ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 665 by tim, Thu Oct 13 22:26:47 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1569 by gezelter, Thu May 26 13:55:04 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 < #include "UseTheForce/fCutoffPolicy.h"
56 < #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 < #include "UseTheForce/doForces_interface.h"
58 < #include "UseTheForce/DarkSide/electrostatic_interface.h"
59 < #include "UseTheForce/notifyCutoffs_interface.h"
56 > #include "primitives/StuntDouble.hpp"
57   #include "utils/MemoryUtils.hpp"
58   #include "utils/simError.h"
59   #include "selection/SelectionManager.hpp"
60 + #include "io/ForceFieldOptions.hpp"
61 + #include "UseTheForce/ForceField.hpp"
62 + #include "nonbonded/SwitchingFunction.hpp"
63  
64 < #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
67 < #endif
68 <
69 < namespace oopse {
70 <
71 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
72 <                   ForceField* ff, Globals* simParams) :
73 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
74 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
64 > using namespace std;
65 > namespace OpenMD {
66 >  
67 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
68 >    forceField_(ff), simParams_(simParams),
69 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
70      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
71      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
72 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
73 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
74 <    sman_(NULL), fortranInitialized_(false) {
75 <
81 <            
82 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
83 <      MoleculeStamp* molStamp;
84 <      int nMolWithSameStamp;
85 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
87 <      CutoffGroupStamp* cgStamp;    
88 <      RigidBodyStamp* rbStamp;
89 <      int nRigidAtoms = 0;
72 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
73 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
74 >    nConstraints_(0), sman_(NULL), topologyDone_(false),
75 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
76      
77 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
78 <        molStamp = i->first;
79 <        nMolWithSameStamp = i->second;
80 <        
81 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
82 <
83 <        //calculate atoms in molecules
84 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
85 <
86 <
87 <        //calculate atoms in cutoff groups
88 <        int nAtomsInGroups = 0;
89 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
90 <        
91 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
92 <          cgStamp = molStamp->getCutoffGroup(j);
93 <          nAtomsInGroups += cgStamp->getNMembers();
94 <        }
95 <
96 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
97 <
98 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
99 <
100 <        //calculate atoms in rigid bodies
101 <        int nAtomsInRigidBodies = 0;
102 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
117 <        
118 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
119 <          rbStamp = molStamp->getRigidBody(j);
120 <          nAtomsInRigidBodies += rbStamp->getNMembers();
121 <        }
122 <
123 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
124 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
125 <        
77 >    MoleculeStamp* molStamp;
78 >    int nMolWithSameStamp;
79 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
80 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
81 >    CutoffGroupStamp* cgStamp;    
82 >    RigidBodyStamp* rbStamp;
83 >    int nRigidAtoms = 0;
84 >    
85 >    vector<Component*> components = simParams->getComponents();
86 >    
87 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
88 >      molStamp = (*i)->getMoleculeStamp();
89 >      nMolWithSameStamp = (*i)->getNMol();
90 >      
91 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
92 >      
93 >      //calculate atoms in molecules
94 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
95 >      
96 >      //calculate atoms in cutoff groups
97 >      int nAtomsInGroups = 0;
98 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
99 >      
100 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
101 >        cgStamp = molStamp->getCutoffGroupStamp(j);
102 >        nAtomsInGroups += cgStamp->getNMembers();
103        }
104 <
105 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
106 <      //group therefore the total number of cutoff groups in the system is
107 <      //equal to the total number of atoms minus number of atoms belong to
108 <      //cutoff group defined in meta-data file plus the number of cutoff
109 <      //groups defined in meta-data file
110 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
111 <
112 <      //every free atom (atom does not belong to rigid bodies) is an
113 <      //integrable object therefore the total number of integrable objects
114 <      //in the system is equal to the total number of atoms minus number of
115 <      //atoms belong to rigid body defined in meta-data file plus the number
116 <      //of rigid bodies defined in meta-data file
117 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
118 <                                                + nGlobalRigidBodies_;
119 <  
120 <      nGlobalMols_ = molStampIds_.size();
144 <
145 < #ifdef IS_MPI    
146 <      molToProcMap_.resize(nGlobalMols_);
147 < #endif
148 <
104 >      
105 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
106 >      
107 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
108 >      
109 >      //calculate atoms in rigid bodies
110 >      int nAtomsInRigidBodies = 0;
111 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
112 >      
113 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
114 >        rbStamp = molStamp->getRigidBodyStamp(j);
115 >        nAtomsInRigidBodies += rbStamp->getNMembers();
116 >      }
117 >      
118 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
119 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
120 >      
121      }
122 +    
123 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
124 +    //group therefore the total number of cutoff groups in the system is
125 +    //equal to the total number of atoms minus number of atoms belong to
126 +    //cutoff group defined in meta-data file plus the number of cutoff
127 +    //groups defined in meta-data file
128 +    std::cerr << "nGA = " << nGlobalAtoms_ << "\n";
129 +    std::cerr << "nCA = " << nCutoffAtoms << "\n";
130 +    std::cerr << "nG = " << nGroups << "\n";
131 +
132 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
133  
134 +    std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n";
135 +    
136 +    //every free atom (atom does not belong to rigid bodies) is an
137 +    //integrable object therefore the total number of integrable objects
138 +    //in the system is equal to the total number of atoms minus number of
139 +    //atoms belong to rigid body defined in meta-data file plus the number
140 +    //of rigid bodies defined in meta-data file
141 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
142 +      + nGlobalRigidBodies_;
143 +    
144 +    nGlobalMols_ = molStampIds_.size();
145 +    molToProcMap_.resize(nGlobalMols_);
146 +  }
147 +  
148    SimInfo::~SimInfo() {
149 <    std::map<int, Molecule*>::iterator i;
149 >    map<int, Molecule*>::iterator i;
150      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
151        delete i->second;
152      }
153      molecules_.clear();
154        
158    delete stamps_;
155      delete sman_;
156      delete simParams_;
157      delete forceField_;
158    }
159  
164  int SimInfo::getNGlobalConstraints() {
165    int nGlobalConstraints;
166 #ifdef IS_MPI
167    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
168                  MPI_COMM_WORLD);    
169 #else
170    nGlobalConstraints =  nConstraints_;
171 #endif
172    return nGlobalConstraints;
173  }
160  
161    bool SimInfo::addMolecule(Molecule* mol) {
162      MoleculeIterator i;
163 <
163 >    
164      i = molecules_.find(mol->getGlobalIndex());
165      if (i == molecules_.end() ) {
166 <
167 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
168 <        
166 >      
167 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
168 >      
169        nAtoms_ += mol->getNAtoms();
170        nBonds_ += mol->getNBonds();
171        nBends_ += mol->getNBends();
172        nTorsions_ += mol->getNTorsions();
173 +      nInversions_ += mol->getNInversions();
174        nRigidBodies_ += mol->getNRigidBodies();
175        nIntegrableObjects_ += mol->getNIntegrableObjects();
176        nCutoffGroups_ += mol->getNCutoffGroups();
177        nConstraints_ += mol->getNConstraintPairs();
178 <
179 <      addExcludePairs(mol);
180 <        
178 >      
179 >      addInteractionPairs(mol);
180 >      
181        return true;
182      } else {
183        return false;
184      }
185    }
186 <
186 >  
187    bool SimInfo::removeMolecule(Molecule* mol) {
188      MoleculeIterator i;
189      i = molecules_.find(mol->getGlobalIndex());
# Line 209 | Line 196 | namespace oopse {
196        nBonds_ -= mol->getNBonds();
197        nBends_ -= mol->getNBends();
198        nTorsions_ -= mol->getNTorsions();
199 +      nInversions_ -= mol->getNInversions();
200        nRigidBodies_ -= mol->getNRigidBodies();
201        nIntegrableObjects_ -= mol->getNIntegrableObjects();
202        nCutoffGroups_ -= mol->getNCutoffGroups();
203        nConstraints_ -= mol->getNConstraintPairs();
204  
205 <      removeExcludePairs(mol);
205 >      removeInteractionPairs(mol);
206        molecules_.erase(mol->getGlobalIndex());
207  
208        delete mol;
# Line 223 | Line 211 | namespace oopse {
211      } else {
212        return false;
213      }
226
227
214    }    
215  
216          
# Line 242 | Line 228 | namespace oopse {
228    void SimInfo::calcNdf() {
229      int ndf_local;
230      MoleculeIterator i;
231 <    std::vector<StuntDouble*>::iterator j;
231 >    vector<StuntDouble*>::iterator j;
232      Molecule* mol;
233      StuntDouble* integrableObject;
234  
# Line 262 | Line 248 | namespace oopse {
248            }
249          }
250              
251 <      }//end for (integrableObject)
252 <    }// end for (mol)
251 >      }
252 >    }
253      
254      // n_constraints is local, so subtract them on each processor
255      ndf_local -= nConstraints_;
# Line 280 | Line 266 | namespace oopse {
266  
267    }
268  
269 +  int SimInfo::getFdf() {
270 + #ifdef IS_MPI
271 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
272 + #else
273 +    fdf_ = fdf_local;
274 + #endif
275 +    return fdf_;
276 +  }
277 +    
278    void SimInfo::calcNdfRaw() {
279      int ndfRaw_local;
280  
281      MoleculeIterator i;
282 <    std::vector<StuntDouble*>::iterator j;
282 >    vector<StuntDouble*>::iterator j;
283      Molecule* mol;
284      StuntDouble* integrableObject;
285  
# Line 331 | Line 326 | namespace oopse {
326  
327    }
328  
329 <  void SimInfo::addExcludePairs(Molecule* mol) {
330 <    std::vector<Bond*>::iterator bondIter;
331 <    std::vector<Bend*>::iterator bendIter;
332 <    std::vector<Torsion*>::iterator torsionIter;
329 >  void SimInfo::addInteractionPairs(Molecule* mol) {
330 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
331 >    vector<Bond*>::iterator bondIter;
332 >    vector<Bend*>::iterator bendIter;
333 >    vector<Torsion*>::iterator torsionIter;
334 >    vector<Inversion*>::iterator inversionIter;
335      Bond* bond;
336      Bend* bend;
337      Torsion* torsion;
338 +    Inversion* inversion;
339      int a;
340      int b;
341      int c;
342      int d;
343 <    
344 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
345 <      a = bond->getAtomA()->getGlobalIndex();
346 <      b = bond->getAtomB()->getGlobalIndex();        
347 <      exclude_.addPair(a, b);
343 >
344 >    // atomGroups can be used to add special interaction maps between
345 >    // groups of atoms that are in two separate rigid bodies.
346 >    // However, most site-site interactions between two rigid bodies
347 >    // are probably not special, just the ones between the physically
348 >    // bonded atoms.  Interactions *within* a single rigid body should
349 >    // always be excluded.  These are done at the bottom of this
350 >    // function.
351 >
352 >    map<int, set<int> > atomGroups;
353 >    Molecule::RigidBodyIterator rbIter;
354 >    RigidBody* rb;
355 >    Molecule::IntegrableObjectIterator ii;
356 >    StuntDouble* integrableObject;
357 >    
358 >    for (integrableObject = mol->beginIntegrableObject(ii);
359 >         integrableObject != NULL;
360 >         integrableObject = mol->nextIntegrableObject(ii)) {
361 >      
362 >      if (integrableObject->isRigidBody()) {
363 >        rb = static_cast<RigidBody*>(integrableObject);
364 >        vector<Atom*> atoms = rb->getAtoms();
365 >        set<int> rigidAtoms;
366 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
367 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
368 >        }
369 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
370 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
371 >        }      
372 >      } else {
373 >        set<int> oneAtomSet;
374 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
375 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
376 >      }
377 >    }  
378 >          
379 >    for (bond= mol->beginBond(bondIter); bond != NULL;
380 >         bond = mol->nextBond(bondIter)) {
381 >
382 >      a = bond->getAtomA()->getGlobalIndex();
383 >      b = bond->getAtomB()->getGlobalIndex();  
384 >    
385 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
386 >        oneTwoInteractions_.addPair(a, b);
387 >      } else {
388 >        excludedInteractions_.addPair(a, b);
389 >      }
390      }
391  
392 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
392 >    for (bend= mol->beginBend(bendIter); bend != NULL;
393 >         bend = mol->nextBend(bendIter)) {
394 >
395        a = bend->getAtomA()->getGlobalIndex();
396        b = bend->getAtomB()->getGlobalIndex();        
397        c = bend->getAtomC()->getGlobalIndex();
398 +      
399 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
400 +        oneTwoInteractions_.addPair(a, b);      
401 +        oneTwoInteractions_.addPair(b, c);
402 +      } else {
403 +        excludedInteractions_.addPair(a, b);
404 +        excludedInteractions_.addPair(b, c);
405 +      }
406  
407 <      exclude_.addPair(a, b);
408 <      exclude_.addPair(a, c);
409 <      exclude_.addPair(b, c);        
407 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
408 >        oneThreeInteractions_.addPair(a, c);      
409 >      } else {
410 >        excludedInteractions_.addPair(a, c);
411 >      }
412      }
413  
414 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
414 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
415 >         torsion = mol->nextTorsion(torsionIter)) {
416 >
417        a = torsion->getAtomA()->getGlobalIndex();
418        b = torsion->getAtomB()->getGlobalIndex();        
419        c = torsion->getAtomC()->getGlobalIndex();        
420 <      d = torsion->getAtomD()->getGlobalIndex();        
420 >      d = torsion->getAtomD()->getGlobalIndex();      
421  
422 <      exclude_.addPair(a, b);
423 <      exclude_.addPair(a, c);
424 <      exclude_.addPair(a, d);
425 <      exclude_.addPair(b, c);
426 <      exclude_.addPair(b, d);
427 <      exclude_.addPair(c, d);        
422 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
423 >        oneTwoInteractions_.addPair(a, b);      
424 >        oneTwoInteractions_.addPair(b, c);
425 >        oneTwoInteractions_.addPair(c, d);
426 >      } else {
427 >        excludedInteractions_.addPair(a, b);
428 >        excludedInteractions_.addPair(b, c);
429 >        excludedInteractions_.addPair(c, d);
430 >      }
431 >
432 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
433 >        oneThreeInteractions_.addPair(a, c);      
434 >        oneThreeInteractions_.addPair(b, d);      
435 >      } else {
436 >        excludedInteractions_.addPair(a, c);
437 >        excludedInteractions_.addPair(b, d);
438 >      }
439 >
440 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
441 >        oneFourInteractions_.addPair(a, d);      
442 >      } else {
443 >        excludedInteractions_.addPair(a, d);
444 >      }
445      }
446  
447 <    Molecule::RigidBodyIterator rbIter;
448 <    RigidBody* rb;
449 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
450 <      std::vector<Atom*> atoms = rb->getAtoms();
451 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
452 <        for (int j = i + 1; j < atoms.size(); ++j) {
447 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
448 >         inversion = mol->nextInversion(inversionIter)) {
449 >
450 >      a = inversion->getAtomA()->getGlobalIndex();
451 >      b = inversion->getAtomB()->getGlobalIndex();        
452 >      c = inversion->getAtomC()->getGlobalIndex();        
453 >      d = inversion->getAtomD()->getGlobalIndex();        
454 >
455 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
456 >        oneTwoInteractions_.addPair(a, b);      
457 >        oneTwoInteractions_.addPair(a, c);
458 >        oneTwoInteractions_.addPair(a, d);
459 >      } else {
460 >        excludedInteractions_.addPair(a, b);
461 >        excludedInteractions_.addPair(a, c);
462 >        excludedInteractions_.addPair(a, d);
463 >      }
464 >
465 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
466 >        oneThreeInteractions_.addPair(b, c);    
467 >        oneThreeInteractions_.addPair(b, d);    
468 >        oneThreeInteractions_.addPair(c, d);      
469 >      } else {
470 >        excludedInteractions_.addPair(b, c);
471 >        excludedInteractions_.addPair(b, d);
472 >        excludedInteractions_.addPair(c, d);
473 >      }
474 >    }
475 >
476 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
477 >         rb = mol->nextRigidBody(rbIter)) {
478 >      vector<Atom*> atoms = rb->getAtoms();
479 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
480 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
481            a = atoms[i]->getGlobalIndex();
482            b = atoms[j]->getGlobalIndex();
483 <          exclude_.addPair(a, b);
483 >          excludedInteractions_.addPair(a, b);
484          }
485        }
486      }        
487  
488    }
489  
490 <  void SimInfo::removeExcludePairs(Molecule* mol) {
491 <    std::vector<Bond*>::iterator bondIter;
492 <    std::vector<Bend*>::iterator bendIter;
493 <    std::vector<Torsion*>::iterator torsionIter;
490 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
491 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
492 >    vector<Bond*>::iterator bondIter;
493 >    vector<Bend*>::iterator bendIter;
494 >    vector<Torsion*>::iterator torsionIter;
495 >    vector<Inversion*>::iterator inversionIter;
496      Bond* bond;
497      Bend* bend;
498      Torsion* torsion;
499 +    Inversion* inversion;
500      int a;
501      int b;
502      int c;
503      int d;
504 +
505 +    map<int, set<int> > atomGroups;
506 +    Molecule::RigidBodyIterator rbIter;
507 +    RigidBody* rb;
508 +    Molecule::IntegrableObjectIterator ii;
509 +    StuntDouble* integrableObject;
510      
511 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
511 >    for (integrableObject = mol->beginIntegrableObject(ii);
512 >         integrableObject != NULL;
513 >         integrableObject = mol->nextIntegrableObject(ii)) {
514 >      
515 >      if (integrableObject->isRigidBody()) {
516 >        rb = static_cast<RigidBody*>(integrableObject);
517 >        vector<Atom*> atoms = rb->getAtoms();
518 >        set<int> rigidAtoms;
519 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
520 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
521 >        }
522 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
523 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
524 >        }      
525 >      } else {
526 >        set<int> oneAtomSet;
527 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
528 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
529 >      }
530 >    }  
531 >
532 >    for (bond= mol->beginBond(bondIter); bond != NULL;
533 >         bond = mol->nextBond(bondIter)) {
534 >      
535        a = bond->getAtomA()->getGlobalIndex();
536 <      b = bond->getAtomB()->getGlobalIndex();        
537 <      exclude_.removePair(a, b);
536 >      b = bond->getAtomB()->getGlobalIndex();  
537 >    
538 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
539 >        oneTwoInteractions_.removePair(a, b);
540 >      } else {
541 >        excludedInteractions_.removePair(a, b);
542 >      }
543      }
544  
545 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
545 >    for (bend= mol->beginBend(bendIter); bend != NULL;
546 >         bend = mol->nextBend(bendIter)) {
547 >
548        a = bend->getAtomA()->getGlobalIndex();
549        b = bend->getAtomB()->getGlobalIndex();        
550        c = bend->getAtomC()->getGlobalIndex();
551 +      
552 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
553 +        oneTwoInteractions_.removePair(a, b);      
554 +        oneTwoInteractions_.removePair(b, c);
555 +      } else {
556 +        excludedInteractions_.removePair(a, b);
557 +        excludedInteractions_.removePair(b, c);
558 +      }
559  
560 <      exclude_.removePair(a, b);
561 <      exclude_.removePair(a, c);
562 <      exclude_.removePair(b, c);        
560 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
561 >        oneThreeInteractions_.removePair(a, c);      
562 >      } else {
563 >        excludedInteractions_.removePair(a, c);
564 >      }
565      }
566  
567 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
567 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
568 >         torsion = mol->nextTorsion(torsionIter)) {
569 >
570        a = torsion->getAtomA()->getGlobalIndex();
571        b = torsion->getAtomB()->getGlobalIndex();        
572        c = torsion->getAtomC()->getGlobalIndex();        
573 <      d = torsion->getAtomD()->getGlobalIndex();        
573 >      d = torsion->getAtomD()->getGlobalIndex();      
574 >  
575 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
576 >        oneTwoInteractions_.removePair(a, b);      
577 >        oneTwoInteractions_.removePair(b, c);
578 >        oneTwoInteractions_.removePair(c, d);
579 >      } else {
580 >        excludedInteractions_.removePair(a, b);
581 >        excludedInteractions_.removePair(b, c);
582 >        excludedInteractions_.removePair(c, d);
583 >      }
584  
585 <      exclude_.removePair(a, b);
586 <      exclude_.removePair(a, c);
587 <      exclude_.removePair(a, d);
588 <      exclude_.removePair(b, c);
589 <      exclude_.removePair(b, d);
590 <      exclude_.removePair(c, d);        
585 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
586 >        oneThreeInteractions_.removePair(a, c);      
587 >        oneThreeInteractions_.removePair(b, d);      
588 >      } else {
589 >        excludedInteractions_.removePair(a, c);
590 >        excludedInteractions_.removePair(b, d);
591 >      }
592 >
593 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
594 >        oneFourInteractions_.removePair(a, d);      
595 >      } else {
596 >        excludedInteractions_.removePair(a, d);
597 >      }
598      }
599  
600 <    Molecule::RigidBodyIterator rbIter;
601 <    RigidBody* rb;
602 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
603 <      std::vector<Atom*> atoms = rb->getAtoms();
604 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
605 <        for (int j = i + 1; j < atoms.size(); ++j) {
600 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
601 >         inversion = mol->nextInversion(inversionIter)) {
602 >
603 >      a = inversion->getAtomA()->getGlobalIndex();
604 >      b = inversion->getAtomB()->getGlobalIndex();        
605 >      c = inversion->getAtomC()->getGlobalIndex();        
606 >      d = inversion->getAtomD()->getGlobalIndex();        
607 >
608 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
609 >        oneTwoInteractions_.removePair(a, b);      
610 >        oneTwoInteractions_.removePair(a, c);
611 >        oneTwoInteractions_.removePair(a, d);
612 >      } else {
613 >        excludedInteractions_.removePair(a, b);
614 >        excludedInteractions_.removePair(a, c);
615 >        excludedInteractions_.removePair(a, d);
616 >      }
617 >
618 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
619 >        oneThreeInteractions_.removePair(b, c);    
620 >        oneThreeInteractions_.removePair(b, d);    
621 >        oneThreeInteractions_.removePair(c, d);      
622 >      } else {
623 >        excludedInteractions_.removePair(b, c);
624 >        excludedInteractions_.removePair(b, d);
625 >        excludedInteractions_.removePair(c, d);
626 >      }
627 >    }
628 >
629 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
630 >         rb = mol->nextRigidBody(rbIter)) {
631 >      vector<Atom*> atoms = rb->getAtoms();
632 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
633 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
634            a = atoms[i]->getGlobalIndex();
635            b = atoms[j]->getGlobalIndex();
636 <          exclude_.removePair(a, b);
636 >          excludedInteractions_.removePair(a, b);
637          }
638        }
639      }        
640 <
640 >    
641    }
642 <
643 <
642 >  
643 >  
644    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
645      int curStampId;
646 <
646 >    
647      //index from 0
648      curStampId = moleculeStamps_.size();
649  
# Line 456 | Line 651 | namespace oopse {
651      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
652    }
653  
459  void SimInfo::update() {
654  
655 <    setupSimType();
656 <
657 < #ifdef IS_MPI
658 <    setupFortranParallel();
659 < #endif
660 <
661 <    setupFortranSim();
662 <
663 <    //setup fortran force field
470 <    /** @deprecate */    
471 <    int isError = 0;
472 <    
473 <    setupElectrostaticSummationMethod( isError );
474 <
475 <    if(isError){
476 <      sprintf( painCave.errMsg,
477 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
478 <      painCave.isFatal = 1;
479 <      simError();
480 <    }
481 <  
482 <    
483 <    setupCutoff();
484 <
655 >  /**
656 >   * update
657 >   *
658 >   *  Performs the global checks and variable settings after the
659 >   *  objects have been created.
660 >   *
661 >   */
662 >  void SimInfo::update() {  
663 >    setupSimVariables();
664      calcNdf();
665      calcNdfRaw();
666      calcNdfTrans();
488
489    fortranInitialized_ = true;
667    }
668 <
669 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
668 >  
669 >  /**
670 >   * getSimulatedAtomTypes
671 >   *
672 >   * Returns an STL set of AtomType* that are actually present in this
673 >   * simulation.  Must query all processors to assemble this information.
674 >   *
675 >   */
676 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
677      SimInfo::MoleculeIterator mi;
678      Molecule* mol;
679      Molecule::AtomIterator ai;
680      Atom* atom;
681 <    std::set<AtomType*> atomTypes;
682 <
683 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
500 <
681 >    set<AtomType*> atomTypes;
682 >    
683 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
684        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
685          atomTypes.insert(atom->getAtomType());
686 <      }
687 <        
505 <    }
686 >      }      
687 >    }    
688  
689 <    return atomTypes;        
508 <  }
689 > #ifdef IS_MPI
690  
691 <  void SimInfo::setupSimType() {
692 <    std::set<AtomType*>::iterator i;
512 <    std::set<AtomType*> atomTypes;
513 <    atomTypes = getUniqueAtomTypes();
514 <    
515 <    int useLennardJones = 0;
516 <    int useElectrostatic = 0;
517 <    int useEAM = 0;
518 <    int useCharge = 0;
519 <    int useDirectional = 0;
520 <    int useDipole = 0;
521 <    int useGayBerne = 0;
522 <    int useSticky = 0;
523 <    int useStickyPower = 0;
524 <    int useShape = 0;
525 <    int useFLARB = 0; //it is not in AtomType yet
526 <    int useDirectionalAtom = 0;    
527 <    int useElectrostatics = 0;
528 <    //usePBC and useRF are from simParams
529 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
530 <    int useRF;
531 <    std::string myMethod;
691 >    // loop over the found atom types on this processor, and add their
692 >    // numerical idents to a vector:
693  
694 <    // set the useRF logical
695 <    useRF = 0;
696 <    if (simParams_->haveElectrostaticSummationMethod()) {
697 <        myMethod = simParams_->getElectrostaticSummationMethod();
537 <        if (myMethod == "REACTION_FIELD")
538 <             useRF = 1;
539 <    }
694 >    vector<int> foundTypes;
695 >    set<AtomType*>::iterator i;
696 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
697 >      foundTypes.push_back( (*i)->getIdent() );
698  
699 <    //loop over all of the atom types
700 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
701 <      useLennardJones |= (*i)->isLennardJones();
702 <      useElectrostatic |= (*i)->isElectrostatic();
703 <      useEAM |= (*i)->isEAM();
704 <      useCharge |= (*i)->isCharge();
705 <      useDirectional |= (*i)->isDirectional();
548 <      useDipole |= (*i)->isDipole();
549 <      useGayBerne |= (*i)->isGayBerne();
550 <      useSticky |= (*i)->isSticky();
551 <      useStickyPower |= (*i)->isStickyPower();
552 <      useShape |= (*i)->isShape();
553 <    }
699 >    // count_local holds the number of found types on this processor
700 >    int count_local = foundTypes.size();
701 >
702 >    // count holds the total number of found types on all processors
703 >    // (some will be redundant with the ones found locally):
704 >    int count;
705 >    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
706  
707 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
708 <      useDirectionalAtom = 1;
709 <    }
707 >    // create a vector to hold the globally found types, and resize it:
708 >    vector<int> ftGlobal;
709 >    ftGlobal.resize(count);
710 >    vector<int> counts;
711  
712 <    if (useCharge || useDipole) {
713 <      useElectrostatics = 1;
714 <    }
712 >    int nproc = MPI::COMM_WORLD.Get_size();
713 >    counts.resize(nproc);
714 >    vector<int> disps;
715 >    disps.resize(nproc);
716  
717 < #ifdef IS_MPI    
718 <    int temp;
717 >    // now spray out the foundTypes to all the other processors:
718 >    
719 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
720 >                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
721  
722 <    temp = usePBC;
723 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
724 <
725 <    temp = useDirectionalAtom;
726 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
727 <
572 <    temp = useLennardJones;
573 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
574 <
575 <    temp = useElectrostatics;
576 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
577 <
578 <    temp = useCharge;
579 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
580 <
581 <    temp = useDipole;
582 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
583 <
584 <    temp = useSticky;
585 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
586 <
587 <    temp = useStickyPower;
588 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
722 >    // foundIdents is a stl set, so inserting an already found ident
723 >    // will have no effect.
724 >    set<int> foundIdents;
725 >    vector<int>::iterator j;
726 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
727 >      foundIdents.insert((*j));
728      
729 <    temp = useGayBerne;
730 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
729 >    // now iterate over the foundIdents and get the actual atom types
730 >    // that correspond to these:
731 >    set<int>::iterator it;
732 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
733 >      atomTypes.insert( forceField_->getAtomType((*it)) );
734 >
735 > #endif
736 >    
737 >    return atomTypes;        
738 >  }
739  
740 <    temp = useEAM;
741 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
740 >  void SimInfo::setupSimVariables() {
741 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
742 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
743 >    calcBoxDipole_ = false;
744 >    if ( simParams_->haveAccumulateBoxDipole() )
745 >      if ( simParams_->getAccumulateBoxDipole() ) {
746 >        calcBoxDipole_ = true;      
747 >      }
748  
749 <    temp = useShape;
750 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
749 >    set<AtomType*>::iterator i;
750 >    set<AtomType*> atomTypes;
751 >    atomTypes = getSimulatedAtomTypes();    
752 >    int usesElectrostatic = 0;
753 >    int usesMetallic = 0;
754 >    int usesDirectional = 0;
755 >    //loop over all of the atom types
756 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
757 >      usesElectrostatic |= (*i)->isElectrostatic();
758 >      usesMetallic |= (*i)->isMetal();
759 >      usesDirectional |= (*i)->isDirectional();
760 >    }
761  
762 <    temp = useFLARB;
763 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
762 > #ifdef IS_MPI    
763 >    int temp;
764 >    temp = usesDirectional;
765 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
766  
767 <    temp = useRF;
768 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
767 >    temp = usesMetallic;
768 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
769  
770 +    temp = usesElectrostatic;
771 +    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
772   #endif
773 +  }
774  
607    fInfo_.SIM_uses_PBC = usePBC;    
608    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
609    fInfo_.SIM_uses_LennardJones = useLennardJones;
610    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
611    fInfo_.SIM_uses_Charges = useCharge;
612    fInfo_.SIM_uses_Dipoles = useDipole;
613    fInfo_.SIM_uses_Sticky = useSticky;
614    fInfo_.SIM_uses_StickyPower = useStickyPower;
615    fInfo_.SIM_uses_GayBerne = useGayBerne;
616    fInfo_.SIM_uses_EAM = useEAM;
617    fInfo_.SIM_uses_Shapes = useShape;
618    fInfo_.SIM_uses_FLARB = useFLARB;
619    fInfo_.SIM_uses_RF = useRF;
775  
776 <    if( fInfo_.SIM_uses_Dipoles && myMethod == "REACTION_FIELD") {
776 >  vector<int> SimInfo::getGlobalAtomIndices() {
777 >    SimInfo::MoleculeIterator mi;
778 >    Molecule* mol;
779 >    Molecule::AtomIterator ai;
780 >    Atom* atom;
781  
782 <      if (simParams_->haveDielectric()) {
783 <        fInfo_.dielect = simParams_->getDielectric();
784 <      } else {
785 <        sprintf(painCave.errMsg,
786 <                "SimSetup Error: No Dielectric constant was set.\n"
787 <                "\tYou are trying to use Reaction Field without"
629 <                "\tsetting a dielectric constant!\n");
630 <        painCave.isFatal = 1;
631 <        simError();
782 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
783 >    
784 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
785 >      
786 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
787 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
788        }
633        
634    } else {
635      fInfo_.dielect = 0.0;
789      }
790 <
790 >    return GlobalAtomIndices;
791    }
792  
640  void SimInfo::setupFortranSim() {
641    int isError;
642    int nExclude;
643    std::vector<int> fortranGlobalGroupMembership;
644    
645    nExclude = exclude_.getSize();
646    isError = 0;
793  
794 <    //globalGroupMembership_ is filled by SimCreator    
795 <    for (int i = 0; i < nGlobalAtoms_; i++) {
796 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
794 >  vector<int> SimInfo::getGlobalGroupIndices() {
795 >    SimInfo::MoleculeIterator mi;
796 >    Molecule* mol;
797 >    Molecule::CutoffGroupIterator ci;
798 >    CutoffGroup* cg;
799 >
800 >    vector<int> GlobalGroupIndices;
801 >    
802 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
803 >      
804 >      //local index of cutoff group is trivial, it only depends on the
805 >      //order of travesing
806 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
807 >           cg = mol->nextCutoffGroup(ci)) {
808 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
809 >      }        
810      }
811 +    return GlobalGroupIndices;
812 +  }
813  
814 +
815 +  void SimInfo::prepareTopology() {
816 +    int nExclude, nOneTwo, nOneThree, nOneFour;
817 +
818      //calculate mass ratio of cutoff group
654    std::vector<double> mfact;
819      SimInfo::MoleculeIterator mi;
820      Molecule* mol;
821      Molecule::CutoffGroupIterator ci;
822      CutoffGroup* cg;
823      Molecule::AtomIterator ai;
824      Atom* atom;
825 <    double totalMass;
825 >    RealType totalMass;
826  
827 <    //to avoid memory reallocation, reserve enough space for mfact
828 <    mfact.reserve(getNCutoffGroups());
827 >    //to avoid memory reallocation, reserve enough space for massFactors_
828 >    massFactors_.clear();
829 >    massFactors_.reserve(getNCutoffGroups());
830      
831      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
832 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
832 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
833 >           cg = mol->nextCutoffGroup(ci)) {
834  
835          totalMass = cg->getMass();
836          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
837            // Check for massless groups - set mfact to 1 if true
838            if (totalMass != 0)
839 <            mfact.push_back(atom->getMass()/totalMass);
839 >            massFactors_.push_back(atom->getMass()/totalMass);
840            else
841 <            mfact.push_back( 1.0 );
841 >            massFactors_.push_back( 1.0 );
842          }
677
843        }      
844      }
845  
846 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
682 <    std::vector<int> identArray;
846 >    // Build the identArray_
847  
848 <    //to avoid memory reallocation, reserve enough space identArray
849 <    identArray.reserve(getNAtoms());
686 <    
848 >    identArray_.clear();
849 >    identArray_.reserve(getNAtoms());    
850      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
851        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
852 <        identArray.push_back(atom->getIdent());
852 >        identArray_.push_back(atom->getIdent());
853        }
854      }    
692
693    //fill molMembershipArray
694    //molMembershipArray is filled by SimCreator    
695    std::vector<int> molMembershipArray(nGlobalAtoms_);
696    for (int i = 0; i < nGlobalAtoms_; i++) {
697      molMembershipArray[i] = globalMolMembership_[i] + 1;
698    }
855      
856 <    //setup fortran simulation
701 <    int nGlobalExcludes = 0;
702 <    int* globalExcludes = NULL;
703 <    int* excludeList = exclude_.getExcludeList();
704 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
705 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
706 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
856 >    //scan topology
857  
858 <    if( isError ){
858 >    nExclude = excludedInteractions_.getSize();
859 >    nOneTwo = oneTwoInteractions_.getSize();
860 >    nOneThree = oneThreeInteractions_.getSize();
861 >    nOneFour = oneFourInteractions_.getSize();
862  
863 <      sprintf( painCave.errMsg,
864 <               "There was an error setting the simulation information in fortran.\n" );
865 <      painCave.isFatal = 1;
866 <      painCave.severity = OOPSE_ERROR;
714 <      simError();
715 <    }
863 >    int* excludeList = excludedInteractions_.getPairList();
864 >    int* oneTwoList = oneTwoInteractions_.getPairList();
865 >    int* oneThreeList = oneThreeInteractions_.getPairList();
866 >    int* oneFourList = oneFourInteractions_.getPairList();
867  
868 < #ifdef IS_MPI
869 <    sprintf( checkPointMsg,
870 <             "succesfully sent the simulation information to fortran.\n");
871 <    MPIcheckPoint();
872 < #endif // is_mpi
873 <  }
874 <
724 <
725 < #ifdef IS_MPI
726 <  void SimInfo::setupFortranParallel() {
868 >    //setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0],
869 >    //               &nExclude, excludeList,
870 >    //               &nOneTwo, oneTwoList,
871 >    //               &nOneThree, oneThreeList,
872 >    //               &nOneFour, oneFourList,
873 >    //               &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
874 >    //               &fortranGlobalGroupMembership[0], &isError);
875      
876 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
729 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
730 <    std::vector<int> localToGlobalCutoffGroupIndex;
731 <    SimInfo::MoleculeIterator mi;
732 <    Molecule::AtomIterator ai;
733 <    Molecule::CutoffGroupIterator ci;
734 <    Molecule* mol;
735 <    Atom* atom;
736 <    CutoffGroup* cg;
737 <    mpiSimData parallelData;
738 <    int isError;
739 <
740 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
741 <
742 <      //local index(index in DataStorge) of atom is important
743 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
744 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
745 <      }
746 <
747 <      //local index of cutoff group is trivial, it only depends on the order of travesing
748 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
749 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
750 <      }        
751 <        
752 <    }
753 <
754 <    //fill up mpiSimData struct
755 <    parallelData.nMolGlobal = getNGlobalMolecules();
756 <    parallelData.nMolLocal = getNMolecules();
757 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
758 <    parallelData.nAtomsLocal = getNAtoms();
759 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
760 <    parallelData.nGroupsLocal = getNCutoffGroups();
761 <    parallelData.myNode = worldRank;
762 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
763 <
764 <    //pass mpiSimData struct and index arrays to fortran
765 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
766 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
767 <                    &localToGlobalCutoffGroupIndex[0], &isError);
768 <
769 <    if (isError) {
770 <      sprintf(painCave.errMsg,
771 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
772 <      painCave.isFatal = 1;
773 <      simError();
774 <    }
775 <
776 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
777 <    MPIcheckPoint();
778 <
779 <
780 <  }
781 <
782 < #endif
783 <
784 <  double SimInfo::calcMaxCutoffRadius() {
785 <
786 <
787 <    std::set<AtomType*> atomTypes;
788 <    std::set<AtomType*>::iterator i;
789 <    std::vector<double> cutoffRadius;
790 <
791 <    //get the unique atom types
792 <    atomTypes = getUniqueAtomTypes();
793 <
794 <    //query the max cutoff radius among these atom types
795 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
796 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
797 <    }
798 <
799 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
800 < #ifdef IS_MPI
801 <    //pick the max cutoff radius among the processors
802 < #endif
803 <
804 <    return maxCutoffRadius;
876 >    topologyDone_ = true;
877    }
878  
807  void SimInfo::getCutoff(double& rcut, double& rsw) {
808    
809    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
810        
811      if (!simParams_->haveCutoffRadius()){
812        sprintf(painCave.errMsg,
813                "SimCreator Warning: No value was set for the cutoffRadius.\n"
814                "\tOOPSE will use a default value of 15.0 angstroms"
815                "\tfor the cutoffRadius.\n");
816        painCave.isFatal = 0;
817        simError();
818        rcut = 15.0;
819      } else{
820        rcut = simParams_->getCutoffRadius();
821      }
822
823      if (!simParams_->haveSwitchingRadius()){
824        sprintf(painCave.errMsg,
825                "SimCreator Warning: No value was set for switchingRadius.\n"
826                "\tOOPSE will use a default value of\n"
827                "\t0.95 * cutoffRadius for the switchingRadius\n");
828        painCave.isFatal = 0;
829        simError();
830        rsw = 0.95 * rcut;
831      } else{
832        rsw = simParams_->getSwitchingRadius();
833      }
834
835    } else {
836      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
837      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
838        
839      if (simParams_->haveCutoffRadius()) {
840        rcut = simParams_->getCutoffRadius();
841      } else {
842        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
843        rcut = calcMaxCutoffRadius();
844      }
845
846      if (simParams_->haveSwitchingRadius()) {
847        rsw  = simParams_->getSwitchingRadius();
848      } else {
849        rsw = rcut;
850      }
851    
852    }
853  }
854
855  void SimInfo::setupCutoff() {    
856    getCutoff(rcut_, rsw_);    
857    double rnblist = rcut_ + 1; // skin of neighbor list
858
859    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
860    
861    int cp =  TRADITIONAL_CUTOFF_POLICY;
862    if (simParams_->haveCutoffPolicy()) {
863      std::string myPolicy = simParams_->getCutoffPolicy();
864      toUpper(myPolicy);
865      if (myPolicy == "MIX") {
866        cp = MIX_CUTOFF_POLICY;
867      } else {
868        if (myPolicy == "MAX") {
869          cp = MAX_CUTOFF_POLICY;
870        } else {
871          if (myPolicy == "TRADITIONAL") {            
872            cp = TRADITIONAL_CUTOFF_POLICY;
873          } else {
874            // throw error        
875            sprintf( painCave.errMsg,
876                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
877            painCave.isFatal = 1;
878            simError();
879          }    
880        }          
881      }
882    }
883
884
885    if (simParams_->haveSkinThickness()) {
886      double skinThickness = simParams_->getSkinThickness();
887    }
888
889    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
890    // also send cutoff notification to electrostatics
891    setElectrostaticCutoffRadius(&rcut_);
892  }
893
894  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
895    
896    int errorOut;
897    int esm =  NONE;
898    double alphaVal;
899    double dielectric;
900
901    errorOut = isError;
902    alphaVal = simParams_->getDampingAlpha();
903    dielectric = simParams_->getDielectric();
904
905    if (simParams_->haveElectrostaticSummationMethod()) {
906      std::string myMethod = simParams_->getElectrostaticSummationMethod();
907      toUpper(myMethod);
908      if (myMethod == "NONE") {
909        esm = NONE;
910      } else {
911        if (myMethod == "UNDAMPED_WOLF") {
912          esm = UNDAMPED_WOLF;
913        } else {
914          if (myMethod == "DAMPED_WOLF") {            
915            esm = DAMPED_WOLF;
916            if (!simParams_->haveDampingAlpha()) {
917              //throw error
918              sprintf( painCave.errMsg,
919                       "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", alphaVal);
920              painCave.isFatal = 0;
921              simError();
922            }
923          } else {
924            if (myMethod == "REACTION_FIELD") {
925              esm = REACTION_FIELD;
926            } else {
927              // throw error        
928              sprintf( painCave.errMsg,
929                       "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() );
930              painCave.isFatal = 1;
931              simError();
932            }    
933          }          
934        }
935      }
936    }
937    // let's pass some summation method variables to fortran
938    setElectrostaticSummationMethod( &esm );
939    setDampedWolfAlpha( &alphaVal );
940    setReactionFieldDielectric( &dielectric );
941    initFortranFF( &esm, &errorOut );
942  }
943
879    void SimInfo::addProperty(GenericData* genData) {
880      properties_.addProperty(genData);  
881    }
882  
883 <  void SimInfo::removeProperty(const std::string& propName) {
883 >  void SimInfo::removeProperty(const string& propName) {
884      properties_.removeProperty(propName);  
885    }
886  
# Line 953 | Line 888 | namespace oopse {
888      properties_.clearProperties();
889    }
890  
891 <  std::vector<std::string> SimInfo::getPropertyNames() {
891 >  vector<string> SimInfo::getPropertyNames() {
892      return properties_.getPropertyNames();  
893    }
894        
895 <  std::vector<GenericData*> SimInfo::getProperties() {
895 >  vector<GenericData*> SimInfo::getProperties() {
896      return properties_.getProperties();
897    }
898  
899 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
899 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
900      return properties_.getPropertyByName(propName);
901    }
902  
# Line 975 | Line 910 | namespace oopse {
910      Molecule* mol;
911      RigidBody* rb;
912      Atom* atom;
913 +    CutoffGroup* cg;
914      SimInfo::MoleculeIterator mi;
915      Molecule::RigidBodyIterator rbIter;
916 <    Molecule::AtomIterator atomIter;;
916 >    Molecule::AtomIterator atomIter;
917 >    Molecule::CutoffGroupIterator cgIter;
918  
919      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
920          
# Line 988 | Line 925 | namespace oopse {
925        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
926          rb->setSnapshotManager(sman_);
927        }
928 +
929 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
930 +        cg->setSnapshotManager(sman_);
931 +      }
932      }    
933      
934    }
# Line 997 | Line 938 | namespace oopse {
938      Molecule* mol;
939  
940      Vector3d comVel(0.0);
941 <    double totalMass = 0.0;
941 >    RealType totalMass = 0.0;
942      
943  
944      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
945 <      double mass = mol->getMass();
945 >      RealType mass = mol->getMass();
946        totalMass += mass;
947        comVel += mass * mol->getComVel();
948      }  
949  
950   #ifdef IS_MPI
951 <    double tmpMass = totalMass;
951 >    RealType tmpMass = totalMass;
952      Vector3d tmpComVel(comVel);    
953 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
954 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
953 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
954 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
955   #endif
956  
957      comVel /= totalMass;
# Line 1023 | Line 964 | namespace oopse {
964      Molecule* mol;
965  
966      Vector3d com(0.0);
967 <    double totalMass = 0.0;
967 >    RealType totalMass = 0.0;
968      
969      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
970 <      double mass = mol->getMass();
970 >      RealType mass = mol->getMass();
971        totalMass += mass;
972        com += mass * mol->getCom();
973      }  
974  
975   #ifdef IS_MPI
976 <    double tmpMass = totalMass;
976 >    RealType tmpMass = totalMass;
977      Vector3d tmpCom(com);    
978 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
979 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
978 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
979 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
980   #endif
981  
982      com /= totalMass;
# Line 1044 | Line 985 | namespace oopse {
985  
986    }        
987  
988 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
988 >  ostream& operator <<(ostream& o, SimInfo& info) {
989  
990      return o;
991    }
# Line 1059 | Line 1000 | namespace oopse {
1000        Molecule* mol;
1001        
1002      
1003 <      double totalMass = 0.0;
1003 >      RealType totalMass = 0.0;
1004      
1005  
1006        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1007 <         double mass = mol->getMass();
1007 >         RealType mass = mol->getMass();
1008           totalMass += mass;
1009           com += mass * mol->getCom();
1010           comVel += mass * mol->getComVel();          
1011        }  
1012        
1013   #ifdef IS_MPI
1014 <      double tmpMass = totalMass;
1014 >      RealType tmpMass = totalMass;
1015        Vector3d tmpCom(com);  
1016        Vector3d tmpComVel(comVel);
1017 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1018 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1019 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1017 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1018 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1019 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1020   #endif
1021        
1022        com /= totalMass;
# Line 1087 | Line 1028 | namespace oopse {
1028  
1029  
1030         [  Ixx -Ixy  -Ixz ]
1031 <  J =| -Iyx  Iyy  -Iyz |
1031 >    J =| -Iyx  Iyy  -Iyz |
1032         [ -Izx -Iyz   Izz ]
1033      */
1034  
1035     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1036        
1037  
1038 <      double xx = 0.0;
1039 <      double yy = 0.0;
1040 <      double zz = 0.0;
1041 <      double xy = 0.0;
1042 <      double xz = 0.0;
1043 <      double yz = 0.0;
1038 >      RealType xx = 0.0;
1039 >      RealType yy = 0.0;
1040 >      RealType zz = 0.0;
1041 >      RealType xy = 0.0;
1042 >      RealType xz = 0.0;
1043 >      RealType yz = 0.0;
1044        Vector3d com(0.0);
1045        Vector3d comVel(0.0);
1046        
# Line 1111 | Line 1052 | namespace oopse {
1052        Vector3d thisq(0.0);
1053        Vector3d thisv(0.0);
1054  
1055 <      double thisMass = 0.0;
1055 >      RealType thisMass = 0.0;
1056      
1057        
1058        
# Line 1149 | Line 1090 | namespace oopse {
1090   #ifdef IS_MPI
1091        Mat3x3d tmpI(inertiaTensor);
1092        Vector3d tmpAngMom;
1093 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1094 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1093 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1094 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1095   #endif
1096                
1097        return;
# Line 1171 | Line 1112 | namespace oopse {
1112        Vector3d thisr(0.0);
1113        Vector3d thisp(0.0);
1114        
1115 <      double thisMass;
1115 >      RealType thisMass;
1116        
1117        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1118          thisMass = mol->getMass();
# Line 1184 | Line 1125 | namespace oopse {
1125        
1126   #ifdef IS_MPI
1127        Vector3d tmpAngMom;
1128 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1128 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1129   #endif
1130        
1131        return angularMomentum;
1132     }
1133    
1134 <  
1135 < }//end namespace oopse
1134 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1135 >    return IOIndexToIntegrableObject.at(index);
1136 >  }
1137 >  
1138 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1139 >    IOIndexToIntegrableObject= v;
1140 >  }
1141  
1142 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1143 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1144 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1145 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1146 +  */
1147 +  void SimInfo::getGyrationalVolume(RealType &volume){
1148 +    Mat3x3d intTensor;
1149 +    RealType det;
1150 +    Vector3d dummyAngMom;
1151 +    RealType sysconstants;
1152 +    RealType geomCnst;
1153 +
1154 +    geomCnst = 3.0/2.0;
1155 +    /* Get the inertial tensor and angular momentum for free*/
1156 +    getInertiaTensor(intTensor,dummyAngMom);
1157 +    
1158 +    det = intTensor.determinant();
1159 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1160 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1161 +    return;
1162 +  }
1163 +
1164 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1165 +    Mat3x3d intTensor;
1166 +    Vector3d dummyAngMom;
1167 +    RealType sysconstants;
1168 +    RealType geomCnst;
1169 +
1170 +    geomCnst = 3.0/2.0;
1171 +    /* Get the inertial tensor and angular momentum for free*/
1172 +    getInertiaTensor(intTensor,dummyAngMom);
1173 +    
1174 +    detI = intTensor.determinant();
1175 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1176 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1177 +    return;
1178 +  }
1179 + /*
1180 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1181 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1182 +      sdByGlobalIndex_ = v;
1183 +    }
1184 +
1185 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1186 +      //assert(index < nAtoms_ + nRigidBodies_);
1187 +      return sdByGlobalIndex_.at(index);
1188 +    }  
1189 + */  
1190 +  int SimInfo::getNGlobalConstraints() {
1191 +    int nGlobalConstraints;
1192 + #ifdef IS_MPI
1193 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1194 +                  MPI_COMM_WORLD);    
1195 + #else
1196 +    nGlobalConstraints =  nConstraints_;
1197 + #endif
1198 +    return nGlobalConstraints;
1199 +  }
1200 +
1201 + }//end namespace OpenMD
1202 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 665 by tim, Thu Oct 13 22:26:47 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1569 by gezelter, Thu May 26 13:55:04 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines