ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 720 by chrisfen, Tue Nov 8 13:32:06 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1536 by gezelter, Wed Jan 5 14:49:05 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 < #include "UseTheForce/fCutoffPolicy.h"
57 < #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 < #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
56 > #include "primitives/StuntDouble.hpp"
57 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
58   #include "UseTheForce/doForces_interface.h"
59 #include "UseTheForce/DarkSide/electrostatic_interface.h"
60 #include "UseTheForce/notifyCutoffs_interface.h"
59   #include "utils/MemoryUtils.hpp"
60   #include "utils/simError.h"
61   #include "selection/SelectionManager.hpp"
62 + #include "io/ForceFieldOptions.hpp"
63 + #include "UseTheForce/ForceField.hpp"
64 + #include "nonbonded/SwitchingFunction.hpp"
65  
66   #ifdef IS_MPI
67   #include "UseTheForce/mpiComponentPlan.h"
68   #include "UseTheForce/DarkSide/simParallel_interface.h"
69   #endif
70  
71 < namespace oopse {
72 <
73 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
74 <                   ForceField* ff, Globals* simParams) :
75 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
76 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
71 > using namespace std;
72 > namespace OpenMD {
73 >  
74 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
75 >    forceField_(ff), simParams_(simParams),
76 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
77      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
78      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
79 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
80 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
81 <    sman_(NULL), fortranInitialized_(false) {
82 <
82 <            
83 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
84 <      MoleculeStamp* molStamp;
85 <      int nMolWithSameStamp;
86 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
88 <      CutoffGroupStamp* cgStamp;    
89 <      RigidBodyStamp* rbStamp;
90 <      int nRigidAtoms = 0;
79 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
80 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
81 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
82 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
83      
84 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
85 <        molStamp = i->first;
86 <        nMolWithSameStamp = i->second;
87 <        
88 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
89 <
90 <        //calculate atoms in molecules
91 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
92 <
93 <
94 <        //calculate atoms in cutoff groups
95 <        int nAtomsInGroups = 0;
96 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
97 <        
98 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
99 <          cgStamp = molStamp->getCutoffGroup(j);
100 <          nAtomsInGroups += cgStamp->getNMembers();
101 <        }
102 <
103 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
104 <
105 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
106 <
107 <        //calculate atoms in rigid bodies
108 <        int nAtomsInRigidBodies = 0;
109 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
118 <        
119 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
120 <          rbStamp = molStamp->getRigidBody(j);
121 <          nAtomsInRigidBodies += rbStamp->getNMembers();
122 <        }
123 <
124 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
125 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
126 <        
84 >    MoleculeStamp* molStamp;
85 >    int nMolWithSameStamp;
86 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
88 >    CutoffGroupStamp* cgStamp;    
89 >    RigidBodyStamp* rbStamp;
90 >    int nRigidAtoms = 0;
91 >    
92 >    vector<Component*> components = simParams->getComponents();
93 >    
94 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
95 >      molStamp = (*i)->getMoleculeStamp();
96 >      nMolWithSameStamp = (*i)->getNMol();
97 >      
98 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
99 >      
100 >      //calculate atoms in molecules
101 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
102 >      
103 >      //calculate atoms in cutoff groups
104 >      int nAtomsInGroups = 0;
105 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
106 >      
107 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
108 >        cgStamp = molStamp->getCutoffGroupStamp(j);
109 >        nAtomsInGroups += cgStamp->getNMembers();
110        }
111 <
112 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
113 <      //group therefore the total number of cutoff groups in the system is
114 <      //equal to the total number of atoms minus number of atoms belong to
115 <      //cutoff group defined in meta-data file plus the number of cutoff
116 <      //groups defined in meta-data file
117 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
118 <
119 <      //every free atom (atom does not belong to rigid bodies) is an
120 <      //integrable object therefore the total number of integrable objects
121 <      //in the system is equal to the total number of atoms minus number of
122 <      //atoms belong to rigid body defined in meta-data file plus the number
123 <      //of rigid bodies defined in meta-data file
124 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
125 <                                                + nGlobalRigidBodies_;
126 <  
127 <      nGlobalMols_ = molStampIds_.size();
145 <
146 < #ifdef IS_MPI    
147 <      molToProcMap_.resize(nGlobalMols_);
148 < #endif
149 <
111 >      
112 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
113 >      
114 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
115 >      
116 >      //calculate atoms in rigid bodies
117 >      int nAtomsInRigidBodies = 0;
118 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
119 >      
120 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
121 >        rbStamp = molStamp->getRigidBodyStamp(j);
122 >        nAtomsInRigidBodies += rbStamp->getNMembers();
123 >      }
124 >      
125 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
126 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
127 >      
128      }
129 <
129 >    
130 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
131 >    //group therefore the total number of cutoff groups in the system is
132 >    //equal to the total number of atoms minus number of atoms belong to
133 >    //cutoff group defined in meta-data file plus the number of cutoff
134 >    //groups defined in meta-data file
135 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
136 >    
137 >    //every free atom (atom does not belong to rigid bodies) is an
138 >    //integrable object therefore the total number of integrable objects
139 >    //in the system is equal to the total number of atoms minus number of
140 >    //atoms belong to rigid body defined in meta-data file plus the number
141 >    //of rigid bodies defined in meta-data file
142 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
143 >      + nGlobalRigidBodies_;
144 >    
145 >    nGlobalMols_ = molStampIds_.size();
146 >    molToProcMap_.resize(nGlobalMols_);
147 >  }
148 >  
149    SimInfo::~SimInfo() {
150 <    std::map<int, Molecule*>::iterator i;
150 >    map<int, Molecule*>::iterator i;
151      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
152        delete i->second;
153      }
154      molecules_.clear();
155        
159    delete stamps_;
156      delete sman_;
157      delete simParams_;
158      delete forceField_;
159    }
160  
165  int SimInfo::getNGlobalConstraints() {
166    int nGlobalConstraints;
167 #ifdef IS_MPI
168    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
169                  MPI_COMM_WORLD);    
170 #else
171    nGlobalConstraints =  nConstraints_;
172 #endif
173    return nGlobalConstraints;
174  }
161  
162    bool SimInfo::addMolecule(Molecule* mol) {
163      MoleculeIterator i;
164 <
164 >    
165      i = molecules_.find(mol->getGlobalIndex());
166      if (i == molecules_.end() ) {
167 <
168 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
169 <        
167 >      
168 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
169 >      
170        nAtoms_ += mol->getNAtoms();
171        nBonds_ += mol->getNBonds();
172        nBends_ += mol->getNBends();
173        nTorsions_ += mol->getNTorsions();
174 +      nInversions_ += mol->getNInversions();
175        nRigidBodies_ += mol->getNRigidBodies();
176        nIntegrableObjects_ += mol->getNIntegrableObjects();
177        nCutoffGroups_ += mol->getNCutoffGroups();
178        nConstraints_ += mol->getNConstraintPairs();
179 <
180 <      addExcludePairs(mol);
181 <        
179 >      
180 >      addInteractionPairs(mol);
181 >      
182        return true;
183      } else {
184        return false;
185      }
186    }
187 <
187 >  
188    bool SimInfo::removeMolecule(Molecule* mol) {
189      MoleculeIterator i;
190      i = molecules_.find(mol->getGlobalIndex());
# Line 210 | Line 197 | namespace oopse {
197        nBonds_ -= mol->getNBonds();
198        nBends_ -= mol->getNBends();
199        nTorsions_ -= mol->getNTorsions();
200 +      nInversions_ -= mol->getNInversions();
201        nRigidBodies_ -= mol->getNRigidBodies();
202        nIntegrableObjects_ -= mol->getNIntegrableObjects();
203        nCutoffGroups_ -= mol->getNCutoffGroups();
204        nConstraints_ -= mol->getNConstraintPairs();
205  
206 <      removeExcludePairs(mol);
206 >      removeInteractionPairs(mol);
207        molecules_.erase(mol->getGlobalIndex());
208  
209        delete mol;
# Line 224 | Line 212 | namespace oopse {
212      } else {
213        return false;
214      }
227
228
215    }    
216  
217          
# Line 243 | Line 229 | namespace oopse {
229    void SimInfo::calcNdf() {
230      int ndf_local;
231      MoleculeIterator i;
232 <    std::vector<StuntDouble*>::iterator j;
232 >    vector<StuntDouble*>::iterator j;
233      Molecule* mol;
234      StuntDouble* integrableObject;
235  
# Line 263 | Line 249 | namespace oopse {
249            }
250          }
251              
252 <      }//end for (integrableObject)
253 <    }// end for (mol)
252 >      }
253 >    }
254      
255      // n_constraints is local, so subtract them on each processor
256      ndf_local -= nConstraints_;
# Line 281 | Line 267 | namespace oopse {
267  
268    }
269  
270 +  int SimInfo::getFdf() {
271 + #ifdef IS_MPI
272 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
273 + #else
274 +    fdf_ = fdf_local;
275 + #endif
276 +    return fdf_;
277 +  }
278 +    
279    void SimInfo::calcNdfRaw() {
280      int ndfRaw_local;
281  
282      MoleculeIterator i;
283 <    std::vector<StuntDouble*>::iterator j;
283 >    vector<StuntDouble*>::iterator j;
284      Molecule* mol;
285      StuntDouble* integrableObject;
286  
# Line 332 | Line 327 | namespace oopse {
327  
328    }
329  
330 <  void SimInfo::addExcludePairs(Molecule* mol) {
331 <    std::vector<Bond*>::iterator bondIter;
332 <    std::vector<Bend*>::iterator bendIter;
333 <    std::vector<Torsion*>::iterator torsionIter;
330 >  void SimInfo::addInteractionPairs(Molecule* mol) {
331 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
332 >    vector<Bond*>::iterator bondIter;
333 >    vector<Bend*>::iterator bendIter;
334 >    vector<Torsion*>::iterator torsionIter;
335 >    vector<Inversion*>::iterator inversionIter;
336      Bond* bond;
337      Bend* bend;
338      Torsion* torsion;
339 +    Inversion* inversion;
340      int a;
341      int b;
342      int c;
343      int d;
344 +
345 +    // atomGroups can be used to add special interaction maps between
346 +    // groups of atoms that are in two separate rigid bodies.
347 +    // However, most site-site interactions between two rigid bodies
348 +    // are probably not special, just the ones between the physically
349 +    // bonded atoms.  Interactions *within* a single rigid body should
350 +    // always be excluded.  These are done at the bottom of this
351 +    // function.
352 +
353 +    map<int, set<int> > atomGroups;
354 +    Molecule::RigidBodyIterator rbIter;
355 +    RigidBody* rb;
356 +    Molecule::IntegrableObjectIterator ii;
357 +    StuntDouble* integrableObject;
358      
359 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
359 >    for (integrableObject = mol->beginIntegrableObject(ii);
360 >         integrableObject != NULL;
361 >         integrableObject = mol->nextIntegrableObject(ii)) {
362 >      
363 >      if (integrableObject->isRigidBody()) {
364 >        rb = static_cast<RigidBody*>(integrableObject);
365 >        vector<Atom*> atoms = rb->getAtoms();
366 >        set<int> rigidAtoms;
367 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
368 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
369 >        }
370 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
371 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
372 >        }      
373 >      } else {
374 >        set<int> oneAtomSet;
375 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
376 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
377 >      }
378 >    }  
379 >          
380 >    for (bond= mol->beginBond(bondIter); bond != NULL;
381 >         bond = mol->nextBond(bondIter)) {
382 >
383        a = bond->getAtomA()->getGlobalIndex();
384 <      b = bond->getAtomB()->getGlobalIndex();        
385 <      exclude_.addPair(a, b);
384 >      b = bond->getAtomB()->getGlobalIndex();  
385 >    
386 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
387 >        oneTwoInteractions_.addPair(a, b);
388 >      } else {
389 >        excludedInteractions_.addPair(a, b);
390 >      }
391      }
392  
393 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
393 >    for (bend= mol->beginBend(bendIter); bend != NULL;
394 >         bend = mol->nextBend(bendIter)) {
395 >
396        a = bend->getAtomA()->getGlobalIndex();
397        b = bend->getAtomB()->getGlobalIndex();        
398        c = bend->getAtomC()->getGlobalIndex();
399 +      
400 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
401 +        oneTwoInteractions_.addPair(a, b);      
402 +        oneTwoInteractions_.addPair(b, c);
403 +      } else {
404 +        excludedInteractions_.addPair(a, b);
405 +        excludedInteractions_.addPair(b, c);
406 +      }
407  
408 <      exclude_.addPair(a, b);
409 <      exclude_.addPair(a, c);
410 <      exclude_.addPair(b, c);        
408 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
409 >        oneThreeInteractions_.addPair(a, c);      
410 >      } else {
411 >        excludedInteractions_.addPair(a, c);
412 >      }
413      }
414  
415 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
415 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
416 >         torsion = mol->nextTorsion(torsionIter)) {
417 >
418        a = torsion->getAtomA()->getGlobalIndex();
419        b = torsion->getAtomB()->getGlobalIndex();        
420        c = torsion->getAtomC()->getGlobalIndex();        
421 <      d = torsion->getAtomD()->getGlobalIndex();        
421 >      d = torsion->getAtomD()->getGlobalIndex();      
422  
423 <      exclude_.addPair(a, b);
424 <      exclude_.addPair(a, c);
425 <      exclude_.addPair(a, d);
426 <      exclude_.addPair(b, c);
427 <      exclude_.addPair(b, d);
428 <      exclude_.addPair(c, d);        
423 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
424 >        oneTwoInteractions_.addPair(a, b);      
425 >        oneTwoInteractions_.addPair(b, c);
426 >        oneTwoInteractions_.addPair(c, d);
427 >      } else {
428 >        excludedInteractions_.addPair(a, b);
429 >        excludedInteractions_.addPair(b, c);
430 >        excludedInteractions_.addPair(c, d);
431 >      }
432 >
433 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
434 >        oneThreeInteractions_.addPair(a, c);      
435 >        oneThreeInteractions_.addPair(b, d);      
436 >      } else {
437 >        excludedInteractions_.addPair(a, c);
438 >        excludedInteractions_.addPair(b, d);
439 >      }
440 >
441 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
442 >        oneFourInteractions_.addPair(a, d);      
443 >      } else {
444 >        excludedInteractions_.addPair(a, d);
445 >      }
446      }
447  
448 <    Molecule::RigidBodyIterator rbIter;
449 <    RigidBody* rb;
450 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
451 <      std::vector<Atom*> atoms = rb->getAtoms();
452 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
453 <        for (int j = i + 1; j < atoms.size(); ++j) {
448 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
449 >         inversion = mol->nextInversion(inversionIter)) {
450 >
451 >      a = inversion->getAtomA()->getGlobalIndex();
452 >      b = inversion->getAtomB()->getGlobalIndex();        
453 >      c = inversion->getAtomC()->getGlobalIndex();        
454 >      d = inversion->getAtomD()->getGlobalIndex();        
455 >
456 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
457 >        oneTwoInteractions_.addPair(a, b);      
458 >        oneTwoInteractions_.addPair(a, c);
459 >        oneTwoInteractions_.addPair(a, d);
460 >      } else {
461 >        excludedInteractions_.addPair(a, b);
462 >        excludedInteractions_.addPair(a, c);
463 >        excludedInteractions_.addPair(a, d);
464 >      }
465 >
466 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
467 >        oneThreeInteractions_.addPair(b, c);    
468 >        oneThreeInteractions_.addPair(b, d);    
469 >        oneThreeInteractions_.addPair(c, d);      
470 >      } else {
471 >        excludedInteractions_.addPair(b, c);
472 >        excludedInteractions_.addPair(b, d);
473 >        excludedInteractions_.addPair(c, d);
474 >      }
475 >    }
476 >
477 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
478 >         rb = mol->nextRigidBody(rbIter)) {
479 >      vector<Atom*> atoms = rb->getAtoms();
480 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
481 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
482            a = atoms[i]->getGlobalIndex();
483            b = atoms[j]->getGlobalIndex();
484 <          exclude_.addPair(a, b);
484 >          excludedInteractions_.addPair(a, b);
485          }
486        }
487      }        
488  
489    }
490  
491 <  void SimInfo::removeExcludePairs(Molecule* mol) {
492 <    std::vector<Bond*>::iterator bondIter;
493 <    std::vector<Bend*>::iterator bendIter;
494 <    std::vector<Torsion*>::iterator torsionIter;
491 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
492 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
493 >    vector<Bond*>::iterator bondIter;
494 >    vector<Bend*>::iterator bendIter;
495 >    vector<Torsion*>::iterator torsionIter;
496 >    vector<Inversion*>::iterator inversionIter;
497      Bond* bond;
498      Bend* bend;
499      Torsion* torsion;
500 +    Inversion* inversion;
501      int a;
502      int b;
503      int c;
504      int d;
505 +
506 +    map<int, set<int> > atomGroups;
507 +    Molecule::RigidBodyIterator rbIter;
508 +    RigidBody* rb;
509 +    Molecule::IntegrableObjectIterator ii;
510 +    StuntDouble* integrableObject;
511      
512 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
512 >    for (integrableObject = mol->beginIntegrableObject(ii);
513 >         integrableObject != NULL;
514 >         integrableObject = mol->nextIntegrableObject(ii)) {
515 >      
516 >      if (integrableObject->isRigidBody()) {
517 >        rb = static_cast<RigidBody*>(integrableObject);
518 >        vector<Atom*> atoms = rb->getAtoms();
519 >        set<int> rigidAtoms;
520 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
521 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
522 >        }
523 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
524 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
525 >        }      
526 >      } else {
527 >        set<int> oneAtomSet;
528 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
529 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
530 >      }
531 >    }  
532 >
533 >    for (bond= mol->beginBond(bondIter); bond != NULL;
534 >         bond = mol->nextBond(bondIter)) {
535 >      
536        a = bond->getAtomA()->getGlobalIndex();
537 <      b = bond->getAtomB()->getGlobalIndex();        
538 <      exclude_.removePair(a, b);
537 >      b = bond->getAtomB()->getGlobalIndex();  
538 >    
539 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
540 >        oneTwoInteractions_.removePair(a, b);
541 >      } else {
542 >        excludedInteractions_.removePair(a, b);
543 >      }
544      }
545  
546 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
546 >    for (bend= mol->beginBend(bendIter); bend != NULL;
547 >         bend = mol->nextBend(bendIter)) {
548 >
549        a = bend->getAtomA()->getGlobalIndex();
550        b = bend->getAtomB()->getGlobalIndex();        
551        c = bend->getAtomC()->getGlobalIndex();
552 +      
553 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
554 +        oneTwoInteractions_.removePair(a, b);      
555 +        oneTwoInteractions_.removePair(b, c);
556 +      } else {
557 +        excludedInteractions_.removePair(a, b);
558 +        excludedInteractions_.removePair(b, c);
559 +      }
560  
561 <      exclude_.removePair(a, b);
562 <      exclude_.removePair(a, c);
563 <      exclude_.removePair(b, c);        
561 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
562 >        oneThreeInteractions_.removePair(a, c);      
563 >      } else {
564 >        excludedInteractions_.removePair(a, c);
565 >      }
566      }
567  
568 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
568 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
569 >         torsion = mol->nextTorsion(torsionIter)) {
570 >
571        a = torsion->getAtomA()->getGlobalIndex();
572        b = torsion->getAtomB()->getGlobalIndex();        
573        c = torsion->getAtomC()->getGlobalIndex();        
574 <      d = torsion->getAtomD()->getGlobalIndex();        
574 >      d = torsion->getAtomD()->getGlobalIndex();      
575 >  
576 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
577 >        oneTwoInteractions_.removePair(a, b);      
578 >        oneTwoInteractions_.removePair(b, c);
579 >        oneTwoInteractions_.removePair(c, d);
580 >      } else {
581 >        excludedInteractions_.removePair(a, b);
582 >        excludedInteractions_.removePair(b, c);
583 >        excludedInteractions_.removePair(c, d);
584 >      }
585  
586 <      exclude_.removePair(a, b);
587 <      exclude_.removePair(a, c);
588 <      exclude_.removePair(a, d);
589 <      exclude_.removePair(b, c);
590 <      exclude_.removePair(b, d);
591 <      exclude_.removePair(c, d);        
586 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
587 >        oneThreeInteractions_.removePair(a, c);      
588 >        oneThreeInteractions_.removePair(b, d);      
589 >      } else {
590 >        excludedInteractions_.removePair(a, c);
591 >        excludedInteractions_.removePair(b, d);
592 >      }
593 >
594 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
595 >        oneFourInteractions_.removePair(a, d);      
596 >      } else {
597 >        excludedInteractions_.removePair(a, d);
598 >      }
599      }
600  
601 <    Molecule::RigidBodyIterator rbIter;
602 <    RigidBody* rb;
603 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
604 <      std::vector<Atom*> atoms = rb->getAtoms();
605 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
606 <        for (int j = i + 1; j < atoms.size(); ++j) {
601 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
602 >         inversion = mol->nextInversion(inversionIter)) {
603 >
604 >      a = inversion->getAtomA()->getGlobalIndex();
605 >      b = inversion->getAtomB()->getGlobalIndex();        
606 >      c = inversion->getAtomC()->getGlobalIndex();        
607 >      d = inversion->getAtomD()->getGlobalIndex();        
608 >
609 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
610 >        oneTwoInteractions_.removePair(a, b);      
611 >        oneTwoInteractions_.removePair(a, c);
612 >        oneTwoInteractions_.removePair(a, d);
613 >      } else {
614 >        excludedInteractions_.removePair(a, b);
615 >        excludedInteractions_.removePair(a, c);
616 >        excludedInteractions_.removePair(a, d);
617 >      }
618 >
619 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
620 >        oneThreeInteractions_.removePair(b, c);    
621 >        oneThreeInteractions_.removePair(b, d);    
622 >        oneThreeInteractions_.removePair(c, d);      
623 >      } else {
624 >        excludedInteractions_.removePair(b, c);
625 >        excludedInteractions_.removePair(b, d);
626 >        excludedInteractions_.removePair(c, d);
627 >      }
628 >    }
629 >
630 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
631 >         rb = mol->nextRigidBody(rbIter)) {
632 >      vector<Atom*> atoms = rb->getAtoms();
633 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
634 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
635            a = atoms[i]->getGlobalIndex();
636            b = atoms[j]->getGlobalIndex();
637 <          exclude_.removePair(a, b);
637 >          excludedInteractions_.removePair(a, b);
638          }
639        }
640      }        
641 <
641 >    
642    }
643 <
644 <
643 >  
644 >  
645    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
646      int curStampId;
647 <
647 >    
648      //index from 0
649      curStampId = moleculeStamps_.size();
650  
# Line 457 | Line 652 | namespace oopse {
652      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
653    }
654  
460  void SimInfo::update() {
655  
656 <    setupSimType();
657 <
658 < #ifdef IS_MPI
659 <    setupFortranParallel();
660 < #endif
661 <
662 <    setupFortranSim();
663 <
664 <    //setup fortran force field
471 <    /** @deprecate */    
472 <    int isError = 0;
473 <    
474 <    setupElectrostaticSummationMethod( isError );
475 <
476 <    if(isError){
477 <      sprintf( painCave.errMsg,
478 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
479 <      painCave.isFatal = 1;
480 <      simError();
481 <    }
482 <  
483 <    
484 <    setupCutoff();
485 <
656 >  /**
657 >   * update
658 >   *
659 >   *  Performs the global checks and variable settings after the
660 >   *  objects have been created.
661 >   *
662 >   */
663 >  void SimInfo::update() {  
664 >    setupSimVariables();
665      calcNdf();
666      calcNdfRaw();
667      calcNdfTrans();
489
490    fortranInitialized_ = true;
668    }
669 <
670 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
669 >  
670 >  /**
671 >   * getSimulatedAtomTypes
672 >   *
673 >   * Returns an STL set of AtomType* that are actually present in this
674 >   * simulation.  Must query all processors to assemble this information.
675 >   *
676 >   */
677 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
678      SimInfo::MoleculeIterator mi;
679      Molecule* mol;
680      Molecule::AtomIterator ai;
681      Atom* atom;
682 <    std::set<AtomType*> atomTypes;
683 <
684 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
501 <
682 >    set<AtomType*> atomTypes;
683 >    
684 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
685        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
686          atomTypes.insert(atom->getAtomType());
687 <      }
688 <        
689 <    }
687 >      }      
688 >    }    
689 >
690 > #ifdef IS_MPI
691 >
692 >    // loop over the found atom types on this processor, and add their
693 >    // numerical idents to a vector:
694 >
695 >    vector<int> foundTypes;
696 >    set<AtomType*>::iterator i;
697 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
698 >      foundTypes.push_back( (*i)->getIdent() );
699 >
700 >    // count_local holds the number of found types on this processor
701 >    int count_local = foundTypes.size();
702  
703 <    return atomTypes;        
704 <  }
703 >    // count holds the total number of found types on all processors
704 >    // (some will be redundant with the ones found locally):
705 >    int count;
706 >    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
707  
708 <  void SimInfo::setupSimType() {
709 <    std::set<AtomType*>::iterator i;
710 <    std::set<AtomType*> atomTypes;
711 <    atomTypes = getUniqueAtomTypes();
515 <    
516 <    int useLennardJones = 0;
517 <    int useElectrostatic = 0;
518 <    int useEAM = 0;
519 <    int useCharge = 0;
520 <    int useDirectional = 0;
521 <    int useDipole = 0;
522 <    int useGayBerne = 0;
523 <    int useSticky = 0;
524 <    int useStickyPower = 0;
525 <    int useShape = 0;
526 <    int useFLARB = 0; //it is not in AtomType yet
527 <    int useDirectionalAtom = 0;    
528 <    int useElectrostatics = 0;
529 <    //usePBC and useRF are from simParams
530 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
531 <    int useRF;
532 <    int useSF;
533 <    std::string myMethod;
708 >    // create a vector to hold the globally found types, and resize it:
709 >    vector<int> ftGlobal;
710 >    ftGlobal.resize(count);
711 >    vector<int> counts;
712  
713 <    // set the useRF logical
714 <    useRF = 0;
715 <    useSF = 0;
713 >    int nproc = MPI::COMM_WORLD.Get_size();
714 >    counts.resize(nproc);
715 >    vector<int> disps;
716 >    disps.resize(nproc);
717  
718 +    // now spray out the foundTypes to all the other processors:
719 +    
720 +    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
721 +                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
722  
723 <    if (simParams_->haveElectrostaticSummationMethod()) {
724 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
725 <      toUpper(myMethod);
726 <      if (myMethod == "REACTION_FIELD") {
727 <        useRF=1;
728 <      } else {
729 <        if (myMethod == "SHIFTED_FORCE") {
730 <          useSF = 1;
731 <        }
723 >    // foundIdents is a stl set, so inserting an already found ident
724 >    // will have no effect.
725 >    set<int> foundIdents;
726 >    vector<int>::iterator j;
727 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
728 >      foundIdents.insert((*j));
729 >    
730 >    // now iterate over the foundIdents and get the actual atom types
731 >    // that correspond to these:
732 >    set<int>::iterator it;
733 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
734 >      atomTypes.insert( forceField_->getAtomType((*it)) );
735 >
736 > #endif
737 >    
738 >    return atomTypes;        
739 >  }
740 >
741 >  void SimInfo::setupSimVariables() {
742 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
743 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
744 >    calcBoxDipole_ = false;
745 >    if ( simParams_->haveAccumulateBoxDipole() )
746 >      if ( simParams_->getAccumulateBoxDipole() ) {
747 >        calcBoxDipole_ = true;      
748        }
550    }
749  
750 +    set<AtomType*>::iterator i;
751 +    set<AtomType*> atomTypes;
752 +    atomTypes = getSimulatedAtomTypes();    
753 +    int usesElectrostatic = 0;
754 +    int usesMetallic = 0;
755 +    int usesDirectional = 0;
756      //loop over all of the atom types
757      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
758 <      useLennardJones |= (*i)->isLennardJones();
759 <      useElectrostatic |= (*i)->isElectrostatic();
760 <      useEAM |= (*i)->isEAM();
557 <      useCharge |= (*i)->isCharge();
558 <      useDirectional |= (*i)->isDirectional();
559 <      useDipole |= (*i)->isDipole();
560 <      useGayBerne |= (*i)->isGayBerne();
561 <      useSticky |= (*i)->isSticky();
562 <      useStickyPower |= (*i)->isStickyPower();
563 <      useShape |= (*i)->isShape();
758 >      usesElectrostatic |= (*i)->isElectrostatic();
759 >      usesMetallic |= (*i)->isMetal();
760 >      usesDirectional |= (*i)->isDirectional();
761      }
762  
566    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
567      useDirectionalAtom = 1;
568    }
569
570    if (useCharge || useDipole) {
571      useElectrostatics = 1;
572    }
573
763   #ifdef IS_MPI    
764      int temp;
765 +    temp = usesDirectional;
766 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
767  
768 <    temp = usePBC;
769 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
768 >    temp = usesMetallic;
769 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
770  
771 <    temp = useDirectionalAtom;
772 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
582 <
583 <    temp = useLennardJones;
584 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
585 <
586 <    temp = useElectrostatics;
587 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
588 <
589 <    temp = useCharge;
590 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
591 <
592 <    temp = useDipole;
593 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
594 <
595 <    temp = useSticky;
596 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
597 <
598 <    temp = useStickyPower;
599 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
600 <    
601 <    temp = useGayBerne;
602 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
603 <
604 <    temp = useEAM;
605 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
606 <
607 <    temp = useShape;
608 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
609 <
610 <    temp = useFLARB;
611 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
612 <
613 <    temp = useRF;
614 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
615 <
616 <    temp = useSF;
617 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
618 <
771 >    temp = usesElectrostatic;
772 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
773   #endif
774 <
775 <    fInfo_.SIM_uses_PBC = usePBC;    
776 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
777 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
778 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
779 <    fInfo_.SIM_uses_Charges = useCharge;
626 <    fInfo_.SIM_uses_Dipoles = useDipole;
627 <    fInfo_.SIM_uses_Sticky = useSticky;
628 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
629 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
630 <    fInfo_.SIM_uses_EAM = useEAM;
631 <    fInfo_.SIM_uses_Shapes = useShape;
632 <    fInfo_.SIM_uses_FLARB = useFLARB;
633 <    fInfo_.SIM_uses_RF = useRF;
634 <    fInfo_.SIM_uses_SF = useSF;
635 <
636 <    if( myMethod == "REACTION_FIELD") {
637 <      
638 <      if (simParams_->haveDielectric()) {
639 <        fInfo_.dielect = simParams_->getDielectric();
640 <      } else {
641 <        sprintf(painCave.errMsg,
642 <                "SimSetup Error: No Dielectric constant was set.\n"
643 <                "\tYou are trying to use Reaction Field without"
644 <                "\tsetting a dielectric constant!\n");
645 <        painCave.isFatal = 1;
646 <        simError();
647 <      }      
648 <    }
649 <
774 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
775 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
776 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
777 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
778 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
779 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
780    }
781  
782 <  void SimInfo::setupFortranSim() {
782 >  void SimInfo::setupFortran() {
783      int isError;
784 <    int nExclude;
785 <    std::vector<int> fortranGlobalGroupMembership;
784 >    int nExclude, nOneTwo, nOneThree, nOneFour;
785 >    vector<int> fortranGlobalGroupMembership;
786      
657    nExclude = exclude_.getSize();
787      isError = 0;
788  
789      //globalGroupMembership_ is filled by SimCreator    
# Line 663 | Line 792 | namespace oopse {
792      }
793  
794      //calculate mass ratio of cutoff group
795 <    std::vector<double> mfact;
795 >    vector<RealType> mfact;
796      SimInfo::MoleculeIterator mi;
797      Molecule* mol;
798      Molecule::CutoffGroupIterator ci;
799      CutoffGroup* cg;
800      Molecule::AtomIterator ai;
801      Atom* atom;
802 <    double totalMass;
802 >    RealType totalMass;
803  
804      //to avoid memory reallocation, reserve enough space for mfact
805      mfact.reserve(getNCutoffGroups());
# Line 686 | Line 815 | namespace oopse {
815            else
816              mfact.push_back( 1.0 );
817          }
689
818        }      
819      }
820  
821 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
822 <    std::vector<int> identArray;
821 >    //fill ident array of local atoms (it is actually ident of
822 >    //AtomType, it is so confusing !!!)
823 >    vector<int> identArray;
824  
825      //to avoid memory reallocation, reserve enough space identArray
826      identArray.reserve(getNAtoms());
# Line 704 | Line 833 | namespace oopse {
833  
834      //fill molMembershipArray
835      //molMembershipArray is filled by SimCreator    
836 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
836 >    vector<int> molMembershipArray(nGlobalAtoms_);
837      for (int i = 0; i < nGlobalAtoms_; i++) {
838        molMembershipArray[i] = globalMolMembership_[i] + 1;
839      }
840      
841      //setup fortran simulation
713    int nGlobalExcludes = 0;
714    int* globalExcludes = NULL;
715    int* excludeList = exclude_.getExcludeList();
716    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
717                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
718                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
842  
843 <    if( isError ){
843 >    nExclude = excludedInteractions_.getSize();
844 >    nOneTwo = oneTwoInteractions_.getSize();
845 >    nOneThree = oneThreeInteractions_.getSize();
846 >    nOneFour = oneFourInteractions_.getSize();
847  
848 +    int* excludeList = excludedInteractions_.getPairList();
849 +    int* oneTwoList = oneTwoInteractions_.getPairList();
850 +    int* oneThreeList = oneThreeInteractions_.getPairList();
851 +    int* oneFourList = oneFourInteractions_.getPairList();
852 +
853 +    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
854 +                   &nExclude, excludeList,
855 +                   &nOneTwo, oneTwoList,
856 +                   &nOneThree, oneThreeList,
857 +                   &nOneFour, oneFourList,
858 +                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
859 +                   &fortranGlobalGroupMembership[0], &isError);
860 +    
861 +    if( isError ){
862 +      
863        sprintf( painCave.errMsg,
864                 "There was an error setting the simulation information in fortran.\n" );
865        painCave.isFatal = 1;
866 <      painCave.severity = OOPSE_ERROR;
866 >      painCave.severity = OPENMD_ERROR;
867        simError();
868      }
869 <
870 < #ifdef IS_MPI
869 >    
870 >    
871      sprintf( checkPointMsg,
872               "succesfully sent the simulation information to fortran.\n");
732    MPIcheckPoint();
733 #endif // is_mpi
734  }
735
736
737 #ifdef IS_MPI
738  void SimInfo::setupFortranParallel() {
873      
874 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
875 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
876 <    std::vector<int> localToGlobalCutoffGroupIndex;
877 <    SimInfo::MoleculeIterator mi;
878 <    Molecule::AtomIterator ai;
879 <    Molecule::CutoffGroupIterator ci;
880 <    Molecule* mol;
881 <    Atom* atom;
882 <    CutoffGroup* cg;
874 >    errorCheckPoint();
875 >    
876 >    // Setup number of neighbors in neighbor list if present
877 >    if (simParams_->haveNeighborListNeighbors()) {
878 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
879 >      setNeighbors(&nlistNeighbors);
880 >    }
881 >  
882 > #ifdef IS_MPI    
883 >    //SimInfo is responsible for creating localToGlobalAtomIndex and
884 >    //localToGlobalGroupIndex
885 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
886 >    vector<int> localToGlobalCutoffGroupIndex;
887      mpiSimData parallelData;
750    int isError;
888  
889      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
890  
# Line 786 | Line 923 | namespace oopse {
923      }
924  
925      sprintf(checkPointMsg, " mpiRefresh successful.\n");
926 <    MPIcheckPoint();
790 <
791 <
792 <  }
793 <
926 >    errorCheckPoint();
927   #endif
928  
929 <  double SimInfo::calcMaxCutoffRadius() {
930 <
931 <
932 <    std::set<AtomType*> atomTypes;
933 <    std::set<AtomType*>::iterator i;
934 <    std::vector<double> cutoffRadius;
802 <
803 <    //get the unique atom types
804 <    atomTypes = getUniqueAtomTypes();
805 <
806 <    //query the max cutoff radius among these atom types
807 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
808 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
929 >    initFortranFF(&isError);
930 >    if (isError) {
931 >      sprintf(painCave.errMsg,
932 >              "initFortranFF errror: fortran didn't like something we gave it.\n");
933 >      painCave.isFatal = 1;
934 >      simError();
935      }
936 <
811 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
812 < #ifdef IS_MPI
813 <    //pick the max cutoff radius among the processors
814 < #endif
815 <
816 <    return maxCutoffRadius;
817 <  }
818 <
819 <  void SimInfo::getCutoff(double& rcut, double& rsw) {
820 <    
821 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
822 <        
823 <      if (!simParams_->haveCutoffRadius()){
824 <        sprintf(painCave.errMsg,
825 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
826 <                "\tOOPSE will use a default value of 15.0 angstroms"
827 <                "\tfor the cutoffRadius.\n");
828 <        painCave.isFatal = 0;
829 <        simError();
830 <        rcut = 15.0;
831 <      } else{
832 <        rcut = simParams_->getCutoffRadius();
833 <      }
834 <
835 <      if (!simParams_->haveSwitchingRadius()){
836 <        sprintf(painCave.errMsg,
837 <                "SimCreator Warning: No value was set for switchingRadius.\n"
838 <                "\tOOPSE will use a default value of\n"
839 <                "\t0.85 * cutoffRadius for the switchingRadius\n");
840 <        painCave.isFatal = 0;
841 <        simError();
842 <        rsw = 0.85 * rcut;
843 <      } else{
844 <        rsw = simParams_->getSwitchingRadius();
845 <      }
846 <
847 <    } else {
848 <      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
849 <      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
850 <        
851 <      if (simParams_->haveCutoffRadius()) {
852 <        rcut = simParams_->getCutoffRadius();
853 <      } else {
854 <        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
855 <        rcut = calcMaxCutoffRadius();
856 <      }
857 <
858 <      if (simParams_->haveSwitchingRadius()) {
859 <        rsw  = simParams_->getSwitchingRadius();
860 <      } else {
861 <        rsw = rcut;
862 <      }
863 <    
864 <    }
865 <  }
866 <
867 <  void SimInfo::setupCutoff() {    
868 <    getCutoff(rcut_, rsw_);    
869 <    double rnblist = rcut_ + 1; // skin of neighbor list
870 <
871 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
872 <    
873 <    int cp =  TRADITIONAL_CUTOFF_POLICY;
874 <    if (simParams_->haveCutoffPolicy()) {
875 <      std::string myPolicy = simParams_->getCutoffPolicy();
876 <      toUpper(myPolicy);
877 <      if (myPolicy == "MIX") {
878 <        cp = MIX_CUTOFF_POLICY;
879 <      } else {
880 <        if (myPolicy == "MAX") {
881 <          cp = MAX_CUTOFF_POLICY;
882 <        } else {
883 <          if (myPolicy == "TRADITIONAL") {            
884 <            cp = TRADITIONAL_CUTOFF_POLICY;
885 <          } else {
886 <            // throw error        
887 <            sprintf( painCave.errMsg,
888 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
889 <            painCave.isFatal = 1;
890 <            simError();
891 <          }    
892 <        }          
893 <      }
894 <    }
895 <
896 <
897 <    if (simParams_->haveSkinThickness()) {
898 <      double skinThickness = simParams_->getSkinThickness();
899 <    }
900 <
901 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
902 <    // also send cutoff notification to electrostatics
903 <    setElectrostaticCutoffRadius(&rcut_, &rsw_);
904 <  }
905 <
906 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
907 <    
908 <    int errorOut;
909 <    int esm =  NONE;
910 <    int sm = UNDAMPED;
911 <    double alphaVal;
912 <    double dielectric;
913 <
914 <    errorOut = isError;
915 <    alphaVal = simParams_->getDampingAlpha();
916 <    dielectric = simParams_->getDielectric();
917 <
918 <    if (simParams_->haveElectrostaticSummationMethod()) {
919 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
920 <      toUpper(myMethod);
921 <      if (myMethod == "NONE") {
922 <        esm = NONE;
923 <      } else {
924 <        if (myMethod == "SWITCHING_FUNCTION") {
925 <          esm = SWITCHING_FUNCTION;
926 <        } else {
927 <          if (myMethod == "SHIFTED_POTENTIAL") {
928 <            esm = SHIFTED_POTENTIAL;
929 <          } else {
930 <            if (myMethod == "SHIFTED_FORCE") {            
931 <              esm = SHIFTED_FORCE;
932 <            } else {
933 <              if (myMethod == "REACTION_FIELD") {            
934 <                esm = REACTION_FIELD;
935 <              } else {
936 <                // throw error        
937 <                sprintf( painCave.errMsg,
938 <                         "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"shifted_potential\", \"shifted_force\", or \"reaction_field\".", myMethod.c_str() );
939 <                painCave.isFatal = 1;
940 <                simError();
941 <              }    
942 <            }          
943 <          }
944 <        }
945 <      }
946 <    }
947 <    
948 <    if (simParams_->haveElectrostaticScreeningMethod()) {
949 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
950 <      toUpper(myScreen);
951 <      if (myScreen == "UNDAMPED") {
952 <        sm = UNDAMPED;
953 <      } else {
954 <        if (myScreen == "DAMPED") {
955 <          sm = DAMPED;
956 <          if (!simParams_->haveDampingAlpha()) {
957 <            //throw error
958 <            sprintf( painCave.errMsg,
959 <                     "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used.", alphaVal);
960 <            painCave.isFatal = 0;
961 <            simError();
962 <          }
963 <        } else {
964 <          // throw error        
965 <          sprintf( painCave.errMsg,
966 <                   "SimInfo error: Unknown electrostaticScreeningMethod. (Input file specified %s .)\n\telectrostaticScreeningMethod must be one of: \"undamped\" or \"damped\".", myScreen.c_str() );
967 <          painCave.isFatal = 1;
968 <          simError();
969 <        }
970 <      }
971 <    }
972 <    
973 <    // let's pass some summation method variables to fortran
974 <    setElectrostaticSummationMethod( &esm );
975 <    setScreeningMethod( &sm );
976 <    setDampingAlpha( &alphaVal );
977 <    setReactionFieldDielectric( &dielectric );
978 <    initFortranFF( &esm, &errorOut );
936 >    fortranInitialized_ = true;
937    }
938  
939    void SimInfo::addProperty(GenericData* genData) {
940      properties_.addProperty(genData);  
941    }
942  
943 <  void SimInfo::removeProperty(const std::string& propName) {
943 >  void SimInfo::removeProperty(const string& propName) {
944      properties_.removeProperty(propName);  
945    }
946  
# Line 990 | Line 948 | namespace oopse {
948      properties_.clearProperties();
949    }
950  
951 <  std::vector<std::string> SimInfo::getPropertyNames() {
951 >  vector<string> SimInfo::getPropertyNames() {
952      return properties_.getPropertyNames();  
953    }
954        
955 <  std::vector<GenericData*> SimInfo::getProperties() {
955 >  vector<GenericData*> SimInfo::getProperties() {
956      return properties_.getProperties();
957    }
958  
959 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
959 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
960      return properties_.getPropertyByName(propName);
961    }
962  
# Line 1034 | Line 992 | namespace oopse {
992      Molecule* mol;
993  
994      Vector3d comVel(0.0);
995 <    double totalMass = 0.0;
995 >    RealType totalMass = 0.0;
996      
997  
998      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
999 <      double mass = mol->getMass();
999 >      RealType mass = mol->getMass();
1000        totalMass += mass;
1001        comVel += mass * mol->getComVel();
1002      }  
1003  
1004   #ifdef IS_MPI
1005 <    double tmpMass = totalMass;
1005 >    RealType tmpMass = totalMass;
1006      Vector3d tmpComVel(comVel);    
1007 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1008 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1007 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1008 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1009   #endif
1010  
1011      comVel /= totalMass;
# Line 1060 | Line 1018 | namespace oopse {
1018      Molecule* mol;
1019  
1020      Vector3d com(0.0);
1021 <    double totalMass = 0.0;
1021 >    RealType totalMass = 0.0;
1022      
1023      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1024 <      double mass = mol->getMass();
1024 >      RealType mass = mol->getMass();
1025        totalMass += mass;
1026        com += mass * mol->getCom();
1027      }  
1028  
1029   #ifdef IS_MPI
1030 <    double tmpMass = totalMass;
1030 >    RealType tmpMass = totalMass;
1031      Vector3d tmpCom(com);    
1032 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1033 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1032 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1033 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1034   #endif
1035  
1036      com /= totalMass;
# Line 1081 | Line 1039 | namespace oopse {
1039  
1040    }        
1041  
1042 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1042 >  ostream& operator <<(ostream& o, SimInfo& info) {
1043  
1044      return o;
1045    }
# Line 1096 | Line 1054 | namespace oopse {
1054        Molecule* mol;
1055        
1056      
1057 <      double totalMass = 0.0;
1057 >      RealType totalMass = 0.0;
1058      
1059  
1060        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1061 <         double mass = mol->getMass();
1061 >         RealType mass = mol->getMass();
1062           totalMass += mass;
1063           com += mass * mol->getCom();
1064           comVel += mass * mol->getComVel();          
1065        }  
1066        
1067   #ifdef IS_MPI
1068 <      double tmpMass = totalMass;
1068 >      RealType tmpMass = totalMass;
1069        Vector3d tmpCom(com);  
1070        Vector3d tmpComVel(comVel);
1071 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1072 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1073 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1071 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1072 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1073 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1074   #endif
1075        
1076        com /= totalMass;
# Line 1124 | Line 1082 | namespace oopse {
1082  
1083  
1084         [  Ixx -Ixy  -Ixz ]
1085 <  J =| -Iyx  Iyy  -Iyz |
1085 >    J =| -Iyx  Iyy  -Iyz |
1086         [ -Izx -Iyz   Izz ]
1087      */
1088  
1089     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1090        
1091  
1092 <      double xx = 0.0;
1093 <      double yy = 0.0;
1094 <      double zz = 0.0;
1095 <      double xy = 0.0;
1096 <      double xz = 0.0;
1097 <      double yz = 0.0;
1092 >      RealType xx = 0.0;
1093 >      RealType yy = 0.0;
1094 >      RealType zz = 0.0;
1095 >      RealType xy = 0.0;
1096 >      RealType xz = 0.0;
1097 >      RealType yz = 0.0;
1098        Vector3d com(0.0);
1099        Vector3d comVel(0.0);
1100        
# Line 1148 | Line 1106 | namespace oopse {
1106        Vector3d thisq(0.0);
1107        Vector3d thisv(0.0);
1108  
1109 <      double thisMass = 0.0;
1109 >      RealType thisMass = 0.0;
1110      
1111        
1112        
# Line 1186 | Line 1144 | namespace oopse {
1144   #ifdef IS_MPI
1145        Mat3x3d tmpI(inertiaTensor);
1146        Vector3d tmpAngMom;
1147 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1148 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1147 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1148 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1149   #endif
1150                
1151        return;
# Line 1208 | Line 1166 | namespace oopse {
1166        Vector3d thisr(0.0);
1167        Vector3d thisp(0.0);
1168        
1169 <      double thisMass;
1169 >      RealType thisMass;
1170        
1171        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1172          thisMass = mol->getMass();
# Line 1221 | Line 1179 | namespace oopse {
1179        
1180   #ifdef IS_MPI
1181        Vector3d tmpAngMom;
1182 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1182 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1183   #endif
1184        
1185        return angularMomentum;
1186     }
1187    
1188 <  
1189 < }//end namespace oopse
1188 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1189 >    return IOIndexToIntegrableObject.at(index);
1190 >  }
1191 >  
1192 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1193 >    IOIndexToIntegrableObject= v;
1194 >  }
1195  
1196 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1197 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1198 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1199 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1200 +  */
1201 +  void SimInfo::getGyrationalVolume(RealType &volume){
1202 +    Mat3x3d intTensor;
1203 +    RealType det;
1204 +    Vector3d dummyAngMom;
1205 +    RealType sysconstants;
1206 +    RealType geomCnst;
1207 +
1208 +    geomCnst = 3.0/2.0;
1209 +    /* Get the inertial tensor and angular momentum for free*/
1210 +    getInertiaTensor(intTensor,dummyAngMom);
1211 +    
1212 +    det = intTensor.determinant();
1213 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1214 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1215 +    return;
1216 +  }
1217 +
1218 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1219 +    Mat3x3d intTensor;
1220 +    Vector3d dummyAngMom;
1221 +    RealType sysconstants;
1222 +    RealType geomCnst;
1223 +
1224 +    geomCnst = 3.0/2.0;
1225 +    /* Get the inertial tensor and angular momentum for free*/
1226 +    getInertiaTensor(intTensor,dummyAngMom);
1227 +    
1228 +    detI = intTensor.determinant();
1229 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1230 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1231 +    return;
1232 +  }
1233 + /*
1234 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1235 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1236 +      sdByGlobalIndex_ = v;
1237 +    }
1238 +
1239 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1240 +      //assert(index < nAtoms_ + nRigidBodies_);
1241 +      return sdByGlobalIndex_.at(index);
1242 +    }  
1243 + */  
1244 +  int SimInfo::getNGlobalConstraints() {
1245 +    int nGlobalConstraints;
1246 + #ifdef IS_MPI
1247 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1248 +                  MPI_COMM_WORLD);    
1249 + #else
1250 +    nGlobalConstraints =  nConstraints_;
1251 + #endif
1252 +    return nGlobalConstraints;
1253 +  }
1254 +
1255 + }//end namespace OpenMD
1256 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 720 by chrisfen, Tue Nov 8 13:32:06 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1536 by gezelter, Wed Jan 5 14:49:05 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines