ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 604 by chrisfen, Fri Sep 16 19:00:12 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1540 by gezelter, Mon Jan 17 21:34:36 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 < #include "UseTheForce/fCutoffPolicy.h"
57 < #include "UseTheForce/Darkside/fElectrostaticSummationMethod.h"
56 > #include "primitives/StuntDouble.hpp"
57 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
58   #include "UseTheForce/doForces_interface.h"
58 #include "UseTheForce/notifyCutoffs_interface.h"
59   #include "utils/MemoryUtils.hpp"
60   #include "utils/simError.h"
61   #include "selection/SelectionManager.hpp"
62 + #include "io/ForceFieldOptions.hpp"
63 + #include "UseTheForce/ForceField.hpp"
64 + #include "nonbonded/SwitchingFunction.hpp"
65  
66   #ifdef IS_MPI
67   #include "UseTheForce/mpiComponentPlan.h"
68   #include "UseTheForce/DarkSide/simParallel_interface.h"
69   #endif
70  
71 < namespace oopse {
72 <
73 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
74 <                   ForceField* ff, Globals* simParams) :
75 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
76 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
71 > using namespace std;
72 > namespace OpenMD {
73 >  
74 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
75 >    forceField_(ff), simParams_(simParams),
76 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
77      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
78      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
79 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
80 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
81 <    sman_(NULL), fortranInitialized_(false) {
82 <
80 <            
81 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
82 <      MoleculeStamp* molStamp;
83 <      int nMolWithSameStamp;
84 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
85 <      int nGroups = 0;          //total cutoff groups defined in meta-data file
86 <      CutoffGroupStamp* cgStamp;    
87 <      RigidBodyStamp* rbStamp;
88 <      int nRigidAtoms = 0;
79 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
80 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
81 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
82 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
83      
84 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
85 <        molStamp = i->first;
86 <        nMolWithSameStamp = i->second;
87 <        
88 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
89 <
90 <        //calculate atoms in molecules
91 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
92 <
93 <
94 <        //calculate atoms in cutoff groups
95 <        int nAtomsInGroups = 0;
96 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
97 <        
98 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
99 <          cgStamp = molStamp->getCutoffGroup(j);
100 <          nAtomsInGroups += cgStamp->getNMembers();
101 <        }
102 <
103 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
104 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
105 <
106 <        //calculate atoms in rigid bodies
107 <        int nAtomsInRigidBodies = 0;
108 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
109 <        
116 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
117 <          rbStamp = molStamp->getRigidBody(j);
118 <          nAtomsInRigidBodies += rbStamp->getNMembers();
119 <        }
120 <
121 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
122 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
123 <        
84 >    MoleculeStamp* molStamp;
85 >    int nMolWithSameStamp;
86 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
88 >    CutoffGroupStamp* cgStamp;    
89 >    RigidBodyStamp* rbStamp;
90 >    int nRigidAtoms = 0;
91 >    
92 >    vector<Component*> components = simParams->getComponents();
93 >    
94 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
95 >      molStamp = (*i)->getMoleculeStamp();
96 >      nMolWithSameStamp = (*i)->getNMol();
97 >      
98 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
99 >      
100 >      //calculate atoms in molecules
101 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
102 >      
103 >      //calculate atoms in cutoff groups
104 >      int nAtomsInGroups = 0;
105 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
106 >      
107 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
108 >        cgStamp = molStamp->getCutoffGroupStamp(j);
109 >        nAtomsInGroups += cgStamp->getNMembers();
110        }
111 <
112 <      //every free atom (atom does not belong to cutoff groups) is a cutoff group
113 <      //therefore the total number of cutoff groups in the system is equal to
114 <      //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
115 <      //file plus the number of cutoff groups defined in meta-data file
116 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
117 <
118 <      //every free atom (atom does not belong to rigid bodies) is an integrable object
119 <      //therefore the total number of  integrable objects in the system is equal to
120 <      //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
121 <      //file plus the number of  rigid bodies defined in meta-data file
122 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
123 <
124 <      nGlobalMols_ = molStampIds_.size();
125 <
126 < #ifdef IS_MPI    
127 <      molToProcMap_.resize(nGlobalMols_);
142 < #endif
143 <
111 >      
112 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
113 >      
114 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
115 >      
116 >      //calculate atoms in rigid bodies
117 >      int nAtomsInRigidBodies = 0;
118 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
119 >      
120 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
121 >        rbStamp = molStamp->getRigidBodyStamp(j);
122 >        nAtomsInRigidBodies += rbStamp->getNMembers();
123 >      }
124 >      
125 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
126 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
127 >      
128      }
129 +    
130 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
131 +    //group therefore the total number of cutoff groups in the system is
132 +    //equal to the total number of atoms minus number of atoms belong to
133 +    //cutoff group defined in meta-data file plus the number of cutoff
134 +    //groups defined in meta-data file
135 +    std::cerr << "nGA = " << nGlobalAtoms_ << "\n";
136 +    std::cerr << "nCA = " << nCutoffAtoms << "\n";
137 +    std::cerr << "nG = " << nGroups << "\n";
138  
139 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
140 +
141 +    std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n";
142 +    
143 +    //every free atom (atom does not belong to rigid bodies) is an
144 +    //integrable object therefore the total number of integrable objects
145 +    //in the system is equal to the total number of atoms minus number of
146 +    //atoms belong to rigid body defined in meta-data file plus the number
147 +    //of rigid bodies defined in meta-data file
148 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
149 +      + nGlobalRigidBodies_;
150 +    
151 +    nGlobalMols_ = molStampIds_.size();
152 +    molToProcMap_.resize(nGlobalMols_);
153 +  }
154 +  
155    SimInfo::~SimInfo() {
156 <    std::map<int, Molecule*>::iterator i;
156 >    map<int, Molecule*>::iterator i;
157      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
158        delete i->second;
159      }
160      molecules_.clear();
161        
153    delete stamps_;
162      delete sman_;
163      delete simParams_;
164      delete forceField_;
165    }
166  
159  int SimInfo::getNGlobalConstraints() {
160    int nGlobalConstraints;
161 #ifdef IS_MPI
162    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
163                  MPI_COMM_WORLD);    
164 #else
165    nGlobalConstraints =  nConstraints_;
166 #endif
167    return nGlobalConstraints;
168  }
167  
168    bool SimInfo::addMolecule(Molecule* mol) {
169      MoleculeIterator i;
170 <
170 >    
171      i = molecules_.find(mol->getGlobalIndex());
172      if (i == molecules_.end() ) {
173 <
174 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
175 <        
173 >      
174 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
175 >      
176        nAtoms_ += mol->getNAtoms();
177        nBonds_ += mol->getNBonds();
178        nBends_ += mol->getNBends();
179        nTorsions_ += mol->getNTorsions();
180 +      nInversions_ += mol->getNInversions();
181        nRigidBodies_ += mol->getNRigidBodies();
182        nIntegrableObjects_ += mol->getNIntegrableObjects();
183        nCutoffGroups_ += mol->getNCutoffGroups();
184        nConstraints_ += mol->getNConstraintPairs();
185 <
186 <      addExcludePairs(mol);
187 <        
185 >      
186 >      addInteractionPairs(mol);
187 >      
188        return true;
189      } else {
190        return false;
191      }
192    }
193 <
193 >  
194    bool SimInfo::removeMolecule(Molecule* mol) {
195      MoleculeIterator i;
196      i = molecules_.find(mol->getGlobalIndex());
# Line 204 | Line 203 | namespace oopse {
203        nBonds_ -= mol->getNBonds();
204        nBends_ -= mol->getNBends();
205        nTorsions_ -= mol->getNTorsions();
206 +      nInversions_ -= mol->getNInversions();
207        nRigidBodies_ -= mol->getNRigidBodies();
208        nIntegrableObjects_ -= mol->getNIntegrableObjects();
209        nCutoffGroups_ -= mol->getNCutoffGroups();
210        nConstraints_ -= mol->getNConstraintPairs();
211  
212 <      removeExcludePairs(mol);
212 >      removeInteractionPairs(mol);
213        molecules_.erase(mol->getGlobalIndex());
214  
215        delete mol;
# Line 218 | Line 218 | namespace oopse {
218      } else {
219        return false;
220      }
221
222
221    }    
222  
223          
# Line 237 | Line 235 | namespace oopse {
235    void SimInfo::calcNdf() {
236      int ndf_local;
237      MoleculeIterator i;
238 <    std::vector<StuntDouble*>::iterator j;
238 >    vector<StuntDouble*>::iterator j;
239      Molecule* mol;
240      StuntDouble* integrableObject;
241  
# Line 257 | Line 255 | namespace oopse {
255            }
256          }
257              
258 <      }//end for (integrableObject)
259 <    }// end for (mol)
258 >      }
259 >    }
260      
261      // n_constraints is local, so subtract them on each processor
262      ndf_local -= nConstraints_;
# Line 275 | Line 273 | namespace oopse {
273  
274    }
275  
276 +  int SimInfo::getFdf() {
277 + #ifdef IS_MPI
278 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
279 + #else
280 +    fdf_ = fdf_local;
281 + #endif
282 +    return fdf_;
283 +  }
284 +    
285    void SimInfo::calcNdfRaw() {
286      int ndfRaw_local;
287  
288      MoleculeIterator i;
289 <    std::vector<StuntDouble*>::iterator j;
289 >    vector<StuntDouble*>::iterator j;
290      Molecule* mol;
291      StuntDouble* integrableObject;
292  
# Line 326 | Line 333 | namespace oopse {
333  
334    }
335  
336 <  void SimInfo::addExcludePairs(Molecule* mol) {
337 <    std::vector<Bond*>::iterator bondIter;
338 <    std::vector<Bend*>::iterator bendIter;
339 <    std::vector<Torsion*>::iterator torsionIter;
336 >  void SimInfo::addInteractionPairs(Molecule* mol) {
337 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
338 >    vector<Bond*>::iterator bondIter;
339 >    vector<Bend*>::iterator bendIter;
340 >    vector<Torsion*>::iterator torsionIter;
341 >    vector<Inversion*>::iterator inversionIter;
342      Bond* bond;
343      Bend* bend;
344      Torsion* torsion;
345 +    Inversion* inversion;
346      int a;
347      int b;
348      int c;
349      int d;
350 +
351 +    // atomGroups can be used to add special interaction maps between
352 +    // groups of atoms that are in two separate rigid bodies.
353 +    // However, most site-site interactions between two rigid bodies
354 +    // are probably not special, just the ones between the physically
355 +    // bonded atoms.  Interactions *within* a single rigid body should
356 +    // always be excluded.  These are done at the bottom of this
357 +    // function.
358 +
359 +    map<int, set<int> > atomGroups;
360 +    Molecule::RigidBodyIterator rbIter;
361 +    RigidBody* rb;
362 +    Molecule::IntegrableObjectIterator ii;
363 +    StuntDouble* integrableObject;
364      
365 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
365 >    for (integrableObject = mol->beginIntegrableObject(ii);
366 >         integrableObject != NULL;
367 >         integrableObject = mol->nextIntegrableObject(ii)) {
368 >      
369 >      if (integrableObject->isRigidBody()) {
370 >        rb = static_cast<RigidBody*>(integrableObject);
371 >        vector<Atom*> atoms = rb->getAtoms();
372 >        set<int> rigidAtoms;
373 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
374 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
375 >        }
376 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
377 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
378 >        }      
379 >      } else {
380 >        set<int> oneAtomSet;
381 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
382 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
383 >      }
384 >    }  
385 >          
386 >    for (bond= mol->beginBond(bondIter); bond != NULL;
387 >         bond = mol->nextBond(bondIter)) {
388 >
389        a = bond->getAtomA()->getGlobalIndex();
390 <      b = bond->getAtomB()->getGlobalIndex();        
391 <      exclude_.addPair(a, b);
390 >      b = bond->getAtomB()->getGlobalIndex();  
391 >    
392 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
393 >        oneTwoInteractions_.addPair(a, b);
394 >      } else {
395 >        excludedInteractions_.addPair(a, b);
396 >      }
397      }
398  
399 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
399 >    for (bend= mol->beginBend(bendIter); bend != NULL;
400 >         bend = mol->nextBend(bendIter)) {
401 >
402        a = bend->getAtomA()->getGlobalIndex();
403        b = bend->getAtomB()->getGlobalIndex();        
404        c = bend->getAtomC()->getGlobalIndex();
405 <
406 <      exclude_.addPair(a, b);
407 <      exclude_.addPair(a, c);
408 <      exclude_.addPair(b, c);        
405 >      
406 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
407 >        oneTwoInteractions_.addPair(a, b);      
408 >        oneTwoInteractions_.addPair(b, c);
409 >      } else {
410 >        excludedInteractions_.addPair(a, b);
411 >        excludedInteractions_.addPair(b, c);
412 >      }
413 >
414 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
415 >        oneThreeInteractions_.addPair(a, c);      
416 >      } else {
417 >        excludedInteractions_.addPair(a, c);
418 >      }
419      }
420  
421 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
421 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
422 >         torsion = mol->nextTorsion(torsionIter)) {
423 >
424        a = torsion->getAtomA()->getGlobalIndex();
425        b = torsion->getAtomB()->getGlobalIndex();        
426        c = torsion->getAtomC()->getGlobalIndex();        
427 <      d = torsion->getAtomD()->getGlobalIndex();        
427 >      d = torsion->getAtomD()->getGlobalIndex();      
428  
429 <      exclude_.addPair(a, b);
430 <      exclude_.addPair(a, c);
431 <      exclude_.addPair(a, d);
432 <      exclude_.addPair(b, c);
433 <      exclude_.addPair(b, d);
434 <      exclude_.addPair(c, d);        
429 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
430 >        oneTwoInteractions_.addPair(a, b);      
431 >        oneTwoInteractions_.addPair(b, c);
432 >        oneTwoInteractions_.addPair(c, d);
433 >      } else {
434 >        excludedInteractions_.addPair(a, b);
435 >        excludedInteractions_.addPair(b, c);
436 >        excludedInteractions_.addPair(c, d);
437 >      }
438 >
439 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
440 >        oneThreeInteractions_.addPair(a, c);      
441 >        oneThreeInteractions_.addPair(b, d);      
442 >      } else {
443 >        excludedInteractions_.addPair(a, c);
444 >        excludedInteractions_.addPair(b, d);
445 >      }
446 >
447 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
448 >        oneFourInteractions_.addPair(a, d);      
449 >      } else {
450 >        excludedInteractions_.addPair(a, d);
451 >      }
452      }
453  
454 <    Molecule::RigidBodyIterator rbIter;
455 <    RigidBody* rb;
456 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
457 <      std::vector<Atom*> atoms = rb->getAtoms();
458 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
459 <        for (int j = i + 1; j < atoms.size(); ++j) {
454 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
455 >         inversion = mol->nextInversion(inversionIter)) {
456 >
457 >      a = inversion->getAtomA()->getGlobalIndex();
458 >      b = inversion->getAtomB()->getGlobalIndex();        
459 >      c = inversion->getAtomC()->getGlobalIndex();        
460 >      d = inversion->getAtomD()->getGlobalIndex();        
461 >
462 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
463 >        oneTwoInteractions_.addPair(a, b);      
464 >        oneTwoInteractions_.addPair(a, c);
465 >        oneTwoInteractions_.addPair(a, d);
466 >      } else {
467 >        excludedInteractions_.addPair(a, b);
468 >        excludedInteractions_.addPair(a, c);
469 >        excludedInteractions_.addPair(a, d);
470 >      }
471 >
472 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
473 >        oneThreeInteractions_.addPair(b, c);    
474 >        oneThreeInteractions_.addPair(b, d);    
475 >        oneThreeInteractions_.addPair(c, d);      
476 >      } else {
477 >        excludedInteractions_.addPair(b, c);
478 >        excludedInteractions_.addPair(b, d);
479 >        excludedInteractions_.addPair(c, d);
480 >      }
481 >    }
482 >
483 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
484 >         rb = mol->nextRigidBody(rbIter)) {
485 >      vector<Atom*> atoms = rb->getAtoms();
486 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
487 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
488            a = atoms[i]->getGlobalIndex();
489            b = atoms[j]->getGlobalIndex();
490 <          exclude_.addPair(a, b);
490 >          excludedInteractions_.addPair(a, b);
491          }
492        }
493      }        
494  
495    }
496  
497 <  void SimInfo::removeExcludePairs(Molecule* mol) {
498 <    std::vector<Bond*>::iterator bondIter;
499 <    std::vector<Bend*>::iterator bendIter;
500 <    std::vector<Torsion*>::iterator torsionIter;
497 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
498 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
499 >    vector<Bond*>::iterator bondIter;
500 >    vector<Bend*>::iterator bendIter;
501 >    vector<Torsion*>::iterator torsionIter;
502 >    vector<Inversion*>::iterator inversionIter;
503      Bond* bond;
504      Bend* bend;
505      Torsion* torsion;
506 +    Inversion* inversion;
507      int a;
508      int b;
509      int c;
510      int d;
511 +
512 +    map<int, set<int> > atomGroups;
513 +    Molecule::RigidBodyIterator rbIter;
514 +    RigidBody* rb;
515 +    Molecule::IntegrableObjectIterator ii;
516 +    StuntDouble* integrableObject;
517      
518 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
518 >    for (integrableObject = mol->beginIntegrableObject(ii);
519 >         integrableObject != NULL;
520 >         integrableObject = mol->nextIntegrableObject(ii)) {
521 >      
522 >      if (integrableObject->isRigidBody()) {
523 >        rb = static_cast<RigidBody*>(integrableObject);
524 >        vector<Atom*> atoms = rb->getAtoms();
525 >        set<int> rigidAtoms;
526 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
527 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
528 >        }
529 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
530 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
531 >        }      
532 >      } else {
533 >        set<int> oneAtomSet;
534 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
535 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
536 >      }
537 >    }  
538 >
539 >    for (bond= mol->beginBond(bondIter); bond != NULL;
540 >         bond = mol->nextBond(bondIter)) {
541 >      
542        a = bond->getAtomA()->getGlobalIndex();
543 <      b = bond->getAtomB()->getGlobalIndex();        
544 <      exclude_.removePair(a, b);
543 >      b = bond->getAtomB()->getGlobalIndex();  
544 >    
545 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
546 >        oneTwoInteractions_.removePair(a, b);
547 >      } else {
548 >        excludedInteractions_.removePair(a, b);
549 >      }
550      }
551  
552 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
552 >    for (bend= mol->beginBend(bendIter); bend != NULL;
553 >         bend = mol->nextBend(bendIter)) {
554 >
555        a = bend->getAtomA()->getGlobalIndex();
556        b = bend->getAtomB()->getGlobalIndex();        
557        c = bend->getAtomC()->getGlobalIndex();
558 +      
559 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
560 +        oneTwoInteractions_.removePair(a, b);      
561 +        oneTwoInteractions_.removePair(b, c);
562 +      } else {
563 +        excludedInteractions_.removePair(a, b);
564 +        excludedInteractions_.removePair(b, c);
565 +      }
566  
567 <      exclude_.removePair(a, b);
568 <      exclude_.removePair(a, c);
569 <      exclude_.removePair(b, c);        
567 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
568 >        oneThreeInteractions_.removePair(a, c);      
569 >      } else {
570 >        excludedInteractions_.removePair(a, c);
571 >      }
572      }
573  
574 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
574 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
575 >         torsion = mol->nextTorsion(torsionIter)) {
576 >
577        a = torsion->getAtomA()->getGlobalIndex();
578        b = torsion->getAtomB()->getGlobalIndex();        
579        c = torsion->getAtomC()->getGlobalIndex();        
580 <      d = torsion->getAtomD()->getGlobalIndex();        
580 >      d = torsion->getAtomD()->getGlobalIndex();      
581 >  
582 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
583 >        oneTwoInteractions_.removePair(a, b);      
584 >        oneTwoInteractions_.removePair(b, c);
585 >        oneTwoInteractions_.removePair(c, d);
586 >      } else {
587 >        excludedInteractions_.removePair(a, b);
588 >        excludedInteractions_.removePair(b, c);
589 >        excludedInteractions_.removePair(c, d);
590 >      }
591  
592 <      exclude_.removePair(a, b);
593 <      exclude_.removePair(a, c);
594 <      exclude_.removePair(a, d);
595 <      exclude_.removePair(b, c);
596 <      exclude_.removePair(b, d);
597 <      exclude_.removePair(c, d);        
592 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
593 >        oneThreeInteractions_.removePair(a, c);      
594 >        oneThreeInteractions_.removePair(b, d);      
595 >      } else {
596 >        excludedInteractions_.removePair(a, c);
597 >        excludedInteractions_.removePair(b, d);
598 >      }
599 >
600 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
601 >        oneFourInteractions_.removePair(a, d);      
602 >      } else {
603 >        excludedInteractions_.removePair(a, d);
604 >      }
605      }
606  
607 <    Molecule::RigidBodyIterator rbIter;
608 <    RigidBody* rb;
609 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
610 <      std::vector<Atom*> atoms = rb->getAtoms();
611 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
612 <        for (int j = i + 1; j < atoms.size(); ++j) {
607 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
608 >         inversion = mol->nextInversion(inversionIter)) {
609 >
610 >      a = inversion->getAtomA()->getGlobalIndex();
611 >      b = inversion->getAtomB()->getGlobalIndex();        
612 >      c = inversion->getAtomC()->getGlobalIndex();        
613 >      d = inversion->getAtomD()->getGlobalIndex();        
614 >
615 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
616 >        oneTwoInteractions_.removePair(a, b);      
617 >        oneTwoInteractions_.removePair(a, c);
618 >        oneTwoInteractions_.removePair(a, d);
619 >      } else {
620 >        excludedInteractions_.removePair(a, b);
621 >        excludedInteractions_.removePair(a, c);
622 >        excludedInteractions_.removePair(a, d);
623 >      }
624 >
625 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
626 >        oneThreeInteractions_.removePair(b, c);    
627 >        oneThreeInteractions_.removePair(b, d);    
628 >        oneThreeInteractions_.removePair(c, d);      
629 >      } else {
630 >        excludedInteractions_.removePair(b, c);
631 >        excludedInteractions_.removePair(b, d);
632 >        excludedInteractions_.removePair(c, d);
633 >      }
634 >    }
635 >
636 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
637 >         rb = mol->nextRigidBody(rbIter)) {
638 >      vector<Atom*> atoms = rb->getAtoms();
639 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
640 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
641            a = atoms[i]->getGlobalIndex();
642            b = atoms[j]->getGlobalIndex();
643 <          exclude_.removePair(a, b);
643 >          excludedInteractions_.removePair(a, b);
644          }
645        }
646      }        
647 <
647 >    
648    }
649 <
650 <
649 >  
650 >  
651    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
652      int curStampId;
653 <
653 >    
654      //index from 0
655      curStampId = moleculeStamps_.size();
656  
# Line 451 | Line 658 | namespace oopse {
658      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
659    }
660  
454  void SimInfo::update() {
661  
662 <    setupSimType();
663 <
664 < #ifdef IS_MPI
665 <    setupFortranParallel();
666 < #endif
667 <
668 <    setupFortranSim();
669 <
670 <    //setup fortran force field
465 <    /** @deprecate */    
466 <    int isError = 0;
467 <    
468 <    setupElectrostaticSummationMethod( isError );
469 <
470 <    if(isError){
471 <      sprintf( painCave.errMsg,
472 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
473 <      painCave.isFatal = 1;
474 <      simError();
475 <    }
476 <  
477 <    
478 <    setupCutoff();
479 <
662 >  /**
663 >   * update
664 >   *
665 >   *  Performs the global checks and variable settings after the
666 >   *  objects have been created.
667 >   *
668 >   */
669 >  void SimInfo::update() {  
670 >    setupSimVariables();
671      calcNdf();
672      calcNdfRaw();
673      calcNdfTrans();
483
484    fortranInitialized_ = true;
674    }
675 <
676 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
675 >  
676 >  /**
677 >   * getSimulatedAtomTypes
678 >   *
679 >   * Returns an STL set of AtomType* that are actually present in this
680 >   * simulation.  Must query all processors to assemble this information.
681 >   *
682 >   */
683 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
684      SimInfo::MoleculeIterator mi;
685      Molecule* mol;
686      Molecule::AtomIterator ai;
687      Atom* atom;
688 <    std::set<AtomType*> atomTypes;
689 <
690 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
495 <
688 >    set<AtomType*> atomTypes;
689 >    
690 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
691        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
692          atomTypes.insert(atom->getAtomType());
693 <      }
694 <        
500 <    }
693 >      }      
694 >    }    
695  
696 <    return atomTypes;        
503 <  }
696 > #ifdef IS_MPI
697  
698 <  void SimInfo::setupSimType() {
699 <    std::set<AtomType*>::iterator i;
507 <    std::set<AtomType*> atomTypes;
508 <    atomTypes = getUniqueAtomTypes();
509 <    
510 <    int useLennardJones = 0;
511 <    int useElectrostatic = 0;
512 <    int useEAM = 0;
513 <    int useCharge = 0;
514 <    int useDirectional = 0;
515 <    int useDipole = 0;
516 <    int useGayBerne = 0;
517 <    int useSticky = 0;
518 <    int useStickyPower = 0;
519 <    int useShape = 0;
520 <    int useFLARB = 0; //it is not in AtomType yet
521 <    int useDirectionalAtom = 0;    
522 <    int useElectrostatics = 0;
523 <    //usePBC and useRF are from simParams
524 <    int usePBC = simParams_->getPBC();
698 >    // loop over the found atom types on this processor, and add their
699 >    // numerical idents to a vector:
700  
701 <    //loop over all of the atom types
702 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
703 <      useLennardJones |= (*i)->isLennardJones();
704 <      useElectrostatic |= (*i)->isElectrostatic();
530 <      useEAM |= (*i)->isEAM();
531 <      useCharge |= (*i)->isCharge();
532 <      useDirectional |= (*i)->isDirectional();
533 <      useDipole |= (*i)->isDipole();
534 <      useGayBerne |= (*i)->isGayBerne();
535 <      useSticky |= (*i)->isSticky();
536 <      useStickyPower |= (*i)->isStickyPower();
537 <      useShape |= (*i)->isShape();
538 <    }
701 >    vector<int> foundTypes;
702 >    set<AtomType*>::iterator i;
703 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
704 >      foundTypes.push_back( (*i)->getIdent() );
705  
706 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
707 <      useDirectionalAtom = 1;
542 <    }
706 >    // count_local holds the number of found types on this processor
707 >    int count_local = foundTypes.size();
708  
709 <    if (useCharge || useDipole) {
710 <      useElectrostatics = 1;
711 <    }
709 >    // count holds the total number of found types on all processors
710 >    // (some will be redundant with the ones found locally):
711 >    int count;
712 >    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
713  
714 < #ifdef IS_MPI    
715 <    int temp;
714 >    // create a vector to hold the globally found types, and resize it:
715 >    vector<int> ftGlobal;
716 >    ftGlobal.resize(count);
717 >    vector<int> counts;
718  
719 <    temp = usePBC;
720 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
719 >    int nproc = MPI::COMM_WORLD.Get_size();
720 >    counts.resize(nproc);
721 >    vector<int> disps;
722 >    disps.resize(nproc);
723  
724 <    temp = useDirectionalAtom;
555 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
556 <
557 <    temp = useLennardJones;
558 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
559 <
560 <    temp = useElectrostatics;
561 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
562 <
563 <    temp = useCharge;
564 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
565 <
566 <    temp = useDipole;
567 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
568 <
569 <    temp = useSticky;
570 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
571 <
572 <    temp = useStickyPower;
573 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
724 >    // now spray out the foundTypes to all the other processors:
725      
726 <    temp = useGayBerne;
727 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
726 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
727 >                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
728  
729 <    temp = useEAM;
730 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
731 <
732 <    temp = useShape;
733 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
734 <
735 <    temp = useFLARB;
736 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
737 <
729 >    // foundIdents is a stl set, so inserting an already found ident
730 >    // will have no effect.
731 >    set<int> foundIdents;
732 >    vector<int>::iterator j;
733 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
734 >      foundIdents.insert((*j));
735 >    
736 >    // now iterate over the foundIdents and get the actual atom types
737 >    // that correspond to these:
738 >    set<int>::iterator it;
739 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
740 >      atomTypes.insert( forceField_->getAtomType((*it)) );
741 >
742   #endif
743 +    
744 +    return atomTypes;        
745 +  }
746  
747 <    fInfo_.SIM_uses_PBC = usePBC;    
748 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
749 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
750 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
751 <    fInfo_.SIM_uses_Charges = useCharge;
752 <    fInfo_.SIM_uses_Dipoles = useDipole;
753 <    fInfo_.SIM_uses_Sticky = useSticky;
754 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
597 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
598 <    fInfo_.SIM_uses_EAM = useEAM;
599 <    fInfo_.SIM_uses_Shapes = useShape;
600 <    fInfo_.SIM_uses_FLARB = useFLARB;
601 <
602 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
747 >  void SimInfo::setupSimVariables() {
748 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
749 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
750 >    calcBoxDipole_ = false;
751 >    if ( simParams_->haveAccumulateBoxDipole() )
752 >      if ( simParams_->getAccumulateBoxDipole() ) {
753 >        calcBoxDipole_ = true;      
754 >      }
755  
756 <      if (simParams_->haveDielectric()) {
757 <        fInfo_.dielect = simParams_->getDielectric();
758 <      } else {
759 <        sprintf(painCave.errMsg,
760 <                "SimSetup Error: No Dielectric constant was set.\n"
761 <                "\tYou are trying to use Reaction Field without"
762 <                "\tsetting a dielectric constant!\n");
763 <        painCave.isFatal = 1;
764 <        simError();
765 <      }
766 <        
615 <    } else {
616 <      fInfo_.dielect = 0.0;
756 >    set<AtomType*>::iterator i;
757 >    set<AtomType*> atomTypes;
758 >    atomTypes = getSimulatedAtomTypes();    
759 >    int usesElectrostatic = 0;
760 >    int usesMetallic = 0;
761 >    int usesDirectional = 0;
762 >    //loop over all of the atom types
763 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
764 >      usesElectrostatic |= (*i)->isElectrostatic();
765 >      usesMetallic |= (*i)->isMetal();
766 >      usesDirectional |= (*i)->isDirectional();
767      }
768  
769 + #ifdef IS_MPI    
770 +    int temp;
771 +    temp = usesDirectional;
772 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
773 +
774 +    temp = usesMetallic;
775 +    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
776 +
777 +    temp = usesElectrostatic;
778 +    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
779 + #endif
780 +    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
781 +    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
782 +    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
783 +    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
784 +    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
785 +    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
786    }
787  
788 <  void SimInfo::setupFortranSim() {
788 >  void SimInfo::setupFortran() {
789      int isError;
790 <    int nExclude;
791 <    std::vector<int> fortranGlobalGroupMembership;
790 >    int nExclude, nOneTwo, nOneThree, nOneFour;
791 >    vector<int> fortranGlobalGroupMembership;
792      
626    nExclude = exclude_.getSize();
793      isError = 0;
794  
795      //globalGroupMembership_ is filled by SimCreator    
# Line 632 | Line 798 | namespace oopse {
798      }
799  
800      //calculate mass ratio of cutoff group
801 <    std::vector<double> mfact;
801 >    vector<RealType> mfact;
802      SimInfo::MoleculeIterator mi;
803      Molecule* mol;
804      Molecule::CutoffGroupIterator ci;
805      CutoffGroup* cg;
806      Molecule::AtomIterator ai;
807      Atom* atom;
808 <    double totalMass;
808 >    RealType totalMass;
809  
810      //to avoid memory reallocation, reserve enough space for mfact
811      mfact.reserve(getNCutoffGroups());
# Line 649 | Line 815 | namespace oopse {
815  
816          totalMass = cg->getMass();
817          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
818 <          mfact.push_back(atom->getMass()/totalMass);
818 >          // Check for massless groups - set mfact to 1 if true
819 >          if (totalMass != 0)
820 >            mfact.push_back(atom->getMass()/totalMass);
821 >          else
822 >            mfact.push_back( 1.0 );
823          }
654
824        }      
825      }
826  
827 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
828 <    std::vector<int> identArray;
827 >    //fill ident array of local atoms (it is actually ident of
828 >    //AtomType, it is so confusing !!!)
829 >    vector<int> identArray;
830  
831      //to avoid memory reallocation, reserve enough space identArray
832      identArray.reserve(getNAtoms());
# Line 669 | Line 839 | namespace oopse {
839  
840      //fill molMembershipArray
841      //molMembershipArray is filled by SimCreator    
842 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
842 >    vector<int> molMembershipArray(nGlobalAtoms_);
843      for (int i = 0; i < nGlobalAtoms_; i++) {
844        molMembershipArray[i] = globalMolMembership_[i] + 1;
845      }
846      
847      //setup fortran simulation
678    int nGlobalExcludes = 0;
679    int* globalExcludes = NULL;
680    int* excludeList = exclude_.getExcludeList();
681    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
682                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
683                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
848  
849 <    if( isError ){
849 >    nExclude = excludedInteractions_.getSize();
850 >    nOneTwo = oneTwoInteractions_.getSize();
851 >    nOneThree = oneThreeInteractions_.getSize();
852 >    nOneFour = oneFourInteractions_.getSize();
853  
854 +    int* excludeList = excludedInteractions_.getPairList();
855 +    int* oneTwoList = oneTwoInteractions_.getPairList();
856 +    int* oneThreeList = oneThreeInteractions_.getPairList();
857 +    int* oneFourList = oneFourInteractions_.getPairList();
858 +
859 +    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
860 +                   &nExclude, excludeList,
861 +                   &nOneTwo, oneTwoList,
862 +                   &nOneThree, oneThreeList,
863 +                   &nOneFour, oneFourList,
864 +                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
865 +                   &fortranGlobalGroupMembership[0], &isError);
866 +    
867 +    if( isError ){
868 +      
869        sprintf( painCave.errMsg,
870                 "There was an error setting the simulation information in fortran.\n" );
871        painCave.isFatal = 1;
872 <      painCave.severity = OOPSE_ERROR;
872 >      painCave.severity = OPENMD_ERROR;
873        simError();
874      }
875 <
876 < #ifdef IS_MPI
875 >    
876 >    
877      sprintf( checkPointMsg,
878               "succesfully sent the simulation information to fortran.\n");
697    MPIcheckPoint();
698 #endif // is_mpi
699  }
700
701
702 #ifdef IS_MPI
703  void SimInfo::setupFortranParallel() {
879      
880 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
881 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
882 <    std::vector<int> localToGlobalCutoffGroupIndex;
883 <    SimInfo::MoleculeIterator mi;
884 <    Molecule::AtomIterator ai;
885 <    Molecule::CutoffGroupIterator ci;
886 <    Molecule* mol;
887 <    Atom* atom;
888 <    CutoffGroup* cg;
880 >    errorCheckPoint();
881 >    
882 >    // Setup number of neighbors in neighbor list if present
883 >    if (simParams_->haveNeighborListNeighbors()) {
884 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
885 >      setNeighbors(&nlistNeighbors);
886 >    }
887 >  
888 > #ifdef IS_MPI    
889 >    //SimInfo is responsible for creating localToGlobalAtomIndex and
890 >    //localToGlobalGroupIndex
891 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
892 >    vector<int> localToGlobalCutoffGroupIndex;
893      mpiSimData parallelData;
715    int isError;
894  
895      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
896  
# Line 751 | Line 929 | namespace oopse {
929      }
930  
931      sprintf(checkPointMsg, " mpiRefresh successful.\n");
932 <    MPIcheckPoint();
755 <
756 <
757 <  }
758 <
932 >    errorCheckPoint();
933   #endif
934  
935 <  double SimInfo::calcMaxCutoffRadius() {
936 <
937 <
938 <    std::set<AtomType*> atomTypes;
939 <    std::set<AtomType*>::iterator i;
940 <    std::vector<double> cutoffRadius;
767 <
768 <    //get the unique atom types
769 <    atomTypes = getUniqueAtomTypes();
770 <
771 <    //query the max cutoff radius among these atom types
772 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
773 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
935 >    initFortranFF(&isError);
936 >    if (isError) {
937 >      sprintf(painCave.errMsg,
938 >              "initFortranFF errror: fortran didn't like something we gave it.\n");
939 >      painCave.isFatal = 1;
940 >      simError();
941      }
942 <
776 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
777 < #ifdef IS_MPI
778 <    //pick the max cutoff radius among the processors
779 < #endif
780 <
781 <    return maxCutoffRadius;
942 >    fortranInitialized_ = true;
943    }
944  
784  void SimInfo::getCutoff(double& rcut, double& rsw) {
785    
786    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
787        
788      if (!simParams_->haveRcut()){
789        sprintf(painCave.errMsg,
790                "SimCreator Warning: No value was set for the cutoffRadius.\n"
791                "\tOOPSE will use a default value of 15.0 angstroms"
792                "\tfor the cutoffRadius.\n");
793        painCave.isFatal = 0;
794        simError();
795        rcut = 15.0;
796      } else{
797        rcut = simParams_->getRcut();
798      }
799
800      if (!simParams_->haveRsw()){
801        sprintf(painCave.errMsg,
802                "SimCreator Warning: No value was set for switchingRadius.\n"
803                "\tOOPSE will use a default value of\n"
804                "\t0.95 * cutoffRadius for the switchingRadius\n");
805        painCave.isFatal = 0;
806        simError();
807        rsw = 0.95 * rcut;
808      } else{
809        rsw = simParams_->getRsw();
810      }
811
812    } else {
813      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
814      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
815        
816      if (simParams_->haveRcut()) {
817        rcut = simParams_->getRcut();
818      } else {
819        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
820        rcut = calcMaxCutoffRadius();
821      }
822
823      if (simParams_->haveRsw()) {
824        rsw  = simParams_->getRsw();
825      } else {
826        rsw = rcut;
827      }
828    
829    }
830  }
831
832  void SimInfo::setupCutoff() {    
833    getCutoff(rcut_, rsw_);    
834    double rnblist = rcut_ + 1; // skin of neighbor list
835
836    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
837    
838    int cp =  TRADITIONAL_CUTOFF_POLICY;
839    if (simParams_->haveCutoffPolicy()) {
840      std::string myPolicy = simParams_->getCutoffPolicy();
841      if (myPolicy == "MIX") {
842        cp = MIX_CUTOFF_POLICY;
843      } else {
844        if (myPolicy == "MAX") {
845          cp = MAX_CUTOFF_POLICY;
846        } else {
847          if (myPolicy == "TRADITIONAL") {            
848            cp = TRADITIONAL_CUTOFF_POLICY;
849          } else {
850            // throw error        
851            sprintf( painCave.errMsg,
852                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
853            painCave.isFatal = 1;
854            simError();
855          }    
856        }          
857      }
858    }
859    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
860  }
861
862  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
863    
864    int errorOut;
865    int esm =  NONE;
866    double alphaVal;
867
868    errorOut = isError;
869
870    if (simParams_->haveElectrostaticSummationMethod()) {
871      std::string myMethod = simParams_->getElectrostaticSummationMethod();
872      if (myMethod == "NONE") {
873        esm = NONE;
874      } else {
875        if (myMethod == "UNDAMPED_WOLF") {
876          esm = UNDAMPED_WOLF;
877        } else {
878          if (myMethod == "DAMPED_WOLF") {            
879            esm = DAMPED_WOLF;
880            if (!simParams_->haveDampingAlpha()) {
881              //throw error
882              sprintf( painCave.errMsg,
883                       "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", simParams_->getDampingAlpha());
884              painCave.isFatal = 0;
885              simError();
886            }
887            alphaVal = simParams_->getDampingAlpha();
888          } else {
889            if (myMethod == "REACTION_FIELD") {
890              esm = REACTION_FIELD;
891            } else {
892              // throw error        
893              sprintf( painCave.errMsg,
894                       "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() );
895              painCave.isFatal = 1;
896              simError();
897            }    
898          }          
899        }
900      }
901    }
902    initFortranFF( &fInfo_.SIM_uses_RF, &esm, &alphaVal, &errorOut );
903  }
904
945    void SimInfo::addProperty(GenericData* genData) {
946      properties_.addProperty(genData);  
947    }
948  
949 <  void SimInfo::removeProperty(const std::string& propName) {
949 >  void SimInfo::removeProperty(const string& propName) {
950      properties_.removeProperty(propName);  
951    }
952  
# Line 914 | Line 954 | namespace oopse {
954      properties_.clearProperties();
955    }
956  
957 <  std::vector<std::string> SimInfo::getPropertyNames() {
957 >  vector<string> SimInfo::getPropertyNames() {
958      return properties_.getPropertyNames();  
959    }
960        
961 <  std::vector<GenericData*> SimInfo::getProperties() {
961 >  vector<GenericData*> SimInfo::getProperties() {
962      return properties_.getProperties();
963    }
964  
965 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
965 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
966      return properties_.getPropertyByName(propName);
967    }
968  
# Line 936 | Line 976 | namespace oopse {
976      Molecule* mol;
977      RigidBody* rb;
978      Atom* atom;
979 +    CutoffGroup* cg;
980      SimInfo::MoleculeIterator mi;
981      Molecule::RigidBodyIterator rbIter;
982 <    Molecule::AtomIterator atomIter;;
982 >    Molecule::AtomIterator atomIter;
983 >    Molecule::CutoffGroupIterator cgIter;
984  
985      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
986          
# Line 949 | Line 991 | namespace oopse {
991        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
992          rb->setSnapshotManager(sman_);
993        }
994 +
995 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
996 +        cg->setSnapshotManager(sman_);
997 +      }
998      }    
999      
1000    }
# Line 958 | Line 1004 | namespace oopse {
1004      Molecule* mol;
1005  
1006      Vector3d comVel(0.0);
1007 <    double totalMass = 0.0;
1007 >    RealType totalMass = 0.0;
1008      
1009  
1010      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1011 <      double mass = mol->getMass();
1011 >      RealType mass = mol->getMass();
1012        totalMass += mass;
1013        comVel += mass * mol->getComVel();
1014      }  
1015  
1016   #ifdef IS_MPI
1017 <    double tmpMass = totalMass;
1017 >    RealType tmpMass = totalMass;
1018      Vector3d tmpComVel(comVel);    
1019 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1020 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1019 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1020 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1021   #endif
1022  
1023      comVel /= totalMass;
# Line 984 | Line 1030 | namespace oopse {
1030      Molecule* mol;
1031  
1032      Vector3d com(0.0);
1033 <    double totalMass = 0.0;
1033 >    RealType totalMass = 0.0;
1034      
1035      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1036 <      double mass = mol->getMass();
1036 >      RealType mass = mol->getMass();
1037        totalMass += mass;
1038        com += mass * mol->getCom();
1039      }  
1040  
1041   #ifdef IS_MPI
1042 <    double tmpMass = totalMass;
1042 >    RealType tmpMass = totalMass;
1043      Vector3d tmpCom(com);    
1044 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1045 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1044 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1045 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1046   #endif
1047  
1048      com /= totalMass;
# Line 1005 | Line 1051 | namespace oopse {
1051  
1052    }        
1053  
1054 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1054 >  ostream& operator <<(ostream& o, SimInfo& info) {
1055  
1056      return o;
1057    }
# Line 1020 | Line 1066 | namespace oopse {
1066        Molecule* mol;
1067        
1068      
1069 <      double totalMass = 0.0;
1069 >      RealType totalMass = 0.0;
1070      
1071  
1072        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1073 <         double mass = mol->getMass();
1073 >         RealType mass = mol->getMass();
1074           totalMass += mass;
1075           com += mass * mol->getCom();
1076           comVel += mass * mol->getComVel();          
1077        }  
1078        
1079   #ifdef IS_MPI
1080 <      double tmpMass = totalMass;
1080 >      RealType tmpMass = totalMass;
1081        Vector3d tmpCom(com);  
1082        Vector3d tmpComVel(comVel);
1083 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1084 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1085 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1083 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1084 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1085 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1086   #endif
1087        
1088        com /= totalMass;
# Line 1048 | Line 1094 | namespace oopse {
1094  
1095  
1096         [  Ixx -Ixy  -Ixz ]
1097 <  J =| -Iyx  Iyy  -Iyz |
1097 >    J =| -Iyx  Iyy  -Iyz |
1098         [ -Izx -Iyz   Izz ]
1099      */
1100  
1101     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1102        
1103  
1104 <      double xx = 0.0;
1105 <      double yy = 0.0;
1106 <      double zz = 0.0;
1107 <      double xy = 0.0;
1108 <      double xz = 0.0;
1109 <      double yz = 0.0;
1104 >      RealType xx = 0.0;
1105 >      RealType yy = 0.0;
1106 >      RealType zz = 0.0;
1107 >      RealType xy = 0.0;
1108 >      RealType xz = 0.0;
1109 >      RealType yz = 0.0;
1110        Vector3d com(0.0);
1111        Vector3d comVel(0.0);
1112        
# Line 1072 | Line 1118 | namespace oopse {
1118        Vector3d thisq(0.0);
1119        Vector3d thisv(0.0);
1120  
1121 <      double thisMass = 0.0;
1121 >      RealType thisMass = 0.0;
1122      
1123        
1124        
# Line 1110 | Line 1156 | namespace oopse {
1156   #ifdef IS_MPI
1157        Mat3x3d tmpI(inertiaTensor);
1158        Vector3d tmpAngMom;
1159 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1160 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1159 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1160 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1161   #endif
1162                
1163        return;
# Line 1132 | Line 1178 | namespace oopse {
1178        Vector3d thisr(0.0);
1179        Vector3d thisp(0.0);
1180        
1181 <      double thisMass;
1181 >      RealType thisMass;
1182        
1183        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1184          thisMass = mol->getMass();
# Line 1145 | Line 1191 | namespace oopse {
1191        
1192   #ifdef IS_MPI
1193        Vector3d tmpAngMom;
1194 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1194 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1195   #endif
1196        
1197        return angularMomentum;
1198     }
1199    
1200 <  
1201 < }//end namespace oopse
1200 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1201 >    return IOIndexToIntegrableObject.at(index);
1202 >  }
1203 >  
1204 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1205 >    IOIndexToIntegrableObject= v;
1206 >  }
1207  
1208 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1209 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1210 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1211 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1212 +  */
1213 +  void SimInfo::getGyrationalVolume(RealType &volume){
1214 +    Mat3x3d intTensor;
1215 +    RealType det;
1216 +    Vector3d dummyAngMom;
1217 +    RealType sysconstants;
1218 +    RealType geomCnst;
1219 +
1220 +    geomCnst = 3.0/2.0;
1221 +    /* Get the inertial tensor and angular momentum for free*/
1222 +    getInertiaTensor(intTensor,dummyAngMom);
1223 +    
1224 +    det = intTensor.determinant();
1225 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1226 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1227 +    return;
1228 +  }
1229 +
1230 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1231 +    Mat3x3d intTensor;
1232 +    Vector3d dummyAngMom;
1233 +    RealType sysconstants;
1234 +    RealType geomCnst;
1235 +
1236 +    geomCnst = 3.0/2.0;
1237 +    /* Get the inertial tensor and angular momentum for free*/
1238 +    getInertiaTensor(intTensor,dummyAngMom);
1239 +    
1240 +    detI = intTensor.determinant();
1241 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1242 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1243 +    return;
1244 +  }
1245 + /*
1246 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1247 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1248 +      sdByGlobalIndex_ = v;
1249 +    }
1250 +
1251 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1252 +      //assert(index < nAtoms_ + nRigidBodies_);
1253 +      return sdByGlobalIndex_.at(index);
1254 +    }  
1255 + */  
1256 +  int SimInfo::getNGlobalConstraints() {
1257 +    int nGlobalConstraints;
1258 + #ifdef IS_MPI
1259 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1260 +                  MPI_COMM_WORLD);    
1261 + #else
1262 +    nGlobalConstraints =  nConstraints_;
1263 + #endif
1264 +    return nGlobalConstraints;
1265 +  }
1266 +
1267 + }//end namespace OpenMD
1268 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 604 by chrisfen, Fri Sep 16 19:00:12 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1540 by gezelter, Mon Jan 17 21:34:36 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines