ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 606 by chrisfen, Fri Sep 16 19:35:14 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1534 by gezelter, Wed Dec 29 21:53:28 2010 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 < #include "UseTheForce/fCutoffPolicy.h"
56 < #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
56 > #include "primitives/StuntDouble.hpp"
57   #include "UseTheForce/doForces_interface.h"
58 < #include "UseTheForce/notifyCutoffs_interface.h"
58 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
59   #include "utils/MemoryUtils.hpp"
60   #include "utils/simError.h"
61   #include "selection/SelectionManager.hpp"
62 + #include "io/ForceFieldOptions.hpp"
63 + #include "UseTheForce/ForceField.hpp"
64 + #include "nonbonded/SwitchingFunction.hpp"
65  
66   #ifdef IS_MPI
67   #include "UseTheForce/mpiComponentPlan.h"
68   #include "UseTheForce/DarkSide/simParallel_interface.h"
69   #endif
70  
71 < namespace oopse {
72 <
73 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
74 <                   ForceField* ff, Globals* simParams) :
75 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
76 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
71 > using namespace std;
72 > namespace OpenMD {
73 >  
74 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
75 >    forceField_(ff), simParams_(simParams),
76 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
77      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
78      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
79 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
80 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
81 <    sman_(NULL), fortranInitialized_(false) {
82 <
80 <            
81 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
82 <      MoleculeStamp* molStamp;
83 <      int nMolWithSameStamp;
84 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
85 <      int nGroups = 0;          //total cutoff groups defined in meta-data file
86 <      CutoffGroupStamp* cgStamp;    
87 <      RigidBodyStamp* rbStamp;
88 <      int nRigidAtoms = 0;
79 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
80 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
81 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
82 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
83      
84 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
85 <        molStamp = i->first;
86 <        nMolWithSameStamp = i->second;
87 <        
88 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
89 <
90 <        //calculate atoms in molecules
91 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
92 <
93 <
94 <        //calculate atoms in cutoff groups
95 <        int nAtomsInGroups = 0;
96 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
97 <        
98 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
99 <          cgStamp = molStamp->getCutoffGroup(j);
100 <          nAtomsInGroups += cgStamp->getNMembers();
101 <        }
102 <
103 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
104 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
105 <
106 <        //calculate atoms in rigid bodies
107 <        int nAtomsInRigidBodies = 0;
108 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
109 <        
116 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
117 <          rbStamp = molStamp->getRigidBody(j);
118 <          nAtomsInRigidBodies += rbStamp->getNMembers();
119 <        }
120 <
121 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
122 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
123 <        
84 >    MoleculeStamp* molStamp;
85 >    int nMolWithSameStamp;
86 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
88 >    CutoffGroupStamp* cgStamp;    
89 >    RigidBodyStamp* rbStamp;
90 >    int nRigidAtoms = 0;
91 >    
92 >    vector<Component*> components = simParams->getComponents();
93 >    
94 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
95 >      molStamp = (*i)->getMoleculeStamp();
96 >      nMolWithSameStamp = (*i)->getNMol();
97 >      
98 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
99 >      
100 >      //calculate atoms in molecules
101 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
102 >      
103 >      //calculate atoms in cutoff groups
104 >      int nAtomsInGroups = 0;
105 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
106 >      
107 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
108 >        cgStamp = molStamp->getCutoffGroupStamp(j);
109 >        nAtomsInGroups += cgStamp->getNMembers();
110        }
111 <
112 <      //every free atom (atom does not belong to cutoff groups) is a cutoff group
113 <      //therefore the total number of cutoff groups in the system is equal to
114 <      //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
115 <      //file plus the number of cutoff groups defined in meta-data file
116 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
117 <
118 <      //every free atom (atom does not belong to rigid bodies) is an integrable object
119 <      //therefore the total number of  integrable objects in the system is equal to
120 <      //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
121 <      //file plus the number of  rigid bodies defined in meta-data file
122 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
123 <
124 <      nGlobalMols_ = molStampIds_.size();
125 <
126 < #ifdef IS_MPI    
127 <      molToProcMap_.resize(nGlobalMols_);
142 < #endif
143 <
111 >      
112 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
113 >      
114 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
115 >      
116 >      //calculate atoms in rigid bodies
117 >      int nAtomsInRigidBodies = 0;
118 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
119 >      
120 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
121 >        rbStamp = molStamp->getRigidBodyStamp(j);
122 >        nAtomsInRigidBodies += rbStamp->getNMembers();
123 >      }
124 >      
125 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
126 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
127 >      
128      }
129 <
129 >    
130 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
131 >    //group therefore the total number of cutoff groups in the system is
132 >    //equal to the total number of atoms minus number of atoms belong to
133 >    //cutoff group defined in meta-data file plus the number of cutoff
134 >    //groups defined in meta-data file
135 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
136 >    
137 >    //every free atom (atom does not belong to rigid bodies) is an
138 >    //integrable object therefore the total number of integrable objects
139 >    //in the system is equal to the total number of atoms minus number of
140 >    //atoms belong to rigid body defined in meta-data file plus the number
141 >    //of rigid bodies defined in meta-data file
142 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
143 >      + nGlobalRigidBodies_;
144 >    
145 >    nGlobalMols_ = molStampIds_.size();
146 >    molToProcMap_.resize(nGlobalMols_);
147 >  }
148 >  
149    SimInfo::~SimInfo() {
150 <    std::map<int, Molecule*>::iterator i;
150 >    map<int, Molecule*>::iterator i;
151      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
152        delete i->second;
153      }
154      molecules_.clear();
155        
153    delete stamps_;
156      delete sman_;
157      delete simParams_;
158      delete forceField_;
159    }
160  
159  int SimInfo::getNGlobalConstraints() {
160    int nGlobalConstraints;
161 #ifdef IS_MPI
162    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
163                  MPI_COMM_WORLD);    
164 #else
165    nGlobalConstraints =  nConstraints_;
166 #endif
167    return nGlobalConstraints;
168  }
161  
162    bool SimInfo::addMolecule(Molecule* mol) {
163      MoleculeIterator i;
164 <
164 >    
165      i = molecules_.find(mol->getGlobalIndex());
166      if (i == molecules_.end() ) {
167 <
168 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
169 <        
167 >      
168 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
169 >      
170        nAtoms_ += mol->getNAtoms();
171        nBonds_ += mol->getNBonds();
172        nBends_ += mol->getNBends();
173        nTorsions_ += mol->getNTorsions();
174 +      nInversions_ += mol->getNInversions();
175        nRigidBodies_ += mol->getNRigidBodies();
176        nIntegrableObjects_ += mol->getNIntegrableObjects();
177        nCutoffGroups_ += mol->getNCutoffGroups();
178        nConstraints_ += mol->getNConstraintPairs();
179 <
180 <      addExcludePairs(mol);
181 <        
179 >      
180 >      addInteractionPairs(mol);
181 >      
182        return true;
183      } else {
184        return false;
185      }
186    }
187 <
187 >  
188    bool SimInfo::removeMolecule(Molecule* mol) {
189      MoleculeIterator i;
190      i = molecules_.find(mol->getGlobalIndex());
# Line 204 | Line 197 | namespace oopse {
197        nBonds_ -= mol->getNBonds();
198        nBends_ -= mol->getNBends();
199        nTorsions_ -= mol->getNTorsions();
200 +      nInversions_ -= mol->getNInversions();
201        nRigidBodies_ -= mol->getNRigidBodies();
202        nIntegrableObjects_ -= mol->getNIntegrableObjects();
203        nCutoffGroups_ -= mol->getNCutoffGroups();
204        nConstraints_ -= mol->getNConstraintPairs();
205  
206 <      removeExcludePairs(mol);
206 >      removeInteractionPairs(mol);
207        molecules_.erase(mol->getGlobalIndex());
208  
209        delete mol;
# Line 218 | Line 212 | namespace oopse {
212      } else {
213        return false;
214      }
221
222
215    }    
216  
217          
# Line 237 | Line 229 | namespace oopse {
229    void SimInfo::calcNdf() {
230      int ndf_local;
231      MoleculeIterator i;
232 <    std::vector<StuntDouble*>::iterator j;
232 >    vector<StuntDouble*>::iterator j;
233      Molecule* mol;
234      StuntDouble* integrableObject;
235  
# Line 257 | Line 249 | namespace oopse {
249            }
250          }
251              
252 <      }//end for (integrableObject)
253 <    }// end for (mol)
252 >      }
253 >    }
254      
255      // n_constraints is local, so subtract them on each processor
256      ndf_local -= nConstraints_;
# Line 275 | Line 267 | namespace oopse {
267  
268    }
269  
270 +  int SimInfo::getFdf() {
271 + #ifdef IS_MPI
272 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
273 + #else
274 +    fdf_ = fdf_local;
275 + #endif
276 +    return fdf_;
277 +  }
278 +    
279    void SimInfo::calcNdfRaw() {
280      int ndfRaw_local;
281  
282      MoleculeIterator i;
283 <    std::vector<StuntDouble*>::iterator j;
283 >    vector<StuntDouble*>::iterator j;
284      Molecule* mol;
285      StuntDouble* integrableObject;
286  
# Line 326 | Line 327 | namespace oopse {
327  
328    }
329  
330 <  void SimInfo::addExcludePairs(Molecule* mol) {
331 <    std::vector<Bond*>::iterator bondIter;
332 <    std::vector<Bend*>::iterator bendIter;
333 <    std::vector<Torsion*>::iterator torsionIter;
330 >  void SimInfo::addInteractionPairs(Molecule* mol) {
331 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
332 >    vector<Bond*>::iterator bondIter;
333 >    vector<Bend*>::iterator bendIter;
334 >    vector<Torsion*>::iterator torsionIter;
335 >    vector<Inversion*>::iterator inversionIter;
336      Bond* bond;
337      Bend* bend;
338      Torsion* torsion;
339 +    Inversion* inversion;
340      int a;
341      int b;
342      int c;
343      int d;
344 +
345 +    // atomGroups can be used to add special interaction maps between
346 +    // groups of atoms that are in two separate rigid bodies.
347 +    // However, most site-site interactions between two rigid bodies
348 +    // are probably not special, just the ones between the physically
349 +    // bonded atoms.  Interactions *within* a single rigid body should
350 +    // always be excluded.  These are done at the bottom of this
351 +    // function.
352 +
353 +    map<int, set<int> > atomGroups;
354 +    Molecule::RigidBodyIterator rbIter;
355 +    RigidBody* rb;
356 +    Molecule::IntegrableObjectIterator ii;
357 +    StuntDouble* integrableObject;
358      
359 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
359 >    for (integrableObject = mol->beginIntegrableObject(ii);
360 >         integrableObject != NULL;
361 >         integrableObject = mol->nextIntegrableObject(ii)) {
362 >      
363 >      if (integrableObject->isRigidBody()) {
364 >        rb = static_cast<RigidBody*>(integrableObject);
365 >        vector<Atom*> atoms = rb->getAtoms();
366 >        set<int> rigidAtoms;
367 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
368 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
369 >        }
370 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
371 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
372 >        }      
373 >      } else {
374 >        set<int> oneAtomSet;
375 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
376 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
377 >      }
378 >    }  
379 >          
380 >    for (bond= mol->beginBond(bondIter); bond != NULL;
381 >         bond = mol->nextBond(bondIter)) {
382 >
383        a = bond->getAtomA()->getGlobalIndex();
384 <      b = bond->getAtomB()->getGlobalIndex();        
385 <      exclude_.addPair(a, b);
384 >      b = bond->getAtomB()->getGlobalIndex();  
385 >    
386 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
387 >        oneTwoInteractions_.addPair(a, b);
388 >      } else {
389 >        excludedInteractions_.addPair(a, b);
390 >      }
391      }
392  
393 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
393 >    for (bend= mol->beginBend(bendIter); bend != NULL;
394 >         bend = mol->nextBend(bendIter)) {
395 >
396        a = bend->getAtomA()->getGlobalIndex();
397        b = bend->getAtomB()->getGlobalIndex();        
398        c = bend->getAtomC()->getGlobalIndex();
399 +      
400 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
401 +        oneTwoInteractions_.addPair(a, b);      
402 +        oneTwoInteractions_.addPair(b, c);
403 +      } else {
404 +        excludedInteractions_.addPair(a, b);
405 +        excludedInteractions_.addPair(b, c);
406 +      }
407  
408 <      exclude_.addPair(a, b);
409 <      exclude_.addPair(a, c);
410 <      exclude_.addPair(b, c);        
408 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
409 >        oneThreeInteractions_.addPair(a, c);      
410 >      } else {
411 >        excludedInteractions_.addPair(a, c);
412 >      }
413      }
414  
415 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
415 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
416 >         torsion = mol->nextTorsion(torsionIter)) {
417 >
418        a = torsion->getAtomA()->getGlobalIndex();
419        b = torsion->getAtomB()->getGlobalIndex();        
420        c = torsion->getAtomC()->getGlobalIndex();        
421 <      d = torsion->getAtomD()->getGlobalIndex();        
421 >      d = torsion->getAtomD()->getGlobalIndex();      
422  
423 <      exclude_.addPair(a, b);
424 <      exclude_.addPair(a, c);
425 <      exclude_.addPair(a, d);
426 <      exclude_.addPair(b, c);
427 <      exclude_.addPair(b, d);
428 <      exclude_.addPair(c, d);        
423 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
424 >        oneTwoInteractions_.addPair(a, b);      
425 >        oneTwoInteractions_.addPair(b, c);
426 >        oneTwoInteractions_.addPair(c, d);
427 >      } else {
428 >        excludedInteractions_.addPair(a, b);
429 >        excludedInteractions_.addPair(b, c);
430 >        excludedInteractions_.addPair(c, d);
431 >      }
432 >
433 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
434 >        oneThreeInteractions_.addPair(a, c);      
435 >        oneThreeInteractions_.addPair(b, d);      
436 >      } else {
437 >        excludedInteractions_.addPair(a, c);
438 >        excludedInteractions_.addPair(b, d);
439 >      }
440 >
441 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
442 >        oneFourInteractions_.addPair(a, d);      
443 >      } else {
444 >        excludedInteractions_.addPair(a, d);
445 >      }
446      }
447  
448 <    Molecule::RigidBodyIterator rbIter;
449 <    RigidBody* rb;
450 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
451 <      std::vector<Atom*> atoms = rb->getAtoms();
452 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
453 <        for (int j = i + 1; j < atoms.size(); ++j) {
448 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
449 >         inversion = mol->nextInversion(inversionIter)) {
450 >
451 >      a = inversion->getAtomA()->getGlobalIndex();
452 >      b = inversion->getAtomB()->getGlobalIndex();        
453 >      c = inversion->getAtomC()->getGlobalIndex();        
454 >      d = inversion->getAtomD()->getGlobalIndex();        
455 >
456 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
457 >        oneTwoInteractions_.addPair(a, b);      
458 >        oneTwoInteractions_.addPair(a, c);
459 >        oneTwoInteractions_.addPair(a, d);
460 >      } else {
461 >        excludedInteractions_.addPair(a, b);
462 >        excludedInteractions_.addPair(a, c);
463 >        excludedInteractions_.addPair(a, d);
464 >      }
465 >
466 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
467 >        oneThreeInteractions_.addPair(b, c);    
468 >        oneThreeInteractions_.addPair(b, d);    
469 >        oneThreeInteractions_.addPair(c, d);      
470 >      } else {
471 >        excludedInteractions_.addPair(b, c);
472 >        excludedInteractions_.addPair(b, d);
473 >        excludedInteractions_.addPair(c, d);
474 >      }
475 >    }
476 >
477 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
478 >         rb = mol->nextRigidBody(rbIter)) {
479 >      vector<Atom*> atoms = rb->getAtoms();
480 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
481 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
482            a = atoms[i]->getGlobalIndex();
483            b = atoms[j]->getGlobalIndex();
484 <          exclude_.addPair(a, b);
484 >          excludedInteractions_.addPair(a, b);
485          }
486        }
487      }        
488  
489    }
490  
491 <  void SimInfo::removeExcludePairs(Molecule* mol) {
492 <    std::vector<Bond*>::iterator bondIter;
493 <    std::vector<Bend*>::iterator bendIter;
494 <    std::vector<Torsion*>::iterator torsionIter;
491 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
492 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
493 >    vector<Bond*>::iterator bondIter;
494 >    vector<Bend*>::iterator bendIter;
495 >    vector<Torsion*>::iterator torsionIter;
496 >    vector<Inversion*>::iterator inversionIter;
497      Bond* bond;
498      Bend* bend;
499      Torsion* torsion;
500 +    Inversion* inversion;
501      int a;
502      int b;
503      int c;
504      int d;
505 +
506 +    map<int, set<int> > atomGroups;
507 +    Molecule::RigidBodyIterator rbIter;
508 +    RigidBody* rb;
509 +    Molecule::IntegrableObjectIterator ii;
510 +    StuntDouble* integrableObject;
511      
512 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
512 >    for (integrableObject = mol->beginIntegrableObject(ii);
513 >         integrableObject != NULL;
514 >         integrableObject = mol->nextIntegrableObject(ii)) {
515 >      
516 >      if (integrableObject->isRigidBody()) {
517 >        rb = static_cast<RigidBody*>(integrableObject);
518 >        vector<Atom*> atoms = rb->getAtoms();
519 >        set<int> rigidAtoms;
520 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
521 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
522 >        }
523 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
524 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
525 >        }      
526 >      } else {
527 >        set<int> oneAtomSet;
528 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
529 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
530 >      }
531 >    }  
532 >
533 >    for (bond= mol->beginBond(bondIter); bond != NULL;
534 >         bond = mol->nextBond(bondIter)) {
535 >      
536        a = bond->getAtomA()->getGlobalIndex();
537 <      b = bond->getAtomB()->getGlobalIndex();        
538 <      exclude_.removePair(a, b);
537 >      b = bond->getAtomB()->getGlobalIndex();  
538 >    
539 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
540 >        oneTwoInteractions_.removePair(a, b);
541 >      } else {
542 >        excludedInteractions_.removePair(a, b);
543 >      }
544      }
545  
546 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
546 >    for (bend= mol->beginBend(bendIter); bend != NULL;
547 >         bend = mol->nextBend(bendIter)) {
548 >
549        a = bend->getAtomA()->getGlobalIndex();
550        b = bend->getAtomB()->getGlobalIndex();        
551        c = bend->getAtomC()->getGlobalIndex();
552 +      
553 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
554 +        oneTwoInteractions_.removePair(a, b);      
555 +        oneTwoInteractions_.removePair(b, c);
556 +      } else {
557 +        excludedInteractions_.removePair(a, b);
558 +        excludedInteractions_.removePair(b, c);
559 +      }
560  
561 <      exclude_.removePair(a, b);
562 <      exclude_.removePair(a, c);
563 <      exclude_.removePair(b, c);        
561 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
562 >        oneThreeInteractions_.removePair(a, c);      
563 >      } else {
564 >        excludedInteractions_.removePair(a, c);
565 >      }
566      }
567  
568 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
568 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
569 >         torsion = mol->nextTorsion(torsionIter)) {
570 >
571        a = torsion->getAtomA()->getGlobalIndex();
572        b = torsion->getAtomB()->getGlobalIndex();        
573        c = torsion->getAtomC()->getGlobalIndex();        
574 <      d = torsion->getAtomD()->getGlobalIndex();        
574 >      d = torsion->getAtomD()->getGlobalIndex();      
575 >  
576 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
577 >        oneTwoInteractions_.removePair(a, b);      
578 >        oneTwoInteractions_.removePair(b, c);
579 >        oneTwoInteractions_.removePair(c, d);
580 >      } else {
581 >        excludedInteractions_.removePair(a, b);
582 >        excludedInteractions_.removePair(b, c);
583 >        excludedInteractions_.removePair(c, d);
584 >      }
585  
586 <      exclude_.removePair(a, b);
587 <      exclude_.removePair(a, c);
588 <      exclude_.removePair(a, d);
589 <      exclude_.removePair(b, c);
590 <      exclude_.removePair(b, d);
591 <      exclude_.removePair(c, d);        
586 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
587 >        oneThreeInteractions_.removePair(a, c);      
588 >        oneThreeInteractions_.removePair(b, d);      
589 >      } else {
590 >        excludedInteractions_.removePair(a, c);
591 >        excludedInteractions_.removePair(b, d);
592 >      }
593 >
594 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
595 >        oneFourInteractions_.removePair(a, d);      
596 >      } else {
597 >        excludedInteractions_.removePair(a, d);
598 >      }
599      }
600  
601 <    Molecule::RigidBodyIterator rbIter;
602 <    RigidBody* rb;
603 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
604 <      std::vector<Atom*> atoms = rb->getAtoms();
605 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
606 <        for (int j = i + 1; j < atoms.size(); ++j) {
601 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
602 >         inversion = mol->nextInversion(inversionIter)) {
603 >
604 >      a = inversion->getAtomA()->getGlobalIndex();
605 >      b = inversion->getAtomB()->getGlobalIndex();        
606 >      c = inversion->getAtomC()->getGlobalIndex();        
607 >      d = inversion->getAtomD()->getGlobalIndex();        
608 >
609 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
610 >        oneTwoInteractions_.removePair(a, b);      
611 >        oneTwoInteractions_.removePair(a, c);
612 >        oneTwoInteractions_.removePair(a, d);
613 >      } else {
614 >        excludedInteractions_.removePair(a, b);
615 >        excludedInteractions_.removePair(a, c);
616 >        excludedInteractions_.removePair(a, d);
617 >      }
618 >
619 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
620 >        oneThreeInteractions_.removePair(b, c);    
621 >        oneThreeInteractions_.removePair(b, d);    
622 >        oneThreeInteractions_.removePair(c, d);      
623 >      } else {
624 >        excludedInteractions_.removePair(b, c);
625 >        excludedInteractions_.removePair(b, d);
626 >        excludedInteractions_.removePair(c, d);
627 >      }
628 >    }
629 >
630 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
631 >         rb = mol->nextRigidBody(rbIter)) {
632 >      vector<Atom*> atoms = rb->getAtoms();
633 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
634 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
635            a = atoms[i]->getGlobalIndex();
636            b = atoms[j]->getGlobalIndex();
637 <          exclude_.removePair(a, b);
637 >          excludedInteractions_.removePair(a, b);
638          }
639        }
640      }        
641 <
641 >    
642    }
643 <
644 <
643 >  
644 >  
645    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
646      int curStampId;
647 <
647 >    
648      //index from 0
649      curStampId = moleculeStamps_.size();
650  
# Line 451 | Line 652 | namespace oopse {
652      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
653    }
654  
655 +
656 +  /**
657 +   * update
658 +   *
659 +   *  Performs the global checks and variable settings after the objects have been
660 +   *  created.
661 +   *
662 +   */
663    void SimInfo::update() {
664 +    
665 +    setupSimVariables();
666 +    setupCutoffs();
667 +    setupSwitching();
668 +    setupElectrostatics();
669 +    setupNeighborlists();
670  
456    setupSimType();
457
671   #ifdef IS_MPI
672      setupFortranParallel();
673   #endif
461
674      setupFortranSim();
675 +    fortranInitialized_ = true;
676  
464    //setup fortran force field
465    /** @deprecate */    
466    int isError = 0;
467    
468    setupElectrostaticSummationMethod( isError );
469
470    if(isError){
471      sprintf( painCave.errMsg,
472               "ForceField error: There was an error initializing the forceField in fortran.\n" );
473      painCave.isFatal = 1;
474      simError();
475    }
476  
477    
478    setupCutoff();
479
677      calcNdf();
678      calcNdfRaw();
679      calcNdfTrans();
483
484    fortranInitialized_ = true;
680    }
681 <
682 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
681 >  
682 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
683      SimInfo::MoleculeIterator mi;
684      Molecule* mol;
685      Molecule::AtomIterator ai;
686      Atom* atom;
687 <    std::set<AtomType*> atomTypes;
688 <
689 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
495 <
687 >    set<AtomType*> atomTypes;
688 >    
689 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
690        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
691          atomTypes.insert(atom->getAtomType());
692 <      }
693 <        
500 <    }
501 <
692 >      }      
693 >    }    
694      return atomTypes;        
695    }
696  
697 <  void SimInfo::setupSimType() {
698 <    std::set<AtomType*>::iterator i;
699 <    std::set<AtomType*> atomTypes;
700 <    atomTypes = getUniqueAtomTypes();
701 <    
702 <    int useLennardJones = 0;
703 <    int useElectrostatic = 0;
704 <    int useEAM = 0;
705 <    int useCharge = 0;
706 <    int useDirectional = 0;
707 <    int useDipole = 0;
708 <    int useGayBerne = 0;
709 <    int useSticky = 0;
710 <    int useStickyPower = 0;
711 <    int useShape = 0;
712 <    int useFLARB = 0; //it is not in AtomType yet
713 <    int useDirectionalAtom = 0;    
714 <    int useElectrostatics = 0;
715 <    //usePBC and useRF are from simParams
716 <    int usePBC = simParams_->getPBC();
717 <
718 <    //loop over all of the atom types
719 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
720 <      useLennardJones |= (*i)->isLennardJones();
721 <      useElectrostatic |= (*i)->isElectrostatic();
722 <      useEAM |= (*i)->isEAM();
723 <      useCharge |= (*i)->isCharge();
724 <      useDirectional |= (*i)->isDirectional();
725 <      useDipole |= (*i)->isDipole();
726 <      useGayBerne |= (*i)->isGayBerne();
727 <      useSticky |= (*i)->isSticky();
728 <      useStickyPower |= (*i)->isStickyPower();
729 <      useShape |= (*i)->isShape();
697 >  /**
698 >   * setupCutoffs
699 >   *
700 >   * Sets the values of cutoffRadius and cutoffMethod
701 >   *
702 >   * cutoffRadius : realType
703 >   *  If the cutoffRadius was explicitly set, use that value.
704 >   *  If the cutoffRadius was not explicitly set:
705 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
706 >   *      No electrostatic atoms?  Poll the atom types present in the
707 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
708 >   *      Use the maximum suggested value that was found.
709 >   *
710 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL)
711 >   *      If cutoffMethod was explicitly set, use that choice.
712 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
713 >   */
714 >  void SimInfo::setupCutoffs() {
715 >    
716 >    if (simParams_->haveCutoffRadius()) {
717 >      cutoffRadius_ = simParams_->getCutoffRadius();
718 >    } else {      
719 >      if (usesElectrostaticAtoms_) {
720 >        sprintf(painCave.errMsg,
721 >                "SimInfo: No value was set for the cutoffRadius.\n"
722 >                "\tOpenMD will use a default value of 12.0 angstroms"
723 >                "\tfor the cutoffRadius.\n");
724 >        painCave.isFatal = 0;
725 >        painCave.severity = OPENMD_INFO;
726 >        simError();
727 >        cutoffRadius_ = 12.0;
728 >      } else {
729 >        RealType thisCut;
730 >        set<AtomType*>::iterator i;
731 >        set<AtomType*> atomTypes;
732 >        atomTypes = getSimulatedAtomTypes();        
733 >        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
734 >          thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i));
735 >          cutoffRadius_ = max(thisCut, cutoffRadius_);
736 >        }
737 >        sprintf(painCave.errMsg,
738 >                "SimInfo: No value was set for the cutoffRadius.\n"
739 >                "\tOpenMD will use %lf angstroms.\n",
740 >                cutoffRadius_);
741 >        painCave.isFatal = 0;
742 >        painCave.severity = OPENMD_INFO;
743 >        simError();
744 >      }            
745      }
746  
747 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
748 <      useDirectionalAtom = 1;
747 >    map<string, CutoffMethod> stringToCutoffMethod;
748 >    stringToCutoffMethod["HARD"] = HARD;
749 >    stringToCutoffMethod["SWITCHING_FUNCTION"] = SWITCHING_FUNCTION;
750 >    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
751 >    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
752 >  
753 >    if (simParams_->haveCutoffMethod()) {
754 >      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
755 >      map<string, CutoffMethod>::iterator i;
756 >      i = stringToCutoffMethod.find(cutMeth);
757 >      if (i == stringToCutoffMethod.end()) {
758 >        sprintf(painCave.errMsg,
759 >                "SimInfo: Could not find chosen cutoffMethod %s\n"
760 >                "\tShould be one of: "
761 >                "HARD, SWITCHING_FUNCTION, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
762 >                cutMeth.c_str());
763 >        painCave.isFatal = 1;
764 >        painCave.severity = OPENMD_ERROR;
765 >        simError();
766 >      } else {
767 >        cutoffMethod_ = i->second;
768 >      }
769 >    } else {
770 >      sprintf(painCave.errMsg,
771 >              "SimInfo: No value was set for the cutoffMethod.\n"
772 >              "\tOpenMD will use SHIFTED_FORCE.\n");
773 >        painCave.isFatal = 0;
774 >        painCave.severity = OPENMD_INFO;
775 >        simError();
776 >        cutoffMethod_ = SHIFTED_FORCE;        
777      }
778 +  }
779 +  
780 +  /**
781 +   * setupSwitching
782 +   *
783 +   * Sets the values of switchingRadius and
784 +   *  If the switchingRadius was explicitly set, use that value (but check it)
785 +   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
786 +   */
787 +  void SimInfo::setupSwitching() {
788 +    
789 +    if (simParams_->haveSwitchingRadius()) {
790 +      switchingRadius_ = simParams_->getSwitchingRadius();
791 +      if (switchingRadius_ > cutoffRadius_) {        
792 +        sprintf(painCave.errMsg,
793 +                "SimInfo: switchingRadius (%f) is larger than cutoffRadius(%f)\n",
794 +                switchingRadius_, cutoffRadius_);
795 +        painCave.isFatal = 1;
796 +        painCave.severity = OPENMD_ERROR;
797 +        simError();
798 +      }
799 +    } else {      
800 +      switchingRadius_ = 0.85 * cutoffRadius_;
801 +      sprintf(painCave.errMsg,
802 +              "SimInfo: No value was set for the switchingRadius.\n"
803 +              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
804 +              "\tswitchingRadius = %f. for this simulation\n", switchingRadius_);
805 +      painCave.isFatal = 0;
806 +      painCave.severity = OPENMD_WARNING;
807 +      simError();
808 +    }          
809 +    
810 +    if (simParams_->haveSwitchingFunctionType()) {
811 +      string funcType = simParams_->getSwitchingFunctionType();
812 +      toUpper(funcType);
813 +      if (funcType == "CUBIC") {
814 +        sft_ = cubic;
815 +      } else {
816 +        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
817 +          sft_ = fifth_order_poly;
818 +        } else {
819 +          // throw error        
820 +          sprintf( painCave.errMsg,
821 +                   "SimInfo : Unknown switchingFunctionType. (Input file specified %s .)\n"
822 +                   "\tswitchingFunctionType must be one of: "
823 +                   "\"cubic\" or \"fifth_order_polynomial\".",
824 +                   funcType.c_str() );
825 +          painCave.isFatal = 1;
826 +          painCave.severity = OPENMD_ERROR;
827 +          simError();
828 +        }          
829 +      }
830 +    }
831 +  }
832  
833 <    if (useCharge || useDipole) {
834 <      useElectrostatics = 1;
833 >  /**
834 >   * setupNeighborlists
835 >   *
836 >   *  If the skinThickness was explicitly set, use that value (but check it)
837 >   *  If the skinThickness was not explicitly set: use 1.0 angstroms
838 >   */
839 >  void SimInfo::setupNeighborlists() {    
840 >    if (simParams_->haveSkinThickness()) {
841 >      skinThickness_ = simParams_->getSkinThickness();
842 >    } else {      
843 >      skinThickness_ = 1.0;
844 >      sprintf(painCave.errMsg,
845 >              "SimInfo: No value was set for the skinThickness.\n"
846 >              "\tOpenMD will use a default value of %f Angstroms\n"
847 >              "\tfor this simulation\n", skinThickness_);
848 >      painCave.severity = OPENMD_INFO;
849 >      painCave.isFatal = 0;
850 >      simError();
851 >    }            
852 >  }
853 >
854 >  void SimInfo::setupSimVariables() {
855 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
856 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
857 >    calcBoxDipole_ = false;
858 >    if ( simParams_->haveAccumulateBoxDipole() )
859 >      if ( simParams_->getAccumulateBoxDipole() ) {
860 >        calcBoxDipole_ = true;      
861 >      }
862 >
863 >    set<AtomType*>::iterator i;
864 >    set<AtomType*> atomTypes;
865 >    atomTypes = getSimulatedAtomTypes();    
866 >    int usesElectrostatic = 0;
867 >    int usesMetallic = 0;
868 >    int usesDirectional = 0;
869 >    //loop over all of the atom types
870 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
871 >      usesElectrostatic |= (*i)->isElectrostatic();
872 >      usesMetallic |= (*i)->isMetal();
873 >      usesDirectional |= (*i)->isDirectional();
874      }
875  
876   #ifdef IS_MPI    
877      int temp;
878 +    temp = usesDirectional;
879 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
880  
881 <    temp = usePBC;
882 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
881 >    temp = usesMetallic;
882 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
883  
884 <    temp = useDirectionalAtom;
885 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
556 <
557 <    temp = useLennardJones;
558 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
559 <
560 <    temp = useElectrostatics;
561 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
562 <
563 <    temp = useCharge;
564 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
565 <
566 <    temp = useDipole;
567 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
568 <
569 <    temp = useSticky;
570 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
571 <
572 <    temp = useStickyPower;
573 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
574 <    
575 <    temp = useGayBerne;
576 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
577 <
578 <    temp = useEAM;
579 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
580 <
581 <    temp = useShape;
582 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
583 <
584 <    temp = useFLARB;
585 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
586 <
884 >    temp = usesElectrostatic;
885 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
886   #endif
887 <
888 <    fInfo_.SIM_uses_PBC = usePBC;    
889 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
890 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
891 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
892 <    fInfo_.SIM_uses_Charges = useCharge;
594 <    fInfo_.SIM_uses_Dipoles = useDipole;
595 <    fInfo_.SIM_uses_Sticky = useSticky;
596 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
597 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
598 <    fInfo_.SIM_uses_EAM = useEAM;
599 <    fInfo_.SIM_uses_Shapes = useShape;
600 <    fInfo_.SIM_uses_FLARB = useFLARB;
601 <
602 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
603 <
604 <      if (simParams_->haveDielectric()) {
605 <        fInfo_.dielect = simParams_->getDielectric();
606 <      } else {
607 <        sprintf(painCave.errMsg,
608 <                "SimSetup Error: No Dielectric constant was set.\n"
609 <                "\tYou are trying to use Reaction Field without"
610 <                "\tsetting a dielectric constant!\n");
611 <        painCave.isFatal = 1;
612 <        simError();
613 <      }
614 <        
615 <    } else {
616 <      fInfo_.dielect = 0.0;
617 <    }
618 <
887 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
888 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
889 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
890 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
891 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
892 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
893    }
894  
895    void SimInfo::setupFortranSim() {
896      int isError;
897 <    int nExclude;
898 <    std::vector<int> fortranGlobalGroupMembership;
897 >    int nExclude, nOneTwo, nOneThree, nOneFour;
898 >    vector<int> fortranGlobalGroupMembership;
899      
900 <    nExclude = exclude_.getSize();
900 >    notifyFortranSkinThickness(&skinThickness_);
901 >
902 >    int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0;
903 >    int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0;
904 >    notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf);
905 >
906      isError = 0;
907  
908      //globalGroupMembership_ is filled by SimCreator    
# Line 632 | Line 911 | namespace oopse {
911      }
912  
913      //calculate mass ratio of cutoff group
914 <    std::vector<double> mfact;
914 >    vector<RealType> mfact;
915      SimInfo::MoleculeIterator mi;
916      Molecule* mol;
917      Molecule::CutoffGroupIterator ci;
918      CutoffGroup* cg;
919      Molecule::AtomIterator ai;
920      Atom* atom;
921 <    double totalMass;
921 >    RealType totalMass;
922  
923      //to avoid memory reallocation, reserve enough space for mfact
924      mfact.reserve(getNCutoffGroups());
# Line 649 | Line 928 | namespace oopse {
928  
929          totalMass = cg->getMass();
930          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
931 <          mfact.push_back(atom->getMass()/totalMass);
931 >          // Check for massless groups - set mfact to 1 if true
932 >          if (totalMass != 0)
933 >            mfact.push_back(atom->getMass()/totalMass);
934 >          else
935 >            mfact.push_back( 1.0 );
936          }
654
937        }      
938      }
939  
940      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
941 <    std::vector<int> identArray;
941 >    vector<int> identArray;
942  
943      //to avoid memory reallocation, reserve enough space identArray
944      identArray.reserve(getNAtoms());
# Line 669 | Line 951 | namespace oopse {
951  
952      //fill molMembershipArray
953      //molMembershipArray is filled by SimCreator    
954 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
954 >    vector<int> molMembershipArray(nGlobalAtoms_);
955      for (int i = 0; i < nGlobalAtoms_; i++) {
956        molMembershipArray[i] = globalMolMembership_[i] + 1;
957      }
958      
959      //setup fortran simulation
678    int nGlobalExcludes = 0;
679    int* globalExcludes = NULL;
680    int* excludeList = exclude_.getExcludeList();
681    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
682                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
683                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
960  
961 <    if( isError ){
961 >    nExclude = excludedInteractions_.getSize();
962 >    nOneTwo = oneTwoInteractions_.getSize();
963 >    nOneThree = oneThreeInteractions_.getSize();
964 >    nOneFour = oneFourInteractions_.getSize();
965  
966 +    int* excludeList = excludedInteractions_.getPairList();
967 +    int* oneTwoList = oneTwoInteractions_.getPairList();
968 +    int* oneThreeList = oneThreeInteractions_.getPairList();
969 +    int* oneFourList = oneFourInteractions_.getPairList();
970 +
971 +    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
972 +                   &nExclude, excludeList,
973 +                   &nOneTwo, oneTwoList,
974 +                   &nOneThree, oneThreeList,
975 +                   &nOneFour, oneFourList,
976 +                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
977 +                   &fortranGlobalGroupMembership[0], &isError);
978 +    
979 +    if( isError ){
980 +      
981        sprintf( painCave.errMsg,
982                 "There was an error setting the simulation information in fortran.\n" );
983        painCave.isFatal = 1;
984 <      painCave.severity = OOPSE_ERROR;
984 >      painCave.severity = OPENMD_ERROR;
985        simError();
986      }
987 <
988 < #ifdef IS_MPI
987 >    
988 >    
989      sprintf( checkPointMsg,
990               "succesfully sent the simulation information to fortran.\n");
991 <    MPIcheckPoint();
992 < #endif // is_mpi
991 >    
992 >    errorCheckPoint();
993 >    
994 >    // Setup number of neighbors in neighbor list if present
995 >    if (simParams_->haveNeighborListNeighbors()) {
996 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
997 >      setNeighbors(&nlistNeighbors);
998 >    }
999 >  
1000 >
1001    }
1002  
1003  
702 #ifdef IS_MPI
1004    void SimInfo::setupFortranParallel() {
1005 <    
1005 > #ifdef IS_MPI    
1006      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
1007 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
1008 <    std::vector<int> localToGlobalCutoffGroupIndex;
1007 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
1008 >    vector<int> localToGlobalCutoffGroupIndex;
1009      SimInfo::MoleculeIterator mi;
1010      Molecule::AtomIterator ai;
1011      Molecule::CutoffGroupIterator ci;
# Line 751 | Line 1052 | namespace oopse {
1052      }
1053  
1054      sprintf(checkPointMsg, " mpiRefresh successful.\n");
1055 <    MPIcheckPoint();
1055 >    errorCheckPoint();
1056  
756
757  }
758
1057   #endif
760
761  double SimInfo::calcMaxCutoffRadius() {
762
763
764    std::set<AtomType*> atomTypes;
765    std::set<AtomType*>::iterator i;
766    std::vector<double> cutoffRadius;
767
768    //get the unique atom types
769    atomTypes = getUniqueAtomTypes();
770
771    //query the max cutoff radius among these atom types
772    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
773      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
774    }
775
776    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
777 #ifdef IS_MPI
778    //pick the max cutoff radius among the processors
779 #endif
780
781    return maxCutoffRadius;
1058    }
1059  
784  void SimInfo::getCutoff(double& rcut, double& rsw) {
785    
786    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
787        
788      if (!simParams_->haveRcut()){
789        sprintf(painCave.errMsg,
790                "SimCreator Warning: No value was set for the cutoffRadius.\n"
791                "\tOOPSE will use a default value of 15.0 angstroms"
792                "\tfor the cutoffRadius.\n");
793        painCave.isFatal = 0;
794        simError();
795        rcut = 15.0;
796      } else{
797        rcut = simParams_->getRcut();
798      }
1060  
1061 <      if (!simParams_->haveRsw()){
801 <        sprintf(painCave.errMsg,
802 <                "SimCreator Warning: No value was set for switchingRadius.\n"
803 <                "\tOOPSE will use a default value of\n"
804 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
805 <        painCave.isFatal = 0;
806 <        simError();
807 <        rsw = 0.95 * rcut;
808 <      } else{
809 <        rsw = simParams_->getRsw();
810 <      }
1061 >  void SimInfo::setupAccumulateBoxDipole() {    
1062  
812    } else {
813      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
814      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
815        
816      if (simParams_->haveRcut()) {
817        rcut = simParams_->getRcut();
818      } else {
819        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
820        rcut = calcMaxCutoffRadius();
821      }
1063  
823      if (simParams_->haveRsw()) {
824        rsw  = simParams_->getRsw();
825      } else {
826        rsw = rcut;
827      }
828    
829    }
1064    }
1065  
832  void SimInfo::setupCutoff() {    
833    getCutoff(rcut_, rsw_);    
834    double rnblist = rcut_ + 1; // skin of neighbor list
835
836    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
837    
838    int cp =  TRADITIONAL_CUTOFF_POLICY;
839    if (simParams_->haveCutoffPolicy()) {
840      std::string myPolicy = simParams_->getCutoffPolicy();
841      if (myPolicy == "MIX") {
842        cp = MIX_CUTOFF_POLICY;
843      } else {
844        if (myPolicy == "MAX") {
845          cp = MAX_CUTOFF_POLICY;
846        } else {
847          if (myPolicy == "TRADITIONAL") {            
848            cp = TRADITIONAL_CUTOFF_POLICY;
849          } else {
850            // throw error        
851            sprintf( painCave.errMsg,
852                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
853            painCave.isFatal = 1;
854            simError();
855          }    
856        }          
857      }
858    }
859    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
860  }
861
862  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
863    
864    int errorOut;
865    int esm =  NONE;
866    double alphaVal;
867
868    errorOut = isError;
869
870    if (simParams_->haveElectrostaticSummationMethod()) {
871      std::string myMethod = simParams_->getElectrostaticSummationMethod();
872      if (myMethod == "NONE") {
873        esm = NONE;
874      } else {
875        if (myMethod == "UNDAMPED_WOLF") {
876          esm = UNDAMPED_WOLF;
877        } else {
878          if (myMethod == "DAMPED_WOLF") {            
879            esm = DAMPED_WOLF;
880            if (!simParams_->haveDampingAlpha()) {
881              //throw error
882              sprintf( painCave.errMsg,
883                       "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", simParams_->getDampingAlpha());
884              painCave.isFatal = 0;
885              simError();
886            }
887            alphaVal = simParams_->getDampingAlpha();
888          } else {
889            if (myMethod == "REACTION_FIELD") {
890              esm = REACTION_FIELD;
891            } else {
892              // throw error        
893              sprintf( painCave.errMsg,
894                       "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() );
895              painCave.isFatal = 1;
896              simError();
897            }    
898          }          
899        }
900      }
901    }
902    initFortranFF( &fInfo_.SIM_uses_RF, &esm, &alphaVal, &errorOut );
903  }
904
1066    void SimInfo::addProperty(GenericData* genData) {
1067      properties_.addProperty(genData);  
1068    }
1069  
1070 <  void SimInfo::removeProperty(const std::string& propName) {
1070 >  void SimInfo::removeProperty(const string& propName) {
1071      properties_.removeProperty(propName);  
1072    }
1073  
# Line 914 | Line 1075 | namespace oopse {
1075      properties_.clearProperties();
1076    }
1077  
1078 <  std::vector<std::string> SimInfo::getPropertyNames() {
1078 >  vector<string> SimInfo::getPropertyNames() {
1079      return properties_.getPropertyNames();  
1080    }
1081        
1082 <  std::vector<GenericData*> SimInfo::getProperties() {
1082 >  vector<GenericData*> SimInfo::getProperties() {
1083      return properties_.getProperties();
1084    }
1085  
1086 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1086 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
1087      return properties_.getPropertyByName(propName);
1088    }
1089  
# Line 958 | Line 1119 | namespace oopse {
1119      Molecule* mol;
1120  
1121      Vector3d comVel(0.0);
1122 <    double totalMass = 0.0;
1122 >    RealType totalMass = 0.0;
1123      
1124  
1125      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1126 <      double mass = mol->getMass();
1126 >      RealType mass = mol->getMass();
1127        totalMass += mass;
1128        comVel += mass * mol->getComVel();
1129      }  
1130  
1131   #ifdef IS_MPI
1132 <    double tmpMass = totalMass;
1132 >    RealType tmpMass = totalMass;
1133      Vector3d tmpComVel(comVel);    
1134 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1135 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1134 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1135 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1136   #endif
1137  
1138      comVel /= totalMass;
# Line 984 | Line 1145 | namespace oopse {
1145      Molecule* mol;
1146  
1147      Vector3d com(0.0);
1148 <    double totalMass = 0.0;
1148 >    RealType totalMass = 0.0;
1149      
1150      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1151 <      double mass = mol->getMass();
1151 >      RealType mass = mol->getMass();
1152        totalMass += mass;
1153        com += mass * mol->getCom();
1154      }  
1155  
1156   #ifdef IS_MPI
1157 <    double tmpMass = totalMass;
1157 >    RealType tmpMass = totalMass;
1158      Vector3d tmpCom(com);    
1159 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1160 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1159 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1160 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1161   #endif
1162  
1163      com /= totalMass;
# Line 1005 | Line 1166 | namespace oopse {
1166  
1167    }        
1168  
1169 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1169 >  ostream& operator <<(ostream& o, SimInfo& info) {
1170  
1171      return o;
1172    }
# Line 1020 | Line 1181 | namespace oopse {
1181        Molecule* mol;
1182        
1183      
1184 <      double totalMass = 0.0;
1184 >      RealType totalMass = 0.0;
1185      
1186  
1187        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1188 <         double mass = mol->getMass();
1188 >         RealType mass = mol->getMass();
1189           totalMass += mass;
1190           com += mass * mol->getCom();
1191           comVel += mass * mol->getComVel();          
1192        }  
1193        
1194   #ifdef IS_MPI
1195 <      double tmpMass = totalMass;
1195 >      RealType tmpMass = totalMass;
1196        Vector3d tmpCom(com);  
1197        Vector3d tmpComVel(comVel);
1198 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1199 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1200 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1198 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1199 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1200 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1201   #endif
1202        
1203        com /= totalMass;
# Line 1048 | Line 1209 | namespace oopse {
1209  
1210  
1211         [  Ixx -Ixy  -Ixz ]
1212 <  J =| -Iyx  Iyy  -Iyz |
1212 >    J =| -Iyx  Iyy  -Iyz |
1213         [ -Izx -Iyz   Izz ]
1214      */
1215  
1216     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1217        
1218  
1219 <      double xx = 0.0;
1220 <      double yy = 0.0;
1221 <      double zz = 0.0;
1222 <      double xy = 0.0;
1223 <      double xz = 0.0;
1224 <      double yz = 0.0;
1219 >      RealType xx = 0.0;
1220 >      RealType yy = 0.0;
1221 >      RealType zz = 0.0;
1222 >      RealType xy = 0.0;
1223 >      RealType xz = 0.0;
1224 >      RealType yz = 0.0;
1225        Vector3d com(0.0);
1226        Vector3d comVel(0.0);
1227        
# Line 1072 | Line 1233 | namespace oopse {
1233        Vector3d thisq(0.0);
1234        Vector3d thisv(0.0);
1235  
1236 <      double thisMass = 0.0;
1236 >      RealType thisMass = 0.0;
1237      
1238        
1239        
# Line 1110 | Line 1271 | namespace oopse {
1271   #ifdef IS_MPI
1272        Mat3x3d tmpI(inertiaTensor);
1273        Vector3d tmpAngMom;
1274 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1275 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1274 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1275 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1276   #endif
1277                
1278        return;
# Line 1132 | Line 1293 | namespace oopse {
1293        Vector3d thisr(0.0);
1294        Vector3d thisp(0.0);
1295        
1296 <      double thisMass;
1296 >      RealType thisMass;
1297        
1298        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1299          thisMass = mol->getMass();
# Line 1145 | Line 1306 | namespace oopse {
1306        
1307   #ifdef IS_MPI
1308        Vector3d tmpAngMom;
1309 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1309 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1310   #endif
1311        
1312        return angularMomentum;
1313     }
1314    
1315 <  
1316 < }//end namespace oopse
1315 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1316 >    return IOIndexToIntegrableObject.at(index);
1317 >  }
1318 >  
1319 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1320 >    IOIndexToIntegrableObject= v;
1321 >  }
1322  
1323 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1324 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1325 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1326 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1327 +  */
1328 +  void SimInfo::getGyrationalVolume(RealType &volume){
1329 +    Mat3x3d intTensor;
1330 +    RealType det;
1331 +    Vector3d dummyAngMom;
1332 +    RealType sysconstants;
1333 +    RealType geomCnst;
1334 +
1335 +    geomCnst = 3.0/2.0;
1336 +    /* Get the inertial tensor and angular momentum for free*/
1337 +    getInertiaTensor(intTensor,dummyAngMom);
1338 +    
1339 +    det = intTensor.determinant();
1340 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1341 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1342 +    return;
1343 +  }
1344 +
1345 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1346 +    Mat3x3d intTensor;
1347 +    Vector3d dummyAngMom;
1348 +    RealType sysconstants;
1349 +    RealType geomCnst;
1350 +
1351 +    geomCnst = 3.0/2.0;
1352 +    /* Get the inertial tensor and angular momentum for free*/
1353 +    getInertiaTensor(intTensor,dummyAngMom);
1354 +    
1355 +    detI = intTensor.determinant();
1356 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1357 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1358 +    return;
1359 +  }
1360 + /*
1361 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1362 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1363 +      sdByGlobalIndex_ = v;
1364 +    }
1365 +
1366 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1367 +      //assert(index < nAtoms_ + nRigidBodies_);
1368 +      return sdByGlobalIndex_.at(index);
1369 +    }  
1370 + */  
1371 +  int SimInfo::getNGlobalConstraints() {
1372 +    int nGlobalConstraints;
1373 + #ifdef IS_MPI
1374 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1375 +                  MPI_COMM_WORLD);    
1376 + #else
1377 +    nGlobalConstraints =  nConstraints_;
1378 + #endif
1379 +    return nGlobalConstraints;
1380 +  }
1381 +
1382 + }//end namespace OpenMD
1383 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 606 by chrisfen, Fri Sep 16 19:35:14 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1534 by gezelter, Wed Dec 29 21:53:28 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines