ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 604 by chrisfen, Fri Sep 16 19:00:12 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1536 by gezelter, Wed Jan 5 14:49:05 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 < #include "UseTheForce/fCutoffPolicy.h"
57 < #include "UseTheForce/Darkside/fElectrostaticSummationMethod.h"
56 > #include "primitives/StuntDouble.hpp"
57 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
58   #include "UseTheForce/doForces_interface.h"
58 #include "UseTheForce/notifyCutoffs_interface.h"
59   #include "utils/MemoryUtils.hpp"
60   #include "utils/simError.h"
61   #include "selection/SelectionManager.hpp"
62 + #include "io/ForceFieldOptions.hpp"
63 + #include "UseTheForce/ForceField.hpp"
64 + #include "nonbonded/SwitchingFunction.hpp"
65  
66   #ifdef IS_MPI
67   #include "UseTheForce/mpiComponentPlan.h"
68   #include "UseTheForce/DarkSide/simParallel_interface.h"
69   #endif
70  
71 < namespace oopse {
72 <
73 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
74 <                   ForceField* ff, Globals* simParams) :
75 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
76 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
71 > using namespace std;
72 > namespace OpenMD {
73 >  
74 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
75 >    forceField_(ff), simParams_(simParams),
76 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
77      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
78      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
79 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
80 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
81 <    sman_(NULL), fortranInitialized_(false) {
82 <
80 <            
81 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
82 <      MoleculeStamp* molStamp;
83 <      int nMolWithSameStamp;
84 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
85 <      int nGroups = 0;          //total cutoff groups defined in meta-data file
86 <      CutoffGroupStamp* cgStamp;    
87 <      RigidBodyStamp* rbStamp;
88 <      int nRigidAtoms = 0;
79 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
80 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
81 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
82 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
83      
84 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
85 <        molStamp = i->first;
86 <        nMolWithSameStamp = i->second;
87 <        
88 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
89 <
90 <        //calculate atoms in molecules
91 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
92 <
93 <
94 <        //calculate atoms in cutoff groups
95 <        int nAtomsInGroups = 0;
96 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
97 <        
98 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
99 <          cgStamp = molStamp->getCutoffGroup(j);
100 <          nAtomsInGroups += cgStamp->getNMembers();
101 <        }
102 <
103 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
104 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
105 <
106 <        //calculate atoms in rigid bodies
107 <        int nAtomsInRigidBodies = 0;
108 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
109 <        
116 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
117 <          rbStamp = molStamp->getRigidBody(j);
118 <          nAtomsInRigidBodies += rbStamp->getNMembers();
119 <        }
120 <
121 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
122 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
123 <        
84 >    MoleculeStamp* molStamp;
85 >    int nMolWithSameStamp;
86 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
88 >    CutoffGroupStamp* cgStamp;    
89 >    RigidBodyStamp* rbStamp;
90 >    int nRigidAtoms = 0;
91 >    
92 >    vector<Component*> components = simParams->getComponents();
93 >    
94 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
95 >      molStamp = (*i)->getMoleculeStamp();
96 >      nMolWithSameStamp = (*i)->getNMol();
97 >      
98 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
99 >      
100 >      //calculate atoms in molecules
101 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
102 >      
103 >      //calculate atoms in cutoff groups
104 >      int nAtomsInGroups = 0;
105 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
106 >      
107 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
108 >        cgStamp = molStamp->getCutoffGroupStamp(j);
109 >        nAtomsInGroups += cgStamp->getNMembers();
110        }
111 <
112 <      //every free atom (atom does not belong to cutoff groups) is a cutoff group
113 <      //therefore the total number of cutoff groups in the system is equal to
114 <      //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
115 <      //file plus the number of cutoff groups defined in meta-data file
116 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
117 <
118 <      //every free atom (atom does not belong to rigid bodies) is an integrable object
119 <      //therefore the total number of  integrable objects in the system is equal to
120 <      //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
121 <      //file plus the number of  rigid bodies defined in meta-data file
122 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
123 <
124 <      nGlobalMols_ = molStampIds_.size();
125 <
126 < #ifdef IS_MPI    
127 <      molToProcMap_.resize(nGlobalMols_);
128 < #endif
129 <
130 <    }
131 <
111 >      
112 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
113 >      
114 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
115 >      
116 >      //calculate atoms in rigid bodies
117 >      int nAtomsInRigidBodies = 0;
118 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
119 >      
120 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
121 >        rbStamp = molStamp->getRigidBodyStamp(j);
122 >        nAtomsInRigidBodies += rbStamp->getNMembers();
123 >      }
124 >      
125 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
126 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
127 >      
128 >    }
129 >    
130 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
131 >    //group therefore the total number of cutoff groups in the system is
132 >    //equal to the total number of atoms minus number of atoms belong to
133 >    //cutoff group defined in meta-data file plus the number of cutoff
134 >    //groups defined in meta-data file
135 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
136 >    
137 >    //every free atom (atom does not belong to rigid bodies) is an
138 >    //integrable object therefore the total number of integrable objects
139 >    //in the system is equal to the total number of atoms minus number of
140 >    //atoms belong to rigid body defined in meta-data file plus the number
141 >    //of rigid bodies defined in meta-data file
142 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
143 >      + nGlobalRigidBodies_;
144 >    
145 >    nGlobalMols_ = molStampIds_.size();
146 >    molToProcMap_.resize(nGlobalMols_);
147 >  }
148 >  
149    SimInfo::~SimInfo() {
150 <    std::map<int, Molecule*>::iterator i;
150 >    map<int, Molecule*>::iterator i;
151      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
152        delete i->second;
153      }
154      molecules_.clear();
155        
153    delete stamps_;
156      delete sman_;
157      delete simParams_;
158      delete forceField_;
159    }
160  
159  int SimInfo::getNGlobalConstraints() {
160    int nGlobalConstraints;
161 #ifdef IS_MPI
162    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
163                  MPI_COMM_WORLD);    
164 #else
165    nGlobalConstraints =  nConstraints_;
166 #endif
167    return nGlobalConstraints;
168  }
161  
162    bool SimInfo::addMolecule(Molecule* mol) {
163      MoleculeIterator i;
164 <
164 >    
165      i = molecules_.find(mol->getGlobalIndex());
166      if (i == molecules_.end() ) {
167 <
168 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
169 <        
167 >      
168 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
169 >      
170        nAtoms_ += mol->getNAtoms();
171        nBonds_ += mol->getNBonds();
172        nBends_ += mol->getNBends();
173        nTorsions_ += mol->getNTorsions();
174 +      nInversions_ += mol->getNInversions();
175        nRigidBodies_ += mol->getNRigidBodies();
176        nIntegrableObjects_ += mol->getNIntegrableObjects();
177        nCutoffGroups_ += mol->getNCutoffGroups();
178        nConstraints_ += mol->getNConstraintPairs();
179 <
180 <      addExcludePairs(mol);
181 <        
179 >      
180 >      addInteractionPairs(mol);
181 >      
182        return true;
183      } else {
184        return false;
185      }
186    }
187 <
187 >  
188    bool SimInfo::removeMolecule(Molecule* mol) {
189      MoleculeIterator i;
190      i = molecules_.find(mol->getGlobalIndex());
# Line 204 | Line 197 | namespace oopse {
197        nBonds_ -= mol->getNBonds();
198        nBends_ -= mol->getNBends();
199        nTorsions_ -= mol->getNTorsions();
200 +      nInversions_ -= mol->getNInversions();
201        nRigidBodies_ -= mol->getNRigidBodies();
202        nIntegrableObjects_ -= mol->getNIntegrableObjects();
203        nCutoffGroups_ -= mol->getNCutoffGroups();
204        nConstraints_ -= mol->getNConstraintPairs();
205  
206 <      removeExcludePairs(mol);
206 >      removeInteractionPairs(mol);
207        molecules_.erase(mol->getGlobalIndex());
208  
209        delete mol;
# Line 218 | Line 212 | namespace oopse {
212      } else {
213        return false;
214      }
221
222
215    }    
216  
217          
# Line 237 | Line 229 | namespace oopse {
229    void SimInfo::calcNdf() {
230      int ndf_local;
231      MoleculeIterator i;
232 <    std::vector<StuntDouble*>::iterator j;
232 >    vector<StuntDouble*>::iterator j;
233      Molecule* mol;
234      StuntDouble* integrableObject;
235  
# Line 257 | Line 249 | namespace oopse {
249            }
250          }
251              
252 <      }//end for (integrableObject)
253 <    }// end for (mol)
252 >      }
253 >    }
254      
255      // n_constraints is local, so subtract them on each processor
256      ndf_local -= nConstraints_;
# Line 275 | Line 267 | namespace oopse {
267  
268    }
269  
270 +  int SimInfo::getFdf() {
271 + #ifdef IS_MPI
272 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
273 + #else
274 +    fdf_ = fdf_local;
275 + #endif
276 +    return fdf_;
277 +  }
278 +    
279    void SimInfo::calcNdfRaw() {
280      int ndfRaw_local;
281  
282      MoleculeIterator i;
283 <    std::vector<StuntDouble*>::iterator j;
283 >    vector<StuntDouble*>::iterator j;
284      Molecule* mol;
285      StuntDouble* integrableObject;
286  
# Line 326 | Line 327 | namespace oopse {
327  
328    }
329  
330 <  void SimInfo::addExcludePairs(Molecule* mol) {
331 <    std::vector<Bond*>::iterator bondIter;
332 <    std::vector<Bend*>::iterator bendIter;
333 <    std::vector<Torsion*>::iterator torsionIter;
330 >  void SimInfo::addInteractionPairs(Molecule* mol) {
331 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
332 >    vector<Bond*>::iterator bondIter;
333 >    vector<Bend*>::iterator bendIter;
334 >    vector<Torsion*>::iterator torsionIter;
335 >    vector<Inversion*>::iterator inversionIter;
336      Bond* bond;
337      Bend* bend;
338      Torsion* torsion;
339 +    Inversion* inversion;
340      int a;
341      int b;
342      int c;
343      int d;
344 +
345 +    // atomGroups can be used to add special interaction maps between
346 +    // groups of atoms that are in two separate rigid bodies.
347 +    // However, most site-site interactions between two rigid bodies
348 +    // are probably not special, just the ones between the physically
349 +    // bonded atoms.  Interactions *within* a single rigid body should
350 +    // always be excluded.  These are done at the bottom of this
351 +    // function.
352 +
353 +    map<int, set<int> > atomGroups;
354 +    Molecule::RigidBodyIterator rbIter;
355 +    RigidBody* rb;
356 +    Molecule::IntegrableObjectIterator ii;
357 +    StuntDouble* integrableObject;
358      
359 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
359 >    for (integrableObject = mol->beginIntegrableObject(ii);
360 >         integrableObject != NULL;
361 >         integrableObject = mol->nextIntegrableObject(ii)) {
362 >      
363 >      if (integrableObject->isRigidBody()) {
364 >        rb = static_cast<RigidBody*>(integrableObject);
365 >        vector<Atom*> atoms = rb->getAtoms();
366 >        set<int> rigidAtoms;
367 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
368 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
369 >        }
370 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
371 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
372 >        }      
373 >      } else {
374 >        set<int> oneAtomSet;
375 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
376 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
377 >      }
378 >    }  
379 >          
380 >    for (bond= mol->beginBond(bondIter); bond != NULL;
381 >         bond = mol->nextBond(bondIter)) {
382 >
383        a = bond->getAtomA()->getGlobalIndex();
384 <      b = bond->getAtomB()->getGlobalIndex();        
385 <      exclude_.addPair(a, b);
384 >      b = bond->getAtomB()->getGlobalIndex();  
385 >    
386 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
387 >        oneTwoInteractions_.addPair(a, b);
388 >      } else {
389 >        excludedInteractions_.addPair(a, b);
390 >      }
391      }
392  
393 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
393 >    for (bend= mol->beginBend(bendIter); bend != NULL;
394 >         bend = mol->nextBend(bendIter)) {
395 >
396        a = bend->getAtomA()->getGlobalIndex();
397        b = bend->getAtomB()->getGlobalIndex();        
398        c = bend->getAtomC()->getGlobalIndex();
399 <
400 <      exclude_.addPair(a, b);
401 <      exclude_.addPair(a, c);
402 <      exclude_.addPair(b, c);        
399 >      
400 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
401 >        oneTwoInteractions_.addPair(a, b);      
402 >        oneTwoInteractions_.addPair(b, c);
403 >      } else {
404 >        excludedInteractions_.addPair(a, b);
405 >        excludedInteractions_.addPair(b, c);
406 >      }
407 >
408 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
409 >        oneThreeInteractions_.addPair(a, c);      
410 >      } else {
411 >        excludedInteractions_.addPair(a, c);
412 >      }
413      }
414  
415 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
415 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
416 >         torsion = mol->nextTorsion(torsionIter)) {
417 >
418        a = torsion->getAtomA()->getGlobalIndex();
419        b = torsion->getAtomB()->getGlobalIndex();        
420        c = torsion->getAtomC()->getGlobalIndex();        
421 <      d = torsion->getAtomD()->getGlobalIndex();        
421 >      d = torsion->getAtomD()->getGlobalIndex();      
422  
423 <      exclude_.addPair(a, b);
424 <      exclude_.addPair(a, c);
425 <      exclude_.addPair(a, d);
426 <      exclude_.addPair(b, c);
427 <      exclude_.addPair(b, d);
428 <      exclude_.addPair(c, d);        
423 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
424 >        oneTwoInteractions_.addPair(a, b);      
425 >        oneTwoInteractions_.addPair(b, c);
426 >        oneTwoInteractions_.addPair(c, d);
427 >      } else {
428 >        excludedInteractions_.addPair(a, b);
429 >        excludedInteractions_.addPair(b, c);
430 >        excludedInteractions_.addPair(c, d);
431 >      }
432 >
433 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
434 >        oneThreeInteractions_.addPair(a, c);      
435 >        oneThreeInteractions_.addPair(b, d);      
436 >      } else {
437 >        excludedInteractions_.addPair(a, c);
438 >        excludedInteractions_.addPair(b, d);
439 >      }
440 >
441 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
442 >        oneFourInteractions_.addPair(a, d);      
443 >      } else {
444 >        excludedInteractions_.addPair(a, d);
445 >      }
446      }
447  
448 <    Molecule::RigidBodyIterator rbIter;
449 <    RigidBody* rb;
450 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
451 <      std::vector<Atom*> atoms = rb->getAtoms();
452 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
453 <        for (int j = i + 1; j < atoms.size(); ++j) {
448 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
449 >         inversion = mol->nextInversion(inversionIter)) {
450 >
451 >      a = inversion->getAtomA()->getGlobalIndex();
452 >      b = inversion->getAtomB()->getGlobalIndex();        
453 >      c = inversion->getAtomC()->getGlobalIndex();        
454 >      d = inversion->getAtomD()->getGlobalIndex();        
455 >
456 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
457 >        oneTwoInteractions_.addPair(a, b);      
458 >        oneTwoInteractions_.addPair(a, c);
459 >        oneTwoInteractions_.addPair(a, d);
460 >      } else {
461 >        excludedInteractions_.addPair(a, b);
462 >        excludedInteractions_.addPair(a, c);
463 >        excludedInteractions_.addPair(a, d);
464 >      }
465 >
466 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
467 >        oneThreeInteractions_.addPair(b, c);    
468 >        oneThreeInteractions_.addPair(b, d);    
469 >        oneThreeInteractions_.addPair(c, d);      
470 >      } else {
471 >        excludedInteractions_.addPair(b, c);
472 >        excludedInteractions_.addPair(b, d);
473 >        excludedInteractions_.addPair(c, d);
474 >      }
475 >    }
476 >
477 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
478 >         rb = mol->nextRigidBody(rbIter)) {
479 >      vector<Atom*> atoms = rb->getAtoms();
480 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
481 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
482            a = atoms[i]->getGlobalIndex();
483            b = atoms[j]->getGlobalIndex();
484 <          exclude_.addPair(a, b);
484 >          excludedInteractions_.addPair(a, b);
485          }
486        }
487      }        
488  
489    }
490  
491 <  void SimInfo::removeExcludePairs(Molecule* mol) {
492 <    std::vector<Bond*>::iterator bondIter;
493 <    std::vector<Bend*>::iterator bendIter;
494 <    std::vector<Torsion*>::iterator torsionIter;
491 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
492 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
493 >    vector<Bond*>::iterator bondIter;
494 >    vector<Bend*>::iterator bendIter;
495 >    vector<Torsion*>::iterator torsionIter;
496 >    vector<Inversion*>::iterator inversionIter;
497      Bond* bond;
498      Bend* bend;
499      Torsion* torsion;
500 +    Inversion* inversion;
501      int a;
502      int b;
503      int c;
504      int d;
505 +
506 +    map<int, set<int> > atomGroups;
507 +    Molecule::RigidBodyIterator rbIter;
508 +    RigidBody* rb;
509 +    Molecule::IntegrableObjectIterator ii;
510 +    StuntDouble* integrableObject;
511      
512 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
512 >    for (integrableObject = mol->beginIntegrableObject(ii);
513 >         integrableObject != NULL;
514 >         integrableObject = mol->nextIntegrableObject(ii)) {
515 >      
516 >      if (integrableObject->isRigidBody()) {
517 >        rb = static_cast<RigidBody*>(integrableObject);
518 >        vector<Atom*> atoms = rb->getAtoms();
519 >        set<int> rigidAtoms;
520 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
521 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
522 >        }
523 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
524 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
525 >        }      
526 >      } else {
527 >        set<int> oneAtomSet;
528 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
529 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
530 >      }
531 >    }  
532 >
533 >    for (bond= mol->beginBond(bondIter); bond != NULL;
534 >         bond = mol->nextBond(bondIter)) {
535 >      
536        a = bond->getAtomA()->getGlobalIndex();
537 <      b = bond->getAtomB()->getGlobalIndex();        
538 <      exclude_.removePair(a, b);
537 >      b = bond->getAtomB()->getGlobalIndex();  
538 >    
539 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
540 >        oneTwoInteractions_.removePair(a, b);
541 >      } else {
542 >        excludedInteractions_.removePair(a, b);
543 >      }
544      }
545  
546 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
546 >    for (bend= mol->beginBend(bendIter); bend != NULL;
547 >         bend = mol->nextBend(bendIter)) {
548 >
549        a = bend->getAtomA()->getGlobalIndex();
550        b = bend->getAtomB()->getGlobalIndex();        
551        c = bend->getAtomC()->getGlobalIndex();
552 +      
553 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
554 +        oneTwoInteractions_.removePair(a, b);      
555 +        oneTwoInteractions_.removePair(b, c);
556 +      } else {
557 +        excludedInteractions_.removePair(a, b);
558 +        excludedInteractions_.removePair(b, c);
559 +      }
560  
561 <      exclude_.removePair(a, b);
562 <      exclude_.removePair(a, c);
563 <      exclude_.removePair(b, c);        
561 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
562 >        oneThreeInteractions_.removePair(a, c);      
563 >      } else {
564 >        excludedInteractions_.removePair(a, c);
565 >      }
566      }
567  
568 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
568 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
569 >         torsion = mol->nextTorsion(torsionIter)) {
570 >
571        a = torsion->getAtomA()->getGlobalIndex();
572        b = torsion->getAtomB()->getGlobalIndex();        
573        c = torsion->getAtomC()->getGlobalIndex();        
574 <      d = torsion->getAtomD()->getGlobalIndex();        
574 >      d = torsion->getAtomD()->getGlobalIndex();      
575 >  
576 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
577 >        oneTwoInteractions_.removePair(a, b);      
578 >        oneTwoInteractions_.removePair(b, c);
579 >        oneTwoInteractions_.removePair(c, d);
580 >      } else {
581 >        excludedInteractions_.removePair(a, b);
582 >        excludedInteractions_.removePair(b, c);
583 >        excludedInteractions_.removePair(c, d);
584 >      }
585  
586 <      exclude_.removePair(a, b);
587 <      exclude_.removePair(a, c);
588 <      exclude_.removePair(a, d);
589 <      exclude_.removePair(b, c);
590 <      exclude_.removePair(b, d);
591 <      exclude_.removePair(c, d);        
586 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
587 >        oneThreeInteractions_.removePair(a, c);      
588 >        oneThreeInteractions_.removePair(b, d);      
589 >      } else {
590 >        excludedInteractions_.removePair(a, c);
591 >        excludedInteractions_.removePair(b, d);
592 >      }
593 >
594 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
595 >        oneFourInteractions_.removePair(a, d);      
596 >      } else {
597 >        excludedInteractions_.removePair(a, d);
598 >      }
599      }
600  
601 <    Molecule::RigidBodyIterator rbIter;
602 <    RigidBody* rb;
603 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
604 <      std::vector<Atom*> atoms = rb->getAtoms();
605 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
606 <        for (int j = i + 1; j < atoms.size(); ++j) {
601 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
602 >         inversion = mol->nextInversion(inversionIter)) {
603 >
604 >      a = inversion->getAtomA()->getGlobalIndex();
605 >      b = inversion->getAtomB()->getGlobalIndex();        
606 >      c = inversion->getAtomC()->getGlobalIndex();        
607 >      d = inversion->getAtomD()->getGlobalIndex();        
608 >
609 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
610 >        oneTwoInteractions_.removePair(a, b);      
611 >        oneTwoInteractions_.removePair(a, c);
612 >        oneTwoInteractions_.removePair(a, d);
613 >      } else {
614 >        excludedInteractions_.removePair(a, b);
615 >        excludedInteractions_.removePair(a, c);
616 >        excludedInteractions_.removePair(a, d);
617 >      }
618 >
619 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
620 >        oneThreeInteractions_.removePair(b, c);    
621 >        oneThreeInteractions_.removePair(b, d);    
622 >        oneThreeInteractions_.removePair(c, d);      
623 >      } else {
624 >        excludedInteractions_.removePair(b, c);
625 >        excludedInteractions_.removePair(b, d);
626 >        excludedInteractions_.removePair(c, d);
627 >      }
628 >    }
629 >
630 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
631 >         rb = mol->nextRigidBody(rbIter)) {
632 >      vector<Atom*> atoms = rb->getAtoms();
633 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
634 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
635            a = atoms[i]->getGlobalIndex();
636            b = atoms[j]->getGlobalIndex();
637 <          exclude_.removePair(a, b);
637 >          excludedInteractions_.removePair(a, b);
638          }
639        }
640      }        
641 <
641 >    
642    }
643 <
644 <
643 >  
644 >  
645    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
646      int curStampId;
647 <
647 >    
648      //index from 0
649      curStampId = moleculeStamps_.size();
650  
# Line 451 | Line 652 | namespace oopse {
652      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
653    }
654  
454  void SimInfo::update() {
655  
656 <    setupSimType();
657 <
658 < #ifdef IS_MPI
659 <    setupFortranParallel();
660 < #endif
661 <
662 <    setupFortranSim();
663 <
664 <    //setup fortran force field
465 <    /** @deprecate */    
466 <    int isError = 0;
467 <    
468 <    setupElectrostaticSummationMethod( isError );
469 <
470 <    if(isError){
471 <      sprintf( painCave.errMsg,
472 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
473 <      painCave.isFatal = 1;
474 <      simError();
475 <    }
476 <  
477 <    
478 <    setupCutoff();
479 <
656 >  /**
657 >   * update
658 >   *
659 >   *  Performs the global checks and variable settings after the
660 >   *  objects have been created.
661 >   *
662 >   */
663 >  void SimInfo::update() {  
664 >    setupSimVariables();
665      calcNdf();
666      calcNdfRaw();
667      calcNdfTrans();
483
484    fortranInitialized_ = true;
668    }
669 <
670 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
669 >  
670 >  /**
671 >   * getSimulatedAtomTypes
672 >   *
673 >   * Returns an STL set of AtomType* that are actually present in this
674 >   * simulation.  Must query all processors to assemble this information.
675 >   *
676 >   */
677 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
678      SimInfo::MoleculeIterator mi;
679      Molecule* mol;
680      Molecule::AtomIterator ai;
681      Atom* atom;
682 <    std::set<AtomType*> atomTypes;
683 <
684 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
495 <
682 >    set<AtomType*> atomTypes;
683 >    
684 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
685        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
686          atomTypes.insert(atom->getAtomType());
687 <      }
688 <        
500 <    }
687 >      }      
688 >    }    
689  
690 <    return atomTypes;        
503 <  }
690 > #ifdef IS_MPI
691  
692 <  void SimInfo::setupSimType() {
693 <    std::set<AtomType*>::iterator i;
507 <    std::set<AtomType*> atomTypes;
508 <    atomTypes = getUniqueAtomTypes();
509 <    
510 <    int useLennardJones = 0;
511 <    int useElectrostatic = 0;
512 <    int useEAM = 0;
513 <    int useCharge = 0;
514 <    int useDirectional = 0;
515 <    int useDipole = 0;
516 <    int useGayBerne = 0;
517 <    int useSticky = 0;
518 <    int useStickyPower = 0;
519 <    int useShape = 0;
520 <    int useFLARB = 0; //it is not in AtomType yet
521 <    int useDirectionalAtom = 0;    
522 <    int useElectrostatics = 0;
523 <    //usePBC and useRF are from simParams
524 <    int usePBC = simParams_->getPBC();
692 >    // loop over the found atom types on this processor, and add their
693 >    // numerical idents to a vector:
694  
695 <    //loop over all of the atom types
696 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
697 <      useLennardJones |= (*i)->isLennardJones();
698 <      useElectrostatic |= (*i)->isElectrostatic();
530 <      useEAM |= (*i)->isEAM();
531 <      useCharge |= (*i)->isCharge();
532 <      useDirectional |= (*i)->isDirectional();
533 <      useDipole |= (*i)->isDipole();
534 <      useGayBerne |= (*i)->isGayBerne();
535 <      useSticky |= (*i)->isSticky();
536 <      useStickyPower |= (*i)->isStickyPower();
537 <      useShape |= (*i)->isShape();
538 <    }
695 >    vector<int> foundTypes;
696 >    set<AtomType*>::iterator i;
697 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
698 >      foundTypes.push_back( (*i)->getIdent() );
699  
700 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
701 <      useDirectionalAtom = 1;
542 <    }
700 >    // count_local holds the number of found types on this processor
701 >    int count_local = foundTypes.size();
702  
703 <    if (useCharge || useDipole) {
704 <      useElectrostatics = 1;
705 <    }
703 >    // count holds the total number of found types on all processors
704 >    // (some will be redundant with the ones found locally):
705 >    int count;
706 >    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
707  
708 < #ifdef IS_MPI    
709 <    int temp;
708 >    // create a vector to hold the globally found types, and resize it:
709 >    vector<int> ftGlobal;
710 >    ftGlobal.resize(count);
711 >    vector<int> counts;
712  
713 <    temp = usePBC;
714 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
713 >    int nproc = MPI::COMM_WORLD.Get_size();
714 >    counts.resize(nproc);
715 >    vector<int> disps;
716 >    disps.resize(nproc);
717  
718 <    temp = useDirectionalAtom;
555 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
556 <
557 <    temp = useLennardJones;
558 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
559 <
560 <    temp = useElectrostatics;
561 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
562 <
563 <    temp = useCharge;
564 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
565 <
566 <    temp = useDipole;
567 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
568 <
569 <    temp = useSticky;
570 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
571 <
572 <    temp = useStickyPower;
573 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
718 >    // now spray out the foundTypes to all the other processors:
719      
720 <    temp = useGayBerne;
721 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
720 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
721 >                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
722  
723 <    temp = useEAM;
724 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
725 <
726 <    temp = useShape;
727 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
728 <
729 <    temp = useFLARB;
730 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
731 <
723 >    // foundIdents is a stl set, so inserting an already found ident
724 >    // will have no effect.
725 >    set<int> foundIdents;
726 >    vector<int>::iterator j;
727 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
728 >      foundIdents.insert((*j));
729 >    
730 >    // now iterate over the foundIdents and get the actual atom types
731 >    // that correspond to these:
732 >    set<int>::iterator it;
733 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
734 >      atomTypes.insert( forceField_->getAtomType((*it)) );
735 >
736   #endif
737 +    
738 +    return atomTypes;        
739 +  }
740  
741 <    fInfo_.SIM_uses_PBC = usePBC;    
742 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
743 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
744 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
745 <    fInfo_.SIM_uses_Charges = useCharge;
746 <    fInfo_.SIM_uses_Dipoles = useDipole;
747 <    fInfo_.SIM_uses_Sticky = useSticky;
596 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
597 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
598 <    fInfo_.SIM_uses_EAM = useEAM;
599 <    fInfo_.SIM_uses_Shapes = useShape;
600 <    fInfo_.SIM_uses_FLARB = useFLARB;
601 <
602 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
603 <
604 <      if (simParams_->haveDielectric()) {
605 <        fInfo_.dielect = simParams_->getDielectric();
606 <      } else {
607 <        sprintf(painCave.errMsg,
608 <                "SimSetup Error: No Dielectric constant was set.\n"
609 <                "\tYou are trying to use Reaction Field without"
610 <                "\tsetting a dielectric constant!\n");
611 <        painCave.isFatal = 1;
612 <        simError();
741 >  void SimInfo::setupSimVariables() {
742 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
743 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
744 >    calcBoxDipole_ = false;
745 >    if ( simParams_->haveAccumulateBoxDipole() )
746 >      if ( simParams_->getAccumulateBoxDipole() ) {
747 >        calcBoxDipole_ = true;      
748        }
749 <        
750 <    } else {
751 <      fInfo_.dielect = 0.0;
749 >
750 >    set<AtomType*>::iterator i;
751 >    set<AtomType*> atomTypes;
752 >    atomTypes = getSimulatedAtomTypes();    
753 >    int usesElectrostatic = 0;
754 >    int usesMetallic = 0;
755 >    int usesDirectional = 0;
756 >    //loop over all of the atom types
757 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
758 >      usesElectrostatic |= (*i)->isElectrostatic();
759 >      usesMetallic |= (*i)->isMetal();
760 >      usesDirectional |= (*i)->isDirectional();
761      }
762  
763 + #ifdef IS_MPI    
764 +    int temp;
765 +    temp = usesDirectional;
766 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
767 +
768 +    temp = usesMetallic;
769 +    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
770 +
771 +    temp = usesElectrostatic;
772 +    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
773 + #endif
774 +    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
775 +    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
776 +    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
777 +    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
778 +    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
779 +    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
780    }
781  
782 <  void SimInfo::setupFortranSim() {
782 >  void SimInfo::setupFortran() {
783      int isError;
784 <    int nExclude;
785 <    std::vector<int> fortranGlobalGroupMembership;
784 >    int nExclude, nOneTwo, nOneThree, nOneFour;
785 >    vector<int> fortranGlobalGroupMembership;
786      
626    nExclude = exclude_.getSize();
787      isError = 0;
788  
789      //globalGroupMembership_ is filled by SimCreator    
# Line 632 | Line 792 | namespace oopse {
792      }
793  
794      //calculate mass ratio of cutoff group
795 <    std::vector<double> mfact;
795 >    vector<RealType> mfact;
796      SimInfo::MoleculeIterator mi;
797      Molecule* mol;
798      Molecule::CutoffGroupIterator ci;
799      CutoffGroup* cg;
800      Molecule::AtomIterator ai;
801      Atom* atom;
802 <    double totalMass;
802 >    RealType totalMass;
803  
804      //to avoid memory reallocation, reserve enough space for mfact
805      mfact.reserve(getNCutoffGroups());
# Line 649 | Line 809 | namespace oopse {
809  
810          totalMass = cg->getMass();
811          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
812 <          mfact.push_back(atom->getMass()/totalMass);
812 >          // Check for massless groups - set mfact to 1 if true
813 >          if (totalMass != 0)
814 >            mfact.push_back(atom->getMass()/totalMass);
815 >          else
816 >            mfact.push_back( 1.0 );
817          }
654
818        }      
819      }
820  
821 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
822 <    std::vector<int> identArray;
821 >    //fill ident array of local atoms (it is actually ident of
822 >    //AtomType, it is so confusing !!!)
823 >    vector<int> identArray;
824  
825      //to avoid memory reallocation, reserve enough space identArray
826      identArray.reserve(getNAtoms());
# Line 669 | Line 833 | namespace oopse {
833  
834      //fill molMembershipArray
835      //molMembershipArray is filled by SimCreator    
836 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
836 >    vector<int> molMembershipArray(nGlobalAtoms_);
837      for (int i = 0; i < nGlobalAtoms_; i++) {
838        molMembershipArray[i] = globalMolMembership_[i] + 1;
839      }
840      
841      //setup fortran simulation
678    int nGlobalExcludes = 0;
679    int* globalExcludes = NULL;
680    int* excludeList = exclude_.getExcludeList();
681    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
682                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
683                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
842  
843 <    if( isError ){
843 >    nExclude = excludedInteractions_.getSize();
844 >    nOneTwo = oneTwoInteractions_.getSize();
845 >    nOneThree = oneThreeInteractions_.getSize();
846 >    nOneFour = oneFourInteractions_.getSize();
847  
848 +    int* excludeList = excludedInteractions_.getPairList();
849 +    int* oneTwoList = oneTwoInteractions_.getPairList();
850 +    int* oneThreeList = oneThreeInteractions_.getPairList();
851 +    int* oneFourList = oneFourInteractions_.getPairList();
852 +
853 +    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
854 +                   &nExclude, excludeList,
855 +                   &nOneTwo, oneTwoList,
856 +                   &nOneThree, oneThreeList,
857 +                   &nOneFour, oneFourList,
858 +                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
859 +                   &fortranGlobalGroupMembership[0], &isError);
860 +    
861 +    if( isError ){
862 +      
863        sprintf( painCave.errMsg,
864                 "There was an error setting the simulation information in fortran.\n" );
865        painCave.isFatal = 1;
866 <      painCave.severity = OOPSE_ERROR;
866 >      painCave.severity = OPENMD_ERROR;
867        simError();
868      }
869 <
870 < #ifdef IS_MPI
869 >    
870 >    
871      sprintf( checkPointMsg,
872               "succesfully sent the simulation information to fortran.\n");
697    MPIcheckPoint();
698 #endif // is_mpi
699  }
700
701
702 #ifdef IS_MPI
703  void SimInfo::setupFortranParallel() {
873      
874 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
875 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
876 <    std::vector<int> localToGlobalCutoffGroupIndex;
877 <    SimInfo::MoleculeIterator mi;
878 <    Molecule::AtomIterator ai;
879 <    Molecule::CutoffGroupIterator ci;
880 <    Molecule* mol;
881 <    Atom* atom;
882 <    CutoffGroup* cg;
874 >    errorCheckPoint();
875 >    
876 >    // Setup number of neighbors in neighbor list if present
877 >    if (simParams_->haveNeighborListNeighbors()) {
878 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
879 >      setNeighbors(&nlistNeighbors);
880 >    }
881 >  
882 > #ifdef IS_MPI    
883 >    //SimInfo is responsible for creating localToGlobalAtomIndex and
884 >    //localToGlobalGroupIndex
885 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
886 >    vector<int> localToGlobalCutoffGroupIndex;
887      mpiSimData parallelData;
715    int isError;
888  
889      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
890  
# Line 751 | Line 923 | namespace oopse {
923      }
924  
925      sprintf(checkPointMsg, " mpiRefresh successful.\n");
926 <    MPIcheckPoint();
755 <
756 <
757 <  }
758 <
926 >    errorCheckPoint();
927   #endif
760
761  double SimInfo::calcMaxCutoffRadius() {
762
928  
929 <    std::set<AtomType*> atomTypes;
930 <    std::set<AtomType*>::iterator i;
931 <    std::vector<double> cutoffRadius;
932 <
933 <    //get the unique atom types
934 <    atomTypes = getUniqueAtomTypes();
770 <
771 <    //query the max cutoff radius among these atom types
772 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
773 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
929 >    initFortranFF(&isError);
930 >    if (isError) {
931 >      sprintf(painCave.errMsg,
932 >              "initFortranFF errror: fortran didn't like something we gave it.\n");
933 >      painCave.isFatal = 1;
934 >      simError();
935      }
936 <
776 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
777 < #ifdef IS_MPI
778 <    //pick the max cutoff radius among the processors
779 < #endif
780 <
781 <    return maxCutoffRadius;
782 <  }
783 <
784 <  void SimInfo::getCutoff(double& rcut, double& rsw) {
785 <    
786 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
787 <        
788 <      if (!simParams_->haveRcut()){
789 <        sprintf(painCave.errMsg,
790 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
791 <                "\tOOPSE will use a default value of 15.0 angstroms"
792 <                "\tfor the cutoffRadius.\n");
793 <        painCave.isFatal = 0;
794 <        simError();
795 <        rcut = 15.0;
796 <      } else{
797 <        rcut = simParams_->getRcut();
798 <      }
799 <
800 <      if (!simParams_->haveRsw()){
801 <        sprintf(painCave.errMsg,
802 <                "SimCreator Warning: No value was set for switchingRadius.\n"
803 <                "\tOOPSE will use a default value of\n"
804 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
805 <        painCave.isFatal = 0;
806 <        simError();
807 <        rsw = 0.95 * rcut;
808 <      } else{
809 <        rsw = simParams_->getRsw();
810 <      }
811 <
812 <    } else {
813 <      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
814 <      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
815 <        
816 <      if (simParams_->haveRcut()) {
817 <        rcut = simParams_->getRcut();
818 <      } else {
819 <        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
820 <        rcut = calcMaxCutoffRadius();
821 <      }
822 <
823 <      if (simParams_->haveRsw()) {
824 <        rsw  = simParams_->getRsw();
825 <      } else {
826 <        rsw = rcut;
827 <      }
828 <    
829 <    }
830 <  }
831 <
832 <  void SimInfo::setupCutoff() {    
833 <    getCutoff(rcut_, rsw_);    
834 <    double rnblist = rcut_ + 1; // skin of neighbor list
835 <
836 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
837 <    
838 <    int cp =  TRADITIONAL_CUTOFF_POLICY;
839 <    if (simParams_->haveCutoffPolicy()) {
840 <      std::string myPolicy = simParams_->getCutoffPolicy();
841 <      if (myPolicy == "MIX") {
842 <        cp = MIX_CUTOFF_POLICY;
843 <      } else {
844 <        if (myPolicy == "MAX") {
845 <          cp = MAX_CUTOFF_POLICY;
846 <        } else {
847 <          if (myPolicy == "TRADITIONAL") {            
848 <            cp = TRADITIONAL_CUTOFF_POLICY;
849 <          } else {
850 <            // throw error        
851 <            sprintf( painCave.errMsg,
852 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
853 <            painCave.isFatal = 1;
854 <            simError();
855 <          }    
856 <        }          
857 <      }
858 <    }
859 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
860 <  }
861 <
862 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
863 <    
864 <    int errorOut;
865 <    int esm =  NONE;
866 <    double alphaVal;
867 <
868 <    errorOut = isError;
869 <
870 <    if (simParams_->haveElectrostaticSummationMethod()) {
871 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
872 <      if (myMethod == "NONE") {
873 <        esm = NONE;
874 <      } else {
875 <        if (myMethod == "UNDAMPED_WOLF") {
876 <          esm = UNDAMPED_WOLF;
877 <        } else {
878 <          if (myMethod == "DAMPED_WOLF") {            
879 <            esm = DAMPED_WOLF;
880 <            if (!simParams_->haveDampingAlpha()) {
881 <              //throw error
882 <              sprintf( painCave.errMsg,
883 <                       "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", simParams_->getDampingAlpha());
884 <              painCave.isFatal = 0;
885 <              simError();
886 <            }
887 <            alphaVal = simParams_->getDampingAlpha();
888 <          } else {
889 <            if (myMethod == "REACTION_FIELD") {
890 <              esm = REACTION_FIELD;
891 <            } else {
892 <              // throw error        
893 <              sprintf( painCave.errMsg,
894 <                       "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() );
895 <              painCave.isFatal = 1;
896 <              simError();
897 <            }    
898 <          }          
899 <        }
900 <      }
901 <    }
902 <    initFortranFF( &fInfo_.SIM_uses_RF, &esm, &alphaVal, &errorOut );
936 >    fortranInitialized_ = true;
937    }
938  
939    void SimInfo::addProperty(GenericData* genData) {
940      properties_.addProperty(genData);  
941    }
942  
943 <  void SimInfo::removeProperty(const std::string& propName) {
943 >  void SimInfo::removeProperty(const string& propName) {
944      properties_.removeProperty(propName);  
945    }
946  
# Line 914 | Line 948 | namespace oopse {
948      properties_.clearProperties();
949    }
950  
951 <  std::vector<std::string> SimInfo::getPropertyNames() {
951 >  vector<string> SimInfo::getPropertyNames() {
952      return properties_.getPropertyNames();  
953    }
954        
955 <  std::vector<GenericData*> SimInfo::getProperties() {
955 >  vector<GenericData*> SimInfo::getProperties() {
956      return properties_.getProperties();
957    }
958  
959 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
959 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
960      return properties_.getPropertyByName(propName);
961    }
962  
# Line 958 | Line 992 | namespace oopse {
992      Molecule* mol;
993  
994      Vector3d comVel(0.0);
995 <    double totalMass = 0.0;
995 >    RealType totalMass = 0.0;
996      
997  
998      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
999 <      double mass = mol->getMass();
999 >      RealType mass = mol->getMass();
1000        totalMass += mass;
1001        comVel += mass * mol->getComVel();
1002      }  
1003  
1004   #ifdef IS_MPI
1005 <    double tmpMass = totalMass;
1005 >    RealType tmpMass = totalMass;
1006      Vector3d tmpComVel(comVel);    
1007 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1008 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1007 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1008 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1009   #endif
1010  
1011      comVel /= totalMass;
# Line 984 | Line 1018 | namespace oopse {
1018      Molecule* mol;
1019  
1020      Vector3d com(0.0);
1021 <    double totalMass = 0.0;
1021 >    RealType totalMass = 0.0;
1022      
1023      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1024 <      double mass = mol->getMass();
1024 >      RealType mass = mol->getMass();
1025        totalMass += mass;
1026        com += mass * mol->getCom();
1027      }  
1028  
1029   #ifdef IS_MPI
1030 <    double tmpMass = totalMass;
1030 >    RealType tmpMass = totalMass;
1031      Vector3d tmpCom(com);    
1032 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1033 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1032 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1033 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1034   #endif
1035  
1036      com /= totalMass;
# Line 1005 | Line 1039 | namespace oopse {
1039  
1040    }        
1041  
1042 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1042 >  ostream& operator <<(ostream& o, SimInfo& info) {
1043  
1044      return o;
1045    }
# Line 1020 | Line 1054 | namespace oopse {
1054        Molecule* mol;
1055        
1056      
1057 <      double totalMass = 0.0;
1057 >      RealType totalMass = 0.0;
1058      
1059  
1060        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1061 <         double mass = mol->getMass();
1061 >         RealType mass = mol->getMass();
1062           totalMass += mass;
1063           com += mass * mol->getCom();
1064           comVel += mass * mol->getComVel();          
1065        }  
1066        
1067   #ifdef IS_MPI
1068 <      double tmpMass = totalMass;
1068 >      RealType tmpMass = totalMass;
1069        Vector3d tmpCom(com);  
1070        Vector3d tmpComVel(comVel);
1071 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1072 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1073 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1071 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1072 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1073 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1074   #endif
1075        
1076        com /= totalMass;
# Line 1048 | Line 1082 | namespace oopse {
1082  
1083  
1084         [  Ixx -Ixy  -Ixz ]
1085 <  J =| -Iyx  Iyy  -Iyz |
1085 >    J =| -Iyx  Iyy  -Iyz |
1086         [ -Izx -Iyz   Izz ]
1087      */
1088  
1089     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1090        
1091  
1092 <      double xx = 0.0;
1093 <      double yy = 0.0;
1094 <      double zz = 0.0;
1095 <      double xy = 0.0;
1096 <      double xz = 0.0;
1097 <      double yz = 0.0;
1092 >      RealType xx = 0.0;
1093 >      RealType yy = 0.0;
1094 >      RealType zz = 0.0;
1095 >      RealType xy = 0.0;
1096 >      RealType xz = 0.0;
1097 >      RealType yz = 0.0;
1098        Vector3d com(0.0);
1099        Vector3d comVel(0.0);
1100        
# Line 1072 | Line 1106 | namespace oopse {
1106        Vector3d thisq(0.0);
1107        Vector3d thisv(0.0);
1108  
1109 <      double thisMass = 0.0;
1109 >      RealType thisMass = 0.0;
1110      
1111        
1112        
# Line 1110 | Line 1144 | namespace oopse {
1144   #ifdef IS_MPI
1145        Mat3x3d tmpI(inertiaTensor);
1146        Vector3d tmpAngMom;
1147 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1148 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1147 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1148 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1149   #endif
1150                
1151        return;
# Line 1132 | Line 1166 | namespace oopse {
1166        Vector3d thisr(0.0);
1167        Vector3d thisp(0.0);
1168        
1169 <      double thisMass;
1169 >      RealType thisMass;
1170        
1171        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1172          thisMass = mol->getMass();
# Line 1145 | Line 1179 | namespace oopse {
1179        
1180   #ifdef IS_MPI
1181        Vector3d tmpAngMom;
1182 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1182 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1183   #endif
1184        
1185        return angularMomentum;
1186     }
1153  
1187    
1188 < }//end namespace oopse
1188 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1189 >    return IOIndexToIntegrableObject.at(index);
1190 >  }
1191 >  
1192 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1193 >    IOIndexToIntegrableObject= v;
1194 >  }
1195  
1196 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1197 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1198 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1199 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1200 +  */
1201 +  void SimInfo::getGyrationalVolume(RealType &volume){
1202 +    Mat3x3d intTensor;
1203 +    RealType det;
1204 +    Vector3d dummyAngMom;
1205 +    RealType sysconstants;
1206 +    RealType geomCnst;
1207 +
1208 +    geomCnst = 3.0/2.0;
1209 +    /* Get the inertial tensor and angular momentum for free*/
1210 +    getInertiaTensor(intTensor,dummyAngMom);
1211 +    
1212 +    det = intTensor.determinant();
1213 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1214 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1215 +    return;
1216 +  }
1217 +
1218 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1219 +    Mat3x3d intTensor;
1220 +    Vector3d dummyAngMom;
1221 +    RealType sysconstants;
1222 +    RealType geomCnst;
1223 +
1224 +    geomCnst = 3.0/2.0;
1225 +    /* Get the inertial tensor and angular momentum for free*/
1226 +    getInertiaTensor(intTensor,dummyAngMom);
1227 +    
1228 +    detI = intTensor.determinant();
1229 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1230 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1231 +    return;
1232 +  }
1233 + /*
1234 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1235 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1236 +      sdByGlobalIndex_ = v;
1237 +    }
1238 +
1239 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1240 +      //assert(index < nAtoms_ + nRigidBodies_);
1241 +      return sdByGlobalIndex_.at(index);
1242 +    }  
1243 + */  
1244 +  int SimInfo::getNGlobalConstraints() {
1245 +    int nGlobalConstraints;
1246 + #ifdef IS_MPI
1247 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1248 +                  MPI_COMM_WORLD);    
1249 + #else
1250 +    nGlobalConstraints =  nConstraints_;
1251 + #endif
1252 +    return nGlobalConstraints;
1253 +  }
1254 +
1255 + }//end namespace OpenMD
1256 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 604 by chrisfen, Fri Sep 16 19:00:12 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1536 by gezelter, Wed Jan 5 14:49:05 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines