies) is an
140 >    //integrable object therefore the total number of integrable objects
141 >    //in the system is equal to the total number of atoms minus number of
142 >    //atoms belong to rigid body defined in meta-data file plus the number
143 >    //of rigid bodies defined in meta-data file
144 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
145 >      + nGlobalRigidBodies_;
146 >    
147 >    nGlobalMols_ = molStampIds_.size();
148 >    molToProcMap_.resize(nGlobalMols_);
149 >  }
150 >  
151    SimInfo::~SimInfo() {
152 <    std::map<int, Molecule*>::iterator i;
152 >    map<int, Molecule*>::iterator i;
153      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
154        delete i->second;
155      }
156      molecules_.clear();
157        
161    delete stamps_;
158      delete sman_;
159      delete simParams_;
160      delete forceField_;
161    }
162  
167  int SimInfo::getNGlobalConstraints() {
168    int nGlobalConstraints;
169 #ifdef IS_MPI
170    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
171                  MPI_COMM_WORLD);    
172 #else
173    nGlobalConstraints =  nConstraints_;
174 #endif
175    return nGlobalConstraints;
176  }
163  
164    bool SimInfo::addMolecule(Molecule* mol) {
165      MoleculeIterator i;
166 <
166 >    
167      i = molecules_.find(mol->getGlobalIndex());
168      if (i == molecules_.end() ) {
169 <
170 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
171 <        
169 >      
170 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
171 >      
172        nAtoms_ += mol->getNAtoms();
173        nBonds_ += mol->getNBonds();
174        nBends_ += mol->getNBends();
175        nTorsions_ += mol->getNTorsions();
176 +      nInversions_ += mol->getNInversions();
177        nRigidBodies_ += mol->getNRigidBodies();
178        nIntegrableObjects_ += mol->getNIntegrableObjects();
179        nCutoffGroups_ += mol->getNCutoffGroups();
180        nConstraints_ += mol->getNConstraintPairs();
181 <
182 <      addExcludePairs(mol);
183 <        
181 >      
182 >      addInteractionPairs(mol);
183 >      
184        return true;
185      } else {
186        return false;
187      }
188    }
189 <
189 >  
190    bool SimInfo::removeMolecule(Molecule* mol) {
191      MoleculeIterator i;
192      i = molecules_.find(mol->getGlobalIndex());
# Line 212 | Line 199 | namespace oopse {
199        nBonds_ -= mol->getNBonds();
200        nBends_ -= mol->getNBends();
201        nTorsions_ -= mol->getNTorsions();
202 +      nInversions_ -= mol->getNInversions();
203        nRigidBodies_ -= mol->getNRigidBodies();
204        nIntegrableObjects_ -= mol->getNIntegrableObjects();
205        nCutoffGroups_ -= mol->getNCutoffGroups();
206        nConstraints_ -= mol->getNConstraintPairs();
207  
208 <      removeExcludePairs(mol);
208 >      removeInteractionPairs(mol);
209        molecules_.erase(mol->getGlobalIndex());
210  
211        delete mol;
# Line 226 | Line 214 | namespace oopse {
214      } else {
215        return false;
216      }
229
230
217    }    
218  
219          
# Line 245 | Line 231 | namespace oopse {
231    void SimInfo::calcNdf() {
232      int ndf_local;
233      MoleculeIterator i;
234 <    std::vector<StuntDouble*>::iterator j;
234 >    vector<StuntDouble*>::iterator j;
235      Molecule* mol;
236      StuntDouble* integrableObject;
237  
# Line 265 | Line 251 | namespace oopse {
251            }
252          }
253              
254 <      }//end for (integrableObject)
255 <    }// end for (mol)
254 >      }
255 >    }
256      
257      // n_constraints is local, so subtract them on each processor
258      ndf_local -= nConstraints_;
# Line 283 | Line 269 | namespace oopse {
269  
270    }
271  
272 +  int SimInfo::getFdf() {
273 + #ifdef IS_MPI
274 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
275 + #else
276 +    fdf_ = fdf_local;
277 + #endif
278 +    return fdf_;
279 +  }
280 +    
281    void SimInfo::calcNdfRaw() {
282      int ndfRaw_local;
283  
284      MoleculeIterator i;
285 <    std::vector<StuntDouble*>::iterator j;
285 >    vector<StuntDouble*>::iterator j;
286      Molecule* mol;
287      StuntDouble* integrableObject;
288  
# Line 334 | Line 329 | namespace oopse {
329  
330    }
331  
332 <  void SimInfo::addExcludePairs(Molecule* mol) {
333 <    std::vector<Bond*>::iterator bondIter;
334 <    std::vector<Bend*>::iterator bendIter;
335 <    std::vector<Torsion*>::iterator torsionIter;
332 >  void SimInfo::addInteractionPairs(Molecule* mol) {
333 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
334 >    vector<Bond*>::iterator bondIter;
335 >    vector<Bend*>::iterator bendIter;
336 >    vector<Torsion*>::iterator torsionIter;
337 >    vector<Inversion*>::iterator inversionIter;
338      Bond* bond;
339      Bend* bend;
340      Torsion* torsion;
341 +    Inversion* inversion;
342      int a;
343      int b;
344      int c;
345      int d;
346 +
347 +    // atomGroups can be used to add special interaction maps between
348 +    // groups of atoms that are in two separate rigid bodies.
349 +    // However, most site-site interactions between two rigid bodies
350 +    // are probably not special, just the ones between the physically
351 +    // bonded atoms.  Interactions *within* a single rigid body should
352 +    // always be excluded.  These are done at the bottom of this
353 +    // function.
354 +
355 +    map<int, set<int> > atomGroups;
356 +    Molecule::RigidBodyIterator rbIter;
357 +    RigidBody* rb;
358 +    Molecule::IntegrableObjectIterator ii;
359 +    StuntDouble* integrableObject;
360      
361 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
361 >    for (integrableObject = mol->beginIntegrableObject(ii);
362 >         integrableObject != NULL;
363 >         integrableObject = mol->nextIntegrableObject(ii)) {
364 >      
365 >      if (integrableObject->isRigidBody()) {
366 >        rb = static_cast<RigidBody*>(integrableObject);
367 >        vector<Atom*> atoms = rb->getAtoms();
368 >        set<int> rigidAtoms;
369 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
370 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
371 >        }
372 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
373 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
374 >        }      
375 >      } else {
376 >        set<int> oneAtomSet;
377 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
378 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
379 >      }
380 >    }  
381 >          
382 >    for (bond= mol->beginBond(bondIter); bond != NULL;
383 >         bond = mol->nextBond(bondIter)) {
384 >
385        a = bond->getAtomA()->getGlobalIndex();
386 <      b = bond->getAtomB()->getGlobalIndex();        
387 <      exclude_.addPair(a, b);
386 >      b = bond->getAtomB()->getGlobalIndex();  
387 >    
388 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
389 >        oneTwoInteractions_.addPair(a, b);
390 >      } else {
391 >        excludedInteractions_.addPair(a, b);
392 >      }
393      }
394  
395 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
395 >    for (bend= mol->beginBend(bendIter); bend != NULL;
396 >         bend = mol->nextBend(bendIter)) {
397 >
398        a = bend->getAtomA()->getGlobalIndex();
399        b = bend->getAtomB()->getGlobalIndex();        
400        c = bend->getAtomC()->getGlobalIndex();
401 +      
402 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
403 +        oneTwoInteractions_.addPair(a, b);      
404 +        oneTwoInteractions_.addPair(b, c);
405 +      } else {
406 +        excludedInteractions_.addPair(a, b);
407 +        excludedInteractions_.addPair(b, c);
408 +      }
409  
410 <      exclude_.addPair(a, b);
411 <      exclude_.addPair(a, c);
412 <      exclude_.addPair(b, c);        
410 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
411 >        oneThreeInteractions_.addPair(a, c);      
412 >      } else {
413 >        excludedInteractions_.addPair(a, c);
414 >      }
415      }
416  
417 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
417 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
418 >         torsion = mol->nextTorsion(torsionIter)) {
419 >
420        a = torsion->getAtomA()->getGlobalIndex();
421        b = torsion->getAtomB()->getGlobalIndex();        
422        c = torsion->getAtomC()->getGlobalIndex();        
423 <      d = torsion->getAtomD()->getGlobalIndex();        
423 >      d = torsion->getAtomD()->getGlobalIndex();      
424  
425 <      exclude_.addPair(a, b);
426 <      exclude_.addPair(a, c);
427 <      exclude_.addPair(a, d);
428 <      exclude_.addPair(b, c);
429 <      exclude_.addPair(b, d);
430 <      exclude_.addPair(c, d);        
425 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
426 >        oneTwoInteractions_.addPair(a, b);      
427 >        oneTwoInteractions_.addPair(b, c);
428 >        oneTwoInteractions_.addPair(c, d);
429 >      } else {
430 >        excludedInteractions_.addPair(a, b);
431 >        excludedInteractions_.addPair(b, c);
432 >        excludedInteractions_.addPair(c, d);
433 >      }
434 >
435 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
436 >        oneThreeInteractions_.addPair(a, c);      
437 >        oneThreeInteractions_.addPair(b, d);      
438 >      } else {
439 >        excludedInteractions_.addPair(a, c);
440 >        excludedInteractions_.addPair(b, d);
441 >      }
442 >
443 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
444 >        oneFourInteractions_.addPair(a, d);      
445 >      } else {
446 >        excludedInteractions_.addPair(a, d);
447 >      }
448      }
449  
450 <    Molecule::RigidBodyIterator rbIter;
451 <    RigidBody* rb;
452 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
453 <      std::vector<Atom*> atoms = rb->getAtoms();
454 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
455 <        for (int j = i + 1; j < atoms.size(); ++j) {
450 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
451 >         inversion = mol->nextInversion(inversionIter)) {
452 >
453 >      a = inversion->getAtomA()->getGlobalIndex();
454 >      b = inversion->getAtomB()->getGlobalIndex();        
455 >      c = inversion->getAtomC()->getGlobalIndex();        
456 >      d = inversion->getAtomD()->getGlobalIndex();        
457 >
458 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
459 >        oneTwoInteractions_.addPair(a, b);      
460 >        oneTwoInteractions_.addPair(a, c);
461 >        oneTwoInteractions_.addPair(a, d);
462 >      } else {
463 >        excludedInteractions_.addPair(a, b);
464 >        excludedInteractions_.addPair(a, c);
465 >        excludedInteractions_.addPair(a, d);
466 >      }
467 >
468 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
469 >        oneThreeInteractions_.addPair(b, c);    
470 >        oneThreeInteractions_.addPair(b, d);    
471 >        oneThreeInteractions_.addPair(c, d);      
472 >      } else {
473 >        excludedInteractions_.addPair(b, c);
474 >        excludedInteractions_.addPair(b, d);
475 >        excludedInteractions_.addPair(c, d);
476 >      }
477 >    }
478 >
479 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
480 >         rb = mol->nextRigidBody(rbIter)) {
481 >      vector<Atom*> atoms = rb->getAtoms();
482 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
483 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
484            a = atoms[i]->getGlobalIndex();
485            b = atoms[j]->getGlobalIndex();
486 <          exclude_.addPair(a, b);
486 >          excludedInteractions_.addPair(a, b);
487          }
488        }
489      }        
490  
491    }
492  
493 <  void SimInfo::removeExcludePairs(Molecule* mol) {
494 <    std::vector<Bond*>::iterator bondIter;
495 <    std::vector<Bend*>::iterator bendIter;
496 <    std::vector<Torsion*>::iterator torsionIter;
493 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
494 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
495 >    vector<Bond*>::iterator bondIter;
496 >    vector<Bend*>::iterator bendIter;
497 >    vector<Torsion*>::iterator torsionIter;
498 >    vector<Inversion*>::iterator inversionIter;
499      Bond* bond;
500      Bend* bend;
501      Torsion* torsion;
502 +    Inversion* inversion;
503      int a;
504      int b;
505      int c;
506      int d;
507 +
508 +    map<int, set<int> > atomGroups;
509 +    Molecule::RigidBodyIterator rbIter;
510 +    RigidBody* rb;
511 +    Molecule::IntegrableObjectIterator ii;
512 +    StuntDouble* integrableObject;
513      
514 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
514 >    for (integrableObject = mol->beginIntegrableObject(ii);
515 >         integrableObject != NULL;
516 >         integrableObject = mol->nextIntegrableObject(ii)) {
517 >      
518 >      if (integrableObject->isRigidBody()) {
519 >        rb = static_cast<RigidBody*>(integrableObject);
520 >        vector<Atom*> atoms = rb->getAtoms();
521 >        set<int> rigidAtoms;
522 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
523 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
524 >        }
525 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
526 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
527 >        }      
528 >      } else {
529 >        set<int> oneAtomSet;
530 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
531 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
532 >      }
533 >    }  
534 >
535 >    for (bond= mol->beginBond(bondIter); bond != NULL;
536 >         bond = mol->nextBond(bondIter)) {
537 >      
538        a = bond->getAtomA()->getGlobalIndex();
539 <      b = bond->getAtomB()->getGlobalIndex();        
540 <      exclude_.removePair(a, b);
539 >      b = bond->getAtomB()->getGlobalIndex();  
540 >    
541 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
542 >        oneTwoInteractions_.removePair(a, b);
543 >      } else {
544 >        excludedInteractions_.removePair(a, b);
545 >      }
546      }
547  
548 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
548 >    for (bend= mol->beginBend(bendIter); bend != NULL;
549 >         bend = mol->nextBend(bendIter)) {
550 >
551        a = bend->getAtomA()->getGlobalIndex();
552        b = bend->getAtomB()->getGlobalIndex();        
553        c = bend->getAtomC()->getGlobalIndex();
554 +      
555 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
556 +        oneTwoInteractions_.removePair(a, b);      
557 +        oneTwoInteractions_.removePair(b, c);
558 +      } else {
559 +        excludedInteractions_.removePair(a, b);
560 +        excludedInteractions_.removePair(b, c);
561 +      }
562  
563 <      exclude_.removePair(a, b);
564 <      exclude_.removePair(a, c);
565 <      exclude_.removePair(b, c);        
563 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
564 >        oneThreeInteractions_.removePair(a, c);      
565 >      } else {
566 >        excludedInteractions_.removePair(a, c);
567 >      }
568      }
569  
570 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
570 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
571 >         torsion = mol->nextTorsion(torsionIter)) {
572 >
573        a = torsion->getAtomA()->getGlobalIndex();
574        b = torsion->getAtomB()->getGlobalIndex();        
575        c = torsion->getAtomC()->getGlobalIndex();        
576 <      d = torsion->getAtomD()->getGlobalIndex();        
576 >      d = torsion->getAtomD()->getGlobalIndex();      
577 >  
578 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
579 >        oneTwoInteractions_.removePair(a, b);      
580 >        oneTwoInteractions_.removePair(b, c);
581 >        oneTwoInteractions_.removePair(c, d);
582 >      } else {
583 >        excludedInteractions_.removePair(a, b);
584 >        excludedInteractions_.removePair(b, c);
585 >        excludedInteractions_.removePair(c, d);
586 >      }
587  
588 <      exclude_.removePair(a, b);
589 <      exclude_.removePair(a, c);
590 <      exclude_.removePair(a, d);
591 <      exclude_.removePair(b, c);
592 <      exclude_.removePair(b, d);
593 <      exclude_.removePair(c, d);        
588 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
589 >        oneThreeInteractions_.removePair(a, c);      
590 >        oneThreeInteractions_.removePair(b, d);      
591 >      } else {
592 >        excludedInteractions_.removePair(a, c);
593 >        excludedInteractions_.removePair(b, d);
594 >      }
595 >
596 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
597 >        oneFourInteractions_.removePair(a, d);      
598 >      } else {
599 >        excludedInteractions_.removePair(a, d);
600 >      }
601      }
602  
603 <    Molecule::RigidBodyIterator rbIter;
604 <    RigidBody* rb;
605 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
606 <      std::vector<Atom*> atoms = rb->getAtoms();
607 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
608 <        for (int j = i + 1; j < atoms.size(); ++j) {
603 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
604 >         inversion = mol->nextInversion(inversionIter)) {
605 >
606 >      a = inversion->getAtomA()->getGlobalIndex();
607 >      b = inversion->getAtomB()->getGlobalIndex();        
608 >      c = inversion->getAtomC()->getGlobalIndex();        
609 >      d = inversion->getAtomD()->getGlobalIndex();        
610 >
611 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
612 >        oneTwoInteractions_.removePair(a, b);      
613 >        oneTwoInteractions_.removePair(a, c);
614 >        oneTwoInteractions_.removePair(a, d);
615 >      } else {
616 >        excludedInteractions_.removePair(a, b);
617 >        excludedInteractions_.removePair(a, c);
618 >        excludedInteractions_.removePair(a, d);
619 >      }
620 >
621 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
622 >        oneThreeInteractions_.removePair(b, c);    
623 >        oneThreeInteractions_.removePair(b, d);    
624 >        oneThreeInteractions_.removePair(c, d);      
625 >      } else {
626 >        excludedInteractions_.removePair(b, c);
627 >        excludedInteractions_.removePair(b, d);
628 >        excludedInteractions_.removePair(c, d);
629 >      }
630 >    }
631 >
632 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
633 >         rb = mol->nextRigidBody(rbIter)) {
634 >      vector<Atom*> atoms = rb->getAtoms();
635 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
636 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
637            a = atoms[i]->getGlobalIndex();
638            b = atoms[j]->getGlobalIndex();
639 <          exclude_.removePair(a, b);
639 >          excludedInteractions_.removePair(a, b);
640          }
641        }
642      }        
643 <
643 >    
644    }
645 <
646 <
645 >  
646 >  
647    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
648      int curStampId;
649 <
649 >    
650      //index from 0
651      curStampId = moleculeStamps_.size();
652  
# Line 459 | Line 654 | namespace oopse {
654      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
655    }
656  
657 +
658 +  /**
659 +   * update
660 +   *
661 +   *  Performs the global checks and variable settings after the objects have been
662 +   *  created.
663 +   *
664 +   */
665    void SimInfo::update() {
666 +    
667 +    setupSimVariables();
668 +    setupCutoffs();
669 +    setupSwitching();
670 +    setupElectrostatics();
671 +    setupNeighborlists();
672  
464    setupSimType();
465
673   #ifdef IS_MPI
674      setupFortranParallel();
675   #endif
469
676      setupFortranSim();
677 +    fortranInitialized_ = true;
678  
472    //setup fortran force field
473    /** @deprecate */    
474    int isError = 0;
475    
476    setupElectrostaticSummationMethod( isError );
477    setupSwitchingFunction();
478
479    if(isError){
480      sprintf( painCave.errMsg,
481               "ForceField error: There was an error initializing the forceField in fortran.\n" );
482      painCave.isFatal = 1;
483      simError();
484    }
485  
486    
487    setupCutoff();
488
679      calcNdf();
680      calcNdfRaw();
681      calcNdfTrans();
492
493    fortranInitialized_ = true;
682    }
683 <
684 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
683 >  
684 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
685      SimInfo::MoleculeIterator mi;
686      Molecule* mol;
687      Molecule::AtomIterator ai;
688      Atom* atom;
689 <    std::set<AtomType*> atomTypes;
690 <
691 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
504 <
689 >    set<AtomType*> atomTypes;
690 >    
691 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
692        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
693          atomTypes.insert(atom->getAtomType());
694 <      }
695 <        
509 <    }
510 <
694 >      }      
695 >    }    
696      return atomTypes;        
697    }
698  
699 <  void SimInfo::setupSimType() {
700 <    std::set<AtomType*>::iterator i;
701 <    std::set<AtomType*> atomTypes;
702 <    atomTypes = getUniqueAtomTypes();
699 >  /**
700 >   * setupCutoffs
701 >   *
702 >   * Sets the values of cutoffRadius and cutoffMethod
703 >   *
704 >   * cutoffRadius : realType
705 >   *  If the cutoffRadius was explicitly set, use that value.
706 >   *  If the cutoffRadius was not explicitly set:
707 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
708 >   *      No electrostatic atoms?  Poll the atom types present in the
709 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
710 >   *      Use the maximum suggested value that was found.
711 >   *
712 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL)
713 >   *      If cutoffMethod was explicitly set, use that choice.
714 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
715 >   */
716 >  void SimInfo::setupCutoffs() {
717      
718 <    int useLennardJones = 0;
719 <    int useElectrostatic = 0;
720 <    int useEAM = 0;
721 <    int useCharge = 0;
722 <    int useDirectional = 0;
723 <    int useDipole = 0;
724 <    int useGayBerne = 0;
725 <    int useSticky = 0;
726 <    int useStickyPower = 0;
727 <    int useShape = 0;
728 <    int useFLARB = 0; //it is not in AtomType yet
729 <    int useDirectionalAtom = 0;    
531 <    int useElectrostatics = 0;
532 <    //usePBC and useRF are from simParams
533 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
534 <    int useRF;
535 <    int useSF;
536 <    std::string myMethod;
537 <
538 <    // set the useRF logical
539 <    useRF = 0;
540 <    useSF = 0;
541 <
542 <
543 <    if (simParams_->haveElectrostaticSummationMethod()) {
544 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
545 <      toUpper(myMethod);
546 <      if (myMethod == "REACTION_FIELD") {
547 <        useRF=1;
718 >    if (simParams_->haveCutoffRadius()) {
719 >      cutoffRadius_ = simParams_->getCutoffRadius();
720 >    } else {      
721 >      if (usesElectrostaticAtoms_) {
722 >        sprintf(painCave.errMsg,
723 >                "SimInfo: No value was set for the cutoffRadius.\n"
724 >                "\tOpenMD will use a default value of 12.0 angstroms"
725 >                "\tfor the cutoffRadius.\n");
726 >        painCave.isFatal = 0;
727 >        painCave.severity = OPENMD_INFO;
728 >        simError();
729 >        cutoffRadius_ = 12.0;
730        } else {
731 <        if (myMethod == "SHIFTED_FORCE") {
732 <          useSF = 1;
733 <        }
734 <      }
731 >        RealType thisCut;
732 >        set<AtomType*>::iterator i;
733 >        set<AtomType*> atomTypes;
734 >        atomTypes = getSimulatedAtomTypes();        
735 >        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
736 >          thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i));
737 >          cutoffRadius_ = max(thisCut, cutoffRadius_);
738 >        }
739 >        sprintf(painCave.errMsg,
740 >                "SimInfo: No value was set for the cutoffRadius.\n"
741 >                "\tOpenMD will use %lf angstroms.\n",
742 >                cutoffRadius_);
743 >        painCave.isFatal = 0;
744 >        painCave.severity = OPENMD_INFO;
745 >        simError();
746 >      }            
747      }
748  
749 <    //loop over all of the atom types
556 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
557 <      useLennardJones |= (*i)->isLennardJones();
558 <      useElectrostatic |= (*i)->isElectrostatic();
559 <      useEAM |= (*i)->isEAM();
560 <      useCharge |= (*i)->isCharge();
561 <      useDirectional |= (*i)->isDirectional();
562 <      useDipole |= (*i)->isDipole();
563 <      useGayBerne |= (*i)->isGayBerne();
564 <      useSticky |= (*i)->isSticky();
565 <      useStickyPower |= (*i)->isStickyPower();
566 <      useShape |= (*i)->isShape();
567 <    }
749 >    InteractionManager::Instance()->setCutoffRadius(cutoffRadius_);
750  
751 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
752 <      useDirectionalAtom = 1;
751 >    map<string, CutoffMethod> stringToCutoffMethod;
752 >    stringToCutoffMethod["HARD"] = HARD;
753 >    stringToCutoffMethod["SWITCHING_FUNCTION"] = SWITCHING_FUNCTION;
754 >    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
755 >    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
756 >  
757 >    if (simParams_->haveCutoffMethod()) {
758 >      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
759 >      map<string, CutoffMethod>::iterator i;
760 >      i = stringToCutoffMethod.find(cutMeth);
761 >      if (i == stringToCutoffMethod.end()) {
762 >        sprintf(painCave.errMsg,
763 >                "SimInfo: Could not find chosen cutoffMethod %s\n"
764 >                "\tShould be one of: "
765 >                "HARD, SWITCHING_FUNCTION, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
766 >                cutMeth.c_str());
767 >        painCave.isFatal = 1;
768 >        painCave.severity = OPENMD_ERROR;
769 >        simError();
770 >      } else {
771 >        cutoffMethod_ = i->second;
772 >      }
773 >    } else {
774 >      sprintf(painCave.errMsg,
775 >              "SimInfo: No value was set for the cutoffMethod.\n"
776 >              "\tOpenMD will use SHIFTED_FORCE.\n");
777 >        painCave.isFatal = 0;
778 >        painCave.severity = OPENMD_INFO;
779 >        simError();
780 >        cutoffMethod_ = SHIFTED_FORCE;        
781      }
782  
783 <    if (useCharge || useDipole) {
784 <      useElectrostatics = 1;
783 >    InteractionManager::Instance()->setCutoffMethod(cutoffMethod_);
784 >  }
785 >  
786 >  /**
787 >   * setupSwitching
788 >   *
789 >   * Sets the values of switchingRadius and
790 >   *  If the switchingRadius was explicitly set, use that value (but check it)
791 >   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
792 >   */
793 >  void SimInfo::setupSwitching() {
794 >    
795 >    if (simParams_->haveSwitchingRadius()) {
796 >      switchingRadius_ = simParams_->getSwitchingRadius();
797 >      if (switchingRadius_ > cutoffRadius_) {        
798 >        sprintf(painCave.errMsg,
799 >                "SimInfo: switchingRadius (%f) is larger than cutoffRadius(%f)\n",
800 >                switchingRadius_, cutoffRadius_);
801 >        painCave.isFatal = 1;
802 >        painCave.severity = OPENMD_ERROR;
803 >        simError();
804 >      }
805 >    } else {      
806 >      switchingRadius_ = 0.85 * cutoffRadius_;
807 >      sprintf(painCave.errMsg,
808 >              "SimInfo: No value was set for the switchingRadius.\n"
809 >              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
810 >              "\tswitchingRadius = %f. for this simulation\n", switchingRadius_);
811 >      painCave.isFatal = 0;
812 >      painCave.severity = OPENMD_WARNING;
813 >      simError();
814 >    }          
815 >  
816 >    InteractionManager::Instance()->setSwitchingRadius(switchingRadius_);
817 >
818 >    SwitchingFunctionType ft;
819 >    
820 >    if (simParams_->haveSwitchingFunctionType()) {
821 >      string funcType = simParams_->getSwitchingFunctionType();
822 >      toUpper(funcType);
823 >      if (funcType == "CUBIC") {
824 >        ft = cubic;
825 >      } else {
826 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
827 >          ft = fifth_order_poly;
828 >        } else {
829 >          // throw error        
830 >          sprintf( painCave.errMsg,
831 >                   "SimInfo : Unknown switchingFunctionType. (Input file specified %s .)\n"
832 >                   "\tswitchingFunctionType must be one of: "
833 >                   "\"cubic\" or \"fifth_order_polynomial\".",
834 >                   funcType.c_str() );
835 >          painCave.isFatal = 1;
836 >          painCave.severity = OPENMD_ERROR;
837 >          simError();
838 >        }          
839 >      }
840      }
841  
842 < #ifdef IS_MPI    
843 <    int temp;
842 >    InteractionManager::Instance()->setSwitchingFunctionType(ft);
843 >  }
844  
845 <    temp = usePBC;
846 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
845 >  /**
846 >   * setupSkinThickness
847 >   *
848 >   *  If the skinThickness was explicitly set, use that value (but check it)
849 >   *  If the skinThickness was not explicitly set: use 1.0 angstroms
850 >   */
851 >  void SimInfo::setupSkinThickness() {    
852 >    if (simParams_->haveSkinThickness()) {
853 >      skinThickness_ = simParams_->getSkinThickness();
854 >    } else {      
855 >      skinThickness_ = 1.0;
856 >      sprintf(painCave.errMsg,
857 >              "SimInfo Warning: No value was set for the skinThickness.\n"
858 >              "\tOpenMD will use a default value of %f Angstroms\n"
859 >              "\tfor this simulation\n", skinThickness_);
860 >      painCave.isFatal = 0;
861 >      simError();
862 >    }            
863 >  }
864  
865 <    temp = useDirectionalAtom;
866 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
865 >  void SimInfo::setupSimType() {
866 >    set<AtomType*>::iterator i;
867 >    set<AtomType*> atomTypes;
868 >    atomTypes = getSimulatedAtomTypes();
869  
870 <    temp = useLennardJones;
587 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
870 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
871  
872 <    temp = useElectrostatics;
873 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
872 >    int usesElectrostatic = 0;
873 >    int usesMetallic = 0;
874 >    int usesDirectional = 0;
875 >    //loop over all of the atom types
876 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
877 >      usesElectrostatic |= (*i)->isElectrostatic();
878 >      usesMetallic |= (*i)->isMetal();
879 >      usesDirectional |= (*i)->isDirectional();
880 >    }
881  
882 <    temp = useCharge;
883 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
882 > #ifdef IS_MPI    
883 >    int temp;
884 >    temp = usesDirectional;
885 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
886  
887 <    temp = useDipole;
888 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
887 >    temp = usesMetallic;
888 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
889  
890 <    temp = useSticky;
891 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
600 <
601 <    temp = useStickyPower;
602 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
603 <    
604 <    temp = useGayBerne;
605 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
606 <
607 <    temp = useEAM;
608 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
609 <
610 <    temp = useShape;
611 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
612 <
613 <    temp = useFLARB;
614 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
615 <
616 <    temp = useRF;
617 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
618 <
619 <    temp = useSF;
620 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
621 <
890 >    temp = usesElectrostatic;
891 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
892   #endif
893 <
894 <    fInfo_.SIM_uses_PBC = usePBC;    
895 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
896 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
897 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
898 <    fInfo_.SIM_uses_Charges = useCharge;
629 <    fInfo_.SIM_uses_Dipoles = useDipole;
630 <    fInfo_.SIM_uses_Sticky = useSticky;
631 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
632 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
633 <    fInfo_.SIM_uses_EAM = useEAM;
634 <    fInfo_.SIM_uses_Shapes = useShape;
635 <    fInfo_.SIM_uses_FLARB = useFLARB;
636 <    fInfo_.SIM_uses_RF = useRF;
637 <    fInfo_.SIM_uses_SF = useSF;
638 <
639 <    if( myMethod == "REACTION_FIELD") {
640 <      
641 <      if (simParams_->haveDielectric()) {
642 <        fInfo_.dielect = simParams_->getDielectric();
643 <      } else {
644 <        sprintf(painCave.errMsg,
645 <                "SimSetup Error: No Dielectric constant was set.\n"
646 <                "\tYou are trying to use Reaction Field without"
647 <                "\tsetting a dielectric constant!\n");
648 <        painCave.isFatal = 1;
649 <        simError();
650 <      }      
651 <    }
652 <
893 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
894 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
895 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
896 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
897 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
898 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
899    }
900  
901    void SimInfo::setupFortranSim() {
902      int isError;
903 <    int nExclude;
904 <    std::vector<int> fortranGlobalGroupMembership;
903 >    int nExclude, nOneTwo, nOneThree, nOneFour;
904 >    vector<int> fortranGlobalGroupMembership;
905      
906 <    nExclude = exclude_.getSize();
906 >    notifyFortranSkinThickness(&skinThickness_);
907 >
908 >    int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0;
909 >    int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0;
910 >    notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf);
911 >
912      isError = 0;
913  
914      //globalGroupMembership_ is filled by SimCreator    
# Line 666 | Line 917 | namespace oopse {
917      }
918  
919      //calculate mass ratio of cutoff group
920 <    std::vector<double> mfact;
920 >    vector<RealType> mfact;
921      SimInfo::MoleculeIterator mi;
922      Molecule* mol;
923      Molecule::CutoffGroupIterator ci;
924      CutoffGroup* cg;
925      Molecule::AtomIterator ai;
926      Atom* atom;
927 <    double totalMass;
927 >    RealType totalMass;
928  
929      //to avoid memory reallocation, reserve enough space for mfact
930      mfact.reserve(getNCutoffGroups());
# Line 689 | Line 940 | namespace oopse {
940            else
941              mfact.push_back( 1.0 );
942          }
692
943        }      
944      }
945  
946      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
947 <    std::vector<int> identArray;
947 >    vector<int> identArray;
948  
949      //to avoid memory reallocation, reserve enough space identArray
950      identArray.reserve(getNAtoms());
# Line 707 | Line 957 | namespace oopse {
957  
958      //fill molMembershipArray
959      //molMembershipArray is filled by SimCreator    
960 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
960 >    vector<int> molMembershipArray(nGlobalAtoms_);
961      for (int i = 0; i < nGlobalAtoms_; i++) {
962        molMembershipArray[i] = globalMolMembership_[i] + 1;
963      }
964      
965      //setup fortran simulation
716    int nGlobalExcludes = 0;
717    int* globalExcludes = NULL;
718    int* excludeList = exclude_.getExcludeList();
719    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
720                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
721                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
966  
967 <    if( isError ){
967 >    nExclude = excludedInteractions_.getSize();
968 >    nOneTwo = oneTwoInteractions_.getSize();
969 >    nOneThree = oneThreeInteractions_.getSize();
970 >    nOneFour = oneFourInteractions_.getSize();
971  
972 +    int* excludeList = excludedInteractions_.getPairList();
973 +    int* oneTwoList = oneTwoInteractions_.getPairList();
974 +    int* oneThreeList = oneThreeInteractions_.getPairList();
975 +    int* oneFourList = oneFourInteractions_.getPairList();
976 +
977 +    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
978 +                   &nExclude, excludeList,
979 +                   &nOneTwo, oneTwoList,
980 +                   &nOneThree, oneThreeList,
981 +                   &nOneFour, oneFourList,
982 +                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
983 +                   &fortranGlobalGroupMembership[0], &isError);
984 +    
985 +    if( isError ){
986 +      
987        sprintf( painCave.errMsg,
988                 "There was an error setting the simulation information in fortran.\n" );
989        painCave.isFatal = 1;
990 <      painCave.severity = OOPSE_ERROR;
990 >      painCave.severity = OPENMD_ERROR;
991        simError();
992      }
993 <
994 < #ifdef IS_MPI
993 >    
994 >    
995      sprintf( checkPointMsg,
996               "succesfully sent the simulation information to fortran.\n");
997 <    MPIcheckPoint();
998 < #endif // is_mpi
997 >    
998 >    errorCheckPoint();
999 >    
1000 >    // Setup number of neighbors in neighbor list if present
1001 >    if (simParams_->haveNeighborListNeighbors()) {
1002 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
1003 >      setNeighbors(&nlistNeighbors);
1004 >    }
1005 >  
1006 >
1007    }
1008  
1009  
740 #ifdef IS_MPI
1010    void SimInfo::setupFortranParallel() {
1011 <    
1011 > #ifdef IS_MPI    
1012      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
1013 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
1014 <    std::vector<int> localToGlobalCutoffGroupIndex;
1013 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
1014 >    vector<int> localToGlobalCutoffGroupIndex;
1015      SimInfo::MoleculeIterator mi;
1016      Molecule::AtomIterator ai;
1017      Molecule::CutoffGroupIterator ci;
# Line 789 | Line 1058 | namespace oopse {
1058      }
1059  
1060      sprintf(checkPointMsg, " mpiRefresh successful.\n");
1061 <    MPIcheckPoint();
1061 >    errorCheckPoint();
1062  
794
795  }
796
1063   #endif
798
799  double SimInfo::calcMaxCutoffRadius() {
800
801
802    std::set<AtomType*> atomTypes;
803    std::set<AtomType*>::iterator i;
804    std::vector<double> cutoffRadius;
805
806    //get the unique atom types
807    atomTypes = getUniqueAtomTypes();
808
809    //query the max cutoff radius among these atom types
810    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
811      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
812    }
813
814    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
815 #ifdef IS_MPI
816    //pick the max cutoff radius among the processors
817 #endif
818
819    return maxCutoffRadius;
1064    }
1065  
822  void SimInfo::getCutoff(double& rcut, double& rsw) {
823    
824    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
825        
826      if (!simParams_->haveCutoffRadius()){
827        sprintf(painCave.errMsg,
828                "SimCreator Warning: No value was set for the cutoffRadius.\n"
829                "\tOOPSE will use a default value of 15.0 angstroms"
830                "\tfor the cutoffRadius.\n");
831        painCave.isFatal = 0;
832        simError();
833        rcut = 15.0;
834      } else{
835        rcut = simParams_->getCutoffRadius();
836      }
1066  
1067 <      if (!simParams_->haveSwitchingRadius()){
839 <        sprintf(painCave.errMsg,
840 <                "SimCreator Warning: No value was set for switchingRadius.\n"
841 <                "\tOOPSE will use a default value of\n"
842 <                "\t0.85 * cutoffRadius for the switchingRadius\n");
843 <        painCave.isFatal = 0;
844 <        simError();
845 <        rsw = 0.85 * rcut;
846 <      } else{
847 <        rsw = simParams_->getSwitchingRadius();
848 <      }
1067 >  void SimInfo::setupSwitchingFunction() {    
1068  
850    } else {
851      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
852      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
853        
854      if (simParams_->haveCutoffRadius()) {
855        rcut = simParams_->getCutoffRadius();
856      } else {
857        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
858        rcut = calcMaxCutoffRadius();
859      }
860
861      if (simParams_->haveSwitchingRadius()) {
862        rsw  = simParams_->getSwitchingRadius();
863      } else {
864        rsw = rcut;
865      }
866    
867    }
1069    }
1070  
1071 <  void SimInfo::setupCutoff() {    
871 <    getCutoff(rcut_, rsw_);    
872 <    double rnblist = rcut_ + 1; // skin of neighbor list
873 <
874 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
875 <    
876 <    int cp =  TRADITIONAL_CUTOFF_POLICY;
877 <    if (simParams_->haveCutoffPolicy()) {
878 <      std::string myPolicy = simParams_->getCutoffPolicy();
879 <      toUpper(myPolicy);
880 <      if (myPolicy == "MIX") {
881 <        cp = MIX_CUTOFF_POLICY;
882 <      } else {
883 <        if (myPolicy == "MAX") {
884 <          cp = MAX_CUTOFF_POLICY;
885 <        } else {
886 <          if (myPolicy == "TRADITIONAL") {            
887 <            cp = TRADITIONAL_CUTOFF_POLICY;
888 <          } else {
889 <            // throw error        
890 <            sprintf( painCave.errMsg,
891 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
892 <            painCave.isFatal = 1;
893 <            simError();
894 <          }    
895 <        }          
896 <      }
897 <    }
898 <
899 <
900 <    if (simParams_->haveSkinThickness()) {
901 <      double skinThickness = simParams_->getSkinThickness();
902 <    }
903 <
904 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
905 <    // also send cutoff notification to electrostatics
906 <    setElectrostaticCutoffRadius(&rcut_, &rsw_);
907 <  }
908 <
909 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
910 <    
911 <    int errorOut;
912 <    int esm =  NONE;
913 <    int sm = UNDAMPED;
914 <    double alphaVal;
915 <    double dielectric;
916 <
917 <    errorOut = isError;
918 <    alphaVal = simParams_->getDampingAlpha();
919 <    dielectric = simParams_->getDielectric();
920 <
921 <    if (simParams_->haveElectrostaticSummationMethod()) {
922 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
923 <      toUpper(myMethod);
924 <      if (myMethod == "NONE") {
925 <        esm = NONE;
926 <      } else {
927 <        if (myMethod == "SWITCHING_FUNCTION") {
928 <          esm = SWITCHING_FUNCTION;
929 <        } else {
930 <          if (myMethod == "SHIFTED_POTENTIAL") {
931 <            esm = SHIFTED_POTENTIAL;
932 <          } else {
933 <            if (myMethod == "SHIFTED_FORCE") {            
934 <              esm = SHIFTED_FORCE;
935 <            } else {
936 <              if (myMethod == "REACTION_FIELD") {            
937 <                esm = REACTION_FIELD;
938 <              } else {
939 <                // throw error        
940 <                sprintf( painCave.errMsg,
941 <                         "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"shifted_potential\", \"shifted_force\", or \"reaction_field\".", myMethod.c_str() );
942 <                painCave.isFatal = 1;
943 <                simError();
944 <              }    
945 <            }          
946 <          }
947 <        }
948 <      }
949 <    }
950 <    
951 <    if (simParams_->haveElectrostaticScreeningMethod()) {
952 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
953 <      toUpper(myScreen);
954 <      if (myScreen == "UNDAMPED") {
955 <        sm = UNDAMPED;
956 <      } else {
957 <        if (myScreen == "DAMPED") {
958 <          sm = DAMPED;
959 <          if (!simParams_->haveDampingAlpha()) {
960 <            //throw error
961 <            sprintf( painCave.errMsg,
962 <                     "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used.", alphaVal);
963 <            painCave.isFatal = 0;
964 <            simError();
965 <          }
966 <        } else {
967 <          // throw error        
968 <          sprintf( painCave.errMsg,
969 <                   "SimInfo error: Unknown electrostaticScreeningMethod. (Input file specified %s .)\n\telectrostaticScreeningMethod must be one of: \"undamped\" or \"damped\".", myScreen.c_str() );
970 <          painCave.isFatal = 1;
971 <          simError();
972 <        }
973 <      }
974 <    }
975 <    
976 <    // let's pass some summation method variables to fortran
977 <    setElectrostaticSummationMethod( &esm );
978 <    setScreeningMethod( &sm );
979 <    setDampingAlpha( &alphaVal );
980 <    setReactionFieldDielectric( &dielectric );
981 <    initFortranFF( &esm, &errorOut );
982 <  }
983 <
984 <  void SimInfo::setupSwitchingFunction() {    
985 <    int ft = CUBIC;
1071 >  void SimInfo::setupAccumulateBoxDipole() {    
1072  
1073 <    if (simParams_->haveSwitchingFunctionType()) {
1074 <      std::string funcType = simParams_->getSwitchingFunctionType();
1075 <      toUpper(funcType);
1076 <      if (funcType == "CUBIC") {
991 <        ft = CUBIC;
992 <      } else {
993 <        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
994 <          ft = FIFTH_ORDER_POLY;
995 <        } else {
996 <          // throw error        
997 <          sprintf( painCave.errMsg,
998 <                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
999 <          painCave.isFatal = 1;
1000 <          simError();
1001 <        }          
1073 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1074 >    if ( simParams_->haveAccumulateBoxDipole() )
1075 >      if ( simParams_->getAccumulateBoxDipole() ) {
1076 >        calcBoxDipole_ = true;
1077        }
1003    }
1078  
1005    // send switching function notification to switcheroo
1006    setFunctionType(&ft);
1007
1079    }
1080  
1081    void SimInfo::addProperty(GenericData* genData) {
1082      properties_.addProperty(genData);  
1083    }
1084  
1085 <  void SimInfo::removeProperty(const std::string& propName) {
1085 >  void SimInfo::removeProperty(const string& propName) {
1086      properties_.removeProperty(propName);  
1087    }
1088  
# Line 1019 | Line 1090 | namespace oopse {
1090      properties_.clearProperties();
1091    }
1092  
1093 <  std::vector<std::string> SimInfo::getPropertyNames() {
1093 >  vector<string> SimInfo::getPropertyNames() {
1094      return properties_.getPropertyNames();  
1095    }
1096        
1097 <  std::vector<GenericData*> SimInfo::getProperties() {
1097 >  vector<GenericData*> SimInfo::getProperties() {
1098      return properties_.getProperties();
1099    }
1100  
1101 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1101 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
1102      return properties_.getPropertyByName(propName);
1103    }
1104  
# Line 1063 | Line 1134 | namespace oopse {
1134      Molecule* mol;
1135  
1136      Vector3d comVel(0.0);
1137 <    double totalMass = 0.0;
1137 >    RealType totalMass = 0.0;
1138      
1139  
1140      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1141 <      double mass = mol->getMass();
1141 >      RealType mass = mol->getMass();
1142        totalMass += mass;
1143        comVel += mass * mol->getComVel();
1144      }  
1145  
1146   #ifdef IS_MPI
1147 <    double tmpMass = totalMass;
1147 >    RealType tmpMass = totalMass;
1148      Vector3d tmpComVel(comVel);    
1149 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1150 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1149 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1150 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1151   #endif
1152  
1153      comVel /= totalMass;
# Line 1089 | Line 1160 | namespace oopse {
1160      Molecule* mol;
1161  
1162      Vector3d com(0.0);
1163 <    double totalMass = 0.0;
1163 >    RealType totalMass = 0.0;
1164      
1165      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1166 <      double mass = mol->getMass();
1166 >      RealType mass = mol->getMass();
1167        totalMass += mass;
1168        com += mass * mol->getCom();
1169      }  
1170  
1171   #ifdef IS_MPI
1172 <    double tmpMass = totalMass;
1172 >    RealType tmpMass = totalMass;
1173      Vector3d tmpCom(com);    
1174 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1175 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1174 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1175 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1176   #endif
1177  
1178      com /= totalMass;
# Line 1110 | Line 1181 | namespace oopse {
1181  
1182    }        
1183  
1184 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1184 >  ostream& operator <<(ostream& o, SimInfo& info) {
1185  
1186      return o;
1187    }
# Line 1125 | Line 1196 | namespace oopse {
1196        Molecule* mol;
1197        
1198      
1199 <      double totalMass = 0.0;
1199 >      RealType totalMass = 0.0;
1200      
1201  
1202        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1203 <         double mass = mol->getMass();
1203 >         RealType mass = mol->getMass();
1204           totalMass += mass;
1205           com += mass * mol->getCom();
1206           comVel += mass * mol->getComVel();          
1207        }  
1208        
1209   #ifdef IS_MPI
1210 <      double tmpMass = totalMass;
1210 >      RealType tmpMass = totalMass;
1211        Vector3d tmpCom(com);  
1212        Vector3d tmpComVel(comVel);
1213 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1214 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1215 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1213 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1214 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1215 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1216   #endif
1217        
1218        com /= totalMass;
# Line 1153 | Line 1224 | namespace oopse {
1224  
1225  
1226         [  Ixx -Ixy  -Ixz ]
1227 <  J =| -Iyx  Iyy  -Iyz |
1227 >    J =| -Iyx  Iyy  -Iyz |
1228         [ -Izx -Iyz   Izz ]
1229      */
1230  
1231     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1232        
1233  
1234 <      double xx = 0.0;
1235 <      double yy = 0.0;
1236 <      double zz = 0.0;
1237 <      double xy = 0.0;
1238 <      double xz = 0.0;
1239 <      double yz = 0.0;
1234 >      RealType xx = 0.0;
1235 >      RealType yy = 0.0;
1236 >      RealType zz = 0.0;
1237 >      RealType xy = 0.0;
1238 >      RealType xz = 0.0;
1239 >      RealType yz = 0.0;
1240        Vector3d com(0.0);
1241        Vector3d comVel(0.0);
1242        
# Line 1177 | Line 1248 | namespace oopse {
1248        Vector3d thisq(0.0);
1249        Vector3d thisv(0.0);
1250  
1251 <      double thisMass = 0.0;
1251 >      RealType thisMass = 0.0;
1252      
1253        
1254        
# Line 1215 | Line 1286 | namespace oopse {
1286   #ifdef IS_MPI
1287        Mat3x3d tmpI(inertiaTensor);
1288        Vector3d tmpAngMom;
1289 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1290 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1289 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1290 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1291   #endif
1292                
1293        return;
# Line 1237 | Line 1308 | namespace oopse {
1308        Vector3d thisr(0.0);
1309        Vector3d thisp(0.0);
1310        
1311 <      double thisMass;
1311 >      RealType thisMass;
1312        
1313        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1314          thisMass = mol->getMass();
# Line 1250 | Line 1321 | namespace oopse {
1321        
1322   #ifdef IS_MPI
1323        Vector3d tmpAngMom;
1324 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1324 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1325   #endif
1326        
1327        return angularMomentum;
1328     }
1329    
1330 <  
1331 < }//end namespace oopse
1330 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1331 >    return IOIndexToIntegrableObject.at(index);
1332 >  }
1333 >  
1334 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1335 >    IOIndexToIntegrableObject= v;
1336 >  }
1337  
1338 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1339 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1340 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1341 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1342 +  */
1343 +  void SimInfo::getGyrationalVolume(RealType &volume){
1344 +    Mat3x3d intTensor;
1345 +    RealType det;
1346 +    Vector3d dummyAngMom;
1347 +    RealType sysconstants;
1348 +    RealType geomCnst;
1349 +
1350 +    geomCnst = 3.0/2.0;
1351 +    /* Get the inertial tensor and angular momentum for free*/
1352 +    getInertiaTensor(intTensor,dummyAngMom);
1353 +    
1354 +    det = intTensor.determinant();
1355 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1356 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1357 +    return;
1358 +  }
1359 +
1360 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1361 +    Mat3x3d intTensor;
1362 +    Vector3d dummyAngMom;
1363 +    RealType sysconstants;
1364 +    RealType geomCnst;
1365 +
1366 +    geomCnst = 3.0/2.0;
1367 +    /* Get the inertial tensor and angular momentum for free*/
1368 +    getInertiaTensor(intTensor,dummyAngMom);
1369 +    
1370 +    detI = intTensor.determinant();
1371 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1372 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1373 +    return;
1374 +  }
1375 + /*
1376 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1377 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1378 +      sdByGlobalIndex_ = v;
1379 +    }
1380 +
1381 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1382 +      //assert(index < nAtoms_ + nRigidBodies_);
1383 +      return sdByGlobalIndex_.at(index);
1384 +    }  
1385 + */  
1386 +  int SimInfo::getNGlobalConstraints() {
1387 +    int nGlobalConstraints;
1388 + #ifdef IS_MPI
1389 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1390 +                  MPI_COMM_WORLD);    
1391 + #else
1392 +    nGlobalConstraints =  nConstraints_;
1393 + #endif
1394 +    return nGlobalConstraints;
1395 +  }
1396 +
1397 + }//end namespace OpenMD
1398 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 726 by chrisfen, Fri Nov 11 15:22:11 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1530 by gezelter, Tue Dec 28 21:47:55 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines