ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 334 by tim, Mon Feb 14 17:57:01 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1534 by gezelter, Wed Dec 29 21:53:28 2010 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57   #include "UseTheForce/doForces_interface.h"
58 < #include "UseTheForce/notifyCutoffs_interface.h"
58 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
59   #include "utils/MemoryUtils.hpp"
60   #include "utils/simError.h"
61   #include "selection/SelectionManager.hpp"
62 + #include "io/ForceFieldOptions.hpp"
63 + #include "UseTheForce/ForceField.hpp"
64 + #include "nonbonded/SwitchingFunction.hpp"
65  
66   #ifdef IS_MPI
67   #include "UseTheForce/mpiComponentPlan.h"
68   #include "UseTheForce/DarkSide/simParallel_interface.h"
69   #endif
70  
71 < namespace oopse {
72 <
73 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
74 <                                ForceField* ff, Globals* simParams) :
75 <                                forceField_(ff), simParams_(simParams),
76 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
77 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
78 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
79 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
80 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
81 <                                sman_(NULL), fortranInitialized_(false), selectMan_(NULL) {
82 <
83 <            
79 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
71 > using namespace std;
72 > namespace OpenMD {
73 >  
74 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
75 >    forceField_(ff), simParams_(simParams),
76 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
77 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
78 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
79 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
80 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
81 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
82 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
83 >    
84      MoleculeStamp* molStamp;
85      int nMolWithSameStamp;
86      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
87 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
88      CutoffGroupStamp* cgStamp;    
89      RigidBodyStamp* rbStamp;
90      int nRigidAtoms = 0;
91      
92 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
93 <        molStamp = i->first;
94 <        nMolWithSameStamp = i->second;
95 <        
96 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
97 <
98 <        //calculate atoms in molecules
99 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
100 <
101 <
102 <        //calculate atoms in cutoff groups
103 <        int nAtomsInGroups = 0;
104 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
105 <        
106 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
107 <            cgStamp = molStamp->getCutoffGroup(j);
108 <            nAtomsInGroups += cgStamp->getNMembers();
109 <        }
110 <
111 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
112 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
113 <
114 <        //calculate atoms in rigid bodies
115 <        int nAtomsInRigidBodies = 0;
116 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
117 <        
118 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
119 <            rbStamp = molStamp->getRigidBody(j);
120 <            nAtomsInRigidBodies += rbStamp->getNMembers();
121 <        }
122 <
123 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
124 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
125 <        
92 >    vector<Component*> components = simParams->getComponents();
93 >    
94 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
95 >      molStamp = (*i)->getMoleculeStamp();
96 >      nMolWithSameStamp = (*i)->getNMol();
97 >      
98 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
99 >      
100 >      //calculate atoms in molecules
101 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
102 >      
103 >      //calculate atoms in cutoff groups
104 >      int nAtomsInGroups = 0;
105 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
106 >      
107 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
108 >        cgStamp = molStamp->getCutoffGroupStamp(j);
109 >        nAtomsInGroups += cgStamp->getNMembers();
110 >      }
111 >      
112 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
113 >      
114 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
115 >      
116 >      //calculate atoms in rigid bodies
117 >      int nAtomsInRigidBodies = 0;
118 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
119 >      
120 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
121 >        rbStamp = molStamp->getRigidBodyStamp(j);
122 >        nAtomsInRigidBodies += rbStamp->getNMembers();
123 >      }
124 >      
125 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
126 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
127 >      
128      }
129 <
130 <    //every free atom (atom does not belong to cutoff groups) is a cutoff group
131 <    //therefore the total number of cutoff groups in the system is equal to
132 <    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
133 <    //file plus the number of cutoff groups defined in meta-data file
129 >    
130 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
131 >    //group therefore the total number of cutoff groups in the system is
132 >    //equal to the total number of atoms minus number of atoms belong to
133 >    //cutoff group defined in meta-data file plus the number of cutoff
134 >    //groups defined in meta-data file
135      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
136 <
137 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
138 <    //therefore the total number of  integrable objects in the system is equal to
139 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
140 <    //file plus the number of  rigid bodies defined in meta-data file
141 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
142 <
136 >    
137 >    //every free atom (atom does not belong to rigid bodies) is an
138 >    //integrable object therefore the total number of integrable objects
139 >    //in the system is equal to the total number of atoms minus number of
140 >    //atoms belong to rigid body defined in meta-data file plus the number
141 >    //of rigid bodies defined in meta-data file
142 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
143 >      + nGlobalRigidBodies_;
144 >    
145      nGlobalMols_ = molStampIds_.size();
137
138 #ifdef IS_MPI    
146      molToProcMap_.resize(nGlobalMols_);
147 < #endif
148 <
149 <    selectMan_ = new SelectionManager(this);
150 <    selectMan_->selectAll();
151 < }
152 <
153 < SimInfo::~SimInfo() {
154 <    //MemoryUtils::deleteVectorOfPointer(molecules_);
155 <
149 <    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
150 <    
147 >  }
148 >  
149 >  SimInfo::~SimInfo() {
150 >    map<int, Molecule*>::iterator i;
151 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
152 >      delete i->second;
153 >    }
154 >    molecules_.clear();
155 >      
156      delete sman_;
157      delete simParams_;
158      delete forceField_;
159 <    delete selectMan_;
155 < }
159 >  }
160  
157 int SimInfo::getNGlobalConstraints() {
158    int nGlobalConstraints;
159 #ifdef IS_MPI
160    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
161                  MPI_COMM_WORLD);    
162 #else
163    nGlobalConstraints =  nConstraints_;
164 #endif
165    return nGlobalConstraints;
166 }
161  
162 < bool SimInfo::addMolecule(Molecule* mol) {
162 >  bool SimInfo::addMolecule(Molecule* mol) {
163      MoleculeIterator i;
164 <
164 >    
165      i = molecules_.find(mol->getGlobalIndex());
166      if (i == molecules_.end() ) {
167 <
168 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
169 <        
170 <        nAtoms_ += mol->getNAtoms();
171 <        nBonds_ += mol->getNBonds();
172 <        nBends_ += mol->getNBends();
173 <        nTorsions_ += mol->getNTorsions();
174 <        nRigidBodies_ += mol->getNRigidBodies();
175 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
176 <        nCutoffGroups_ += mol->getNCutoffGroups();
177 <        nConstraints_ += mol->getNConstraintPairs();
178 <
179 <        addExcludePairs(mol);
180 <        
181 <        return true;
167 >      
168 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
169 >      
170 >      nAtoms_ += mol->getNAtoms();
171 >      nBonds_ += mol->getNBonds();
172 >      nBends_ += mol->getNBends();
173 >      nTorsions_ += mol->getNTorsions();
174 >      nInversions_ += mol->getNInversions();
175 >      nRigidBodies_ += mol->getNRigidBodies();
176 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
177 >      nCutoffGroups_ += mol->getNCutoffGroups();
178 >      nConstraints_ += mol->getNConstraintPairs();
179 >      
180 >      addInteractionPairs(mol);
181 >      
182 >      return true;
183      } else {
184 <        return false;
184 >      return false;
185      }
186 < }
187 <
188 < bool SimInfo::removeMolecule(Molecule* mol) {
186 >  }
187 >  
188 >  bool SimInfo::removeMolecule(Molecule* mol) {
189      MoleculeIterator i;
190      i = molecules_.find(mol->getGlobalIndex());
191  
192      if (i != molecules_.end() ) {
193  
194 <        assert(mol == i->second);
194 >      assert(mol == i->second);
195          
196 <        nAtoms_ -= mol->getNAtoms();
197 <        nBonds_ -= mol->getNBonds();
198 <        nBends_ -= mol->getNBends();
199 <        nTorsions_ -= mol->getNTorsions();
200 <        nRigidBodies_ -= mol->getNRigidBodies();
201 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
202 <        nCutoffGroups_ -= mol->getNCutoffGroups();
203 <        nConstraints_ -= mol->getNConstraintPairs();
196 >      nAtoms_ -= mol->getNAtoms();
197 >      nBonds_ -= mol->getNBonds();
198 >      nBends_ -= mol->getNBends();
199 >      nTorsions_ -= mol->getNTorsions();
200 >      nInversions_ -= mol->getNInversions();
201 >      nRigidBodies_ -= mol->getNRigidBodies();
202 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
203 >      nCutoffGroups_ -= mol->getNCutoffGroups();
204 >      nConstraints_ -= mol->getNConstraintPairs();
205  
206 <        removeExcludePairs(mol);
207 <        molecules_.erase(mol->getGlobalIndex());
206 >      removeInteractionPairs(mol);
207 >      molecules_.erase(mol->getGlobalIndex());
208  
209 <        delete mol;
209 >      delete mol;
210          
211 <        return true;
211 >      return true;
212      } else {
213 <        return false;
213 >      return false;
214      }
215 +  }    
216  
220
221 }    
222
217          
218 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
218 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
219      i = molecules_.begin();
220      return i == molecules_.end() ? NULL : i->second;
221 < }    
221 >  }    
222  
223 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
223 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
224      ++i;
225      return i == molecules_.end() ? NULL : i->second;    
226 < }
226 >  }
227  
228  
229 < void SimInfo::calcNdf() {
229 >  void SimInfo::calcNdf() {
230      int ndf_local;
231      MoleculeIterator i;
232 <    std::vector<StuntDouble*>::iterator j;
232 >    vector<StuntDouble*>::iterator j;
233      Molecule* mol;
234      StuntDouble* integrableObject;
235  
236      ndf_local = 0;
237      
238      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
239 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
240 <               integrableObject = mol->nextIntegrableObject(j)) {
239 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
240 >           integrableObject = mol->nextIntegrableObject(j)) {
241  
242 <            ndf_local += 3;
242 >        ndf_local += 3;
243  
244 <            if (integrableObject->isDirectional()) {
245 <                if (integrableObject->isLinear()) {
246 <                    ndf_local += 2;
247 <                } else {
248 <                    ndf_local += 3;
249 <                }
250 <            }
244 >        if (integrableObject->isDirectional()) {
245 >          if (integrableObject->isLinear()) {
246 >            ndf_local += 2;
247 >          } else {
248 >            ndf_local += 3;
249 >          }
250 >        }
251              
252 <        }//end for (integrableObject)
253 <    }// end for (mol)
252 >      }
253 >    }
254      
255      // n_constraints is local, so subtract them on each processor
256      ndf_local -= nConstraints_;
# Line 271 | Line 265 | void SimInfo::calcNdf() {
265      // entire system:
266      ndf_ = ndf_ - 3 - nZconstraint_;
267  
268 < }
268 >  }
269  
270 < void SimInfo::calcNdfRaw() {
270 >  int SimInfo::getFdf() {
271 > #ifdef IS_MPI
272 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
273 > #else
274 >    fdf_ = fdf_local;
275 > #endif
276 >    return fdf_;
277 >  }
278 >    
279 >  void SimInfo::calcNdfRaw() {
280      int ndfRaw_local;
281  
282      MoleculeIterator i;
283 <    std::vector<StuntDouble*>::iterator j;
283 >    vector<StuntDouble*>::iterator j;
284      Molecule* mol;
285      StuntDouble* integrableObject;
286  
# Line 285 | Line 288 | void SimInfo::calcNdfRaw() {
288      ndfRaw_local = 0;
289      
290      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
291 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
292 <               integrableObject = mol->nextIntegrableObject(j)) {
291 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
292 >           integrableObject = mol->nextIntegrableObject(j)) {
293  
294 <            ndfRaw_local += 3;
294 >        ndfRaw_local += 3;
295  
296 <            if (integrableObject->isDirectional()) {
297 <                if (integrableObject->isLinear()) {
298 <                    ndfRaw_local += 2;
299 <                } else {
300 <                    ndfRaw_local += 3;
301 <                }
302 <            }
296 >        if (integrableObject->isDirectional()) {
297 >          if (integrableObject->isLinear()) {
298 >            ndfRaw_local += 2;
299 >          } else {
300 >            ndfRaw_local += 3;
301 >          }
302 >        }
303              
304 <        }
304 >      }
305      }
306      
307   #ifdef IS_MPI
# Line 306 | Line 309 | void SimInfo::calcNdfRaw() {
309   #else
310      ndfRaw_ = ndfRaw_local;
311   #endif
312 < }
312 >  }
313  
314 < void SimInfo::calcNdfTrans() {
314 >  void SimInfo::calcNdfTrans() {
315      int ndfTrans_local;
316  
317      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 322 | Line 325 | void SimInfo::calcNdfTrans() {
325  
326      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
327  
328 < }
328 >  }
329  
330 < void SimInfo::addExcludePairs(Molecule* mol) {
331 <    std::vector<Bond*>::iterator bondIter;
332 <    std::vector<Bend*>::iterator bendIter;
333 <    std::vector<Torsion*>::iterator torsionIter;
330 >  void SimInfo::addInteractionPairs(Molecule* mol) {
331 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
332 >    vector<Bond*>::iterator bondIter;
333 >    vector<Bend*>::iterator bendIter;
334 >    vector<Torsion*>::iterator torsionIter;
335 >    vector<Inversion*>::iterator inversionIter;
336      Bond* bond;
337      Bend* bend;
338      Torsion* torsion;
339 +    Inversion* inversion;
340      int a;
341      int b;
342      int c;
343      int d;
338    
339    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
340        a = bond->getAtomA()->getGlobalIndex();
341        b = bond->getAtomB()->getGlobalIndex();        
342        exclude_.addPair(a, b);
343    }
344  
345 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
346 <        a = bend->getAtomA()->getGlobalIndex();
347 <        b = bend->getAtomB()->getGlobalIndex();        
348 <        c = bend->getAtomC()->getGlobalIndex();
345 >    // atomGroups can be used to add special interaction maps between
346 >    // groups of atoms that are in two separate rigid bodies.
347 >    // However, most site-site interactions between two rigid bodies
348 >    // are probably not special, just the ones between the physically
349 >    // bonded atoms.  Interactions *within* a single rigid body should
350 >    // always be excluded.  These are done at the bottom of this
351 >    // function.
352  
353 <        exclude_.addPair(a, b);
354 <        exclude_.addPair(a, c);
355 <        exclude_.addPair(b, c);        
353 >    map<int, set<int> > atomGroups;
354 >    Molecule::RigidBodyIterator rbIter;
355 >    RigidBody* rb;
356 >    Molecule::IntegrableObjectIterator ii;
357 >    StuntDouble* integrableObject;
358 >    
359 >    for (integrableObject = mol->beginIntegrableObject(ii);
360 >         integrableObject != NULL;
361 >         integrableObject = mol->nextIntegrableObject(ii)) {
362 >      
363 >      if (integrableObject->isRigidBody()) {
364 >        rb = static_cast<RigidBody*>(integrableObject);
365 >        vector<Atom*> atoms = rb->getAtoms();
366 >        set<int> rigidAtoms;
367 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
368 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
369 >        }
370 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
371 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
372 >        }      
373 >      } else {
374 >        set<int> oneAtomSet;
375 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
376 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
377 >      }
378 >    }  
379 >          
380 >    for (bond= mol->beginBond(bondIter); bond != NULL;
381 >         bond = mol->nextBond(bondIter)) {
382 >
383 >      a = bond->getAtomA()->getGlobalIndex();
384 >      b = bond->getAtomB()->getGlobalIndex();  
385 >    
386 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
387 >        oneTwoInteractions_.addPair(a, b);
388 >      } else {
389 >        excludedInteractions_.addPair(a, b);
390 >      }
391      }
392  
393 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
394 <        a = torsion->getAtomA()->getGlobalIndex();
357 <        b = torsion->getAtomB()->getGlobalIndex();        
358 <        c = torsion->getAtomC()->getGlobalIndex();        
359 <        d = torsion->getAtomD()->getGlobalIndex();        
393 >    for (bend= mol->beginBend(bendIter); bend != NULL;
394 >         bend = mol->nextBend(bendIter)) {
395  
396 <        exclude_.addPair(a, b);
397 <        exclude_.addPair(a, c);
398 <        exclude_.addPair(a, d);
399 <        exclude_.addPair(b, c);
400 <        exclude_.addPair(b, d);
401 <        exclude_.addPair(c, d);        
396 >      a = bend->getAtomA()->getGlobalIndex();
397 >      b = bend->getAtomB()->getGlobalIndex();        
398 >      c = bend->getAtomC()->getGlobalIndex();
399 >      
400 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
401 >        oneTwoInteractions_.addPair(a, b);      
402 >        oneTwoInteractions_.addPair(b, c);
403 >      } else {
404 >        excludedInteractions_.addPair(a, b);
405 >        excludedInteractions_.addPair(b, c);
406 >      }
407 >
408 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
409 >        oneThreeInteractions_.addPair(a, c);      
410 >      } else {
411 >        excludedInteractions_.addPair(a, c);
412 >      }
413      }
414  
415 <    
416 < }
415 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
416 >         torsion = mol->nextTorsion(torsionIter)) {
417  
418 < void SimInfo::removeExcludePairs(Molecule* mol) {
419 <    std::vector<Bond*>::iterator bondIter;
420 <    std::vector<Bend*>::iterator bendIter;
421 <    std::vector<Torsion*>::iterator torsionIter;
418 >      a = torsion->getAtomA()->getGlobalIndex();
419 >      b = torsion->getAtomB()->getGlobalIndex();        
420 >      c = torsion->getAtomC()->getGlobalIndex();        
421 >      d = torsion->getAtomD()->getGlobalIndex();      
422 >
423 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
424 >        oneTwoInteractions_.addPair(a, b);      
425 >        oneTwoInteractions_.addPair(b, c);
426 >        oneTwoInteractions_.addPair(c, d);
427 >      } else {
428 >        excludedInteractions_.addPair(a, b);
429 >        excludedInteractions_.addPair(b, c);
430 >        excludedInteractions_.addPair(c, d);
431 >      }
432 >
433 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
434 >        oneThreeInteractions_.addPair(a, c);      
435 >        oneThreeInteractions_.addPair(b, d);      
436 >      } else {
437 >        excludedInteractions_.addPair(a, c);
438 >        excludedInteractions_.addPair(b, d);
439 >      }
440 >
441 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
442 >        oneFourInteractions_.addPair(a, d);      
443 >      } else {
444 >        excludedInteractions_.addPair(a, d);
445 >      }
446 >    }
447 >
448 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
449 >         inversion = mol->nextInversion(inversionIter)) {
450 >
451 >      a = inversion->getAtomA()->getGlobalIndex();
452 >      b = inversion->getAtomB()->getGlobalIndex();        
453 >      c = inversion->getAtomC()->getGlobalIndex();        
454 >      d = inversion->getAtomD()->getGlobalIndex();        
455 >
456 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
457 >        oneTwoInteractions_.addPair(a, b);      
458 >        oneTwoInteractions_.addPair(a, c);
459 >        oneTwoInteractions_.addPair(a, d);
460 >      } else {
461 >        excludedInteractions_.addPair(a, b);
462 >        excludedInteractions_.addPair(a, c);
463 >        excludedInteractions_.addPair(a, d);
464 >      }
465 >
466 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
467 >        oneThreeInteractions_.addPair(b, c);    
468 >        oneThreeInteractions_.addPair(b, d);    
469 >        oneThreeInteractions_.addPair(c, d);      
470 >      } else {
471 >        excludedInteractions_.addPair(b, c);
472 >        excludedInteractions_.addPair(b, d);
473 >        excludedInteractions_.addPair(c, d);
474 >      }
475 >    }
476 >
477 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
478 >         rb = mol->nextRigidBody(rbIter)) {
479 >      vector<Atom*> atoms = rb->getAtoms();
480 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
481 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
482 >          a = atoms[i]->getGlobalIndex();
483 >          b = atoms[j]->getGlobalIndex();
484 >          excludedInteractions_.addPair(a, b);
485 >        }
486 >      }
487 >    }        
488 >
489 >  }
490 >
491 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
492 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
493 >    vector<Bond*>::iterator bondIter;
494 >    vector<Bend*>::iterator bendIter;
495 >    vector<Torsion*>::iterator torsionIter;
496 >    vector<Inversion*>::iterator inversionIter;
497      Bond* bond;
498      Bend* bend;
499      Torsion* torsion;
500 +    Inversion* inversion;
501      int a;
502      int b;
503      int c;
504      int d;
505 +
506 +    map<int, set<int> > atomGroups;
507 +    Molecule::RigidBodyIterator rbIter;
508 +    RigidBody* rb;
509 +    Molecule::IntegrableObjectIterator ii;
510 +    StuntDouble* integrableObject;
511      
512 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
513 <        a = bond->getAtomA()->getGlobalIndex();
514 <        b = bond->getAtomB()->getGlobalIndex();        
515 <        exclude_.removePair(a, b);
512 >    for (integrableObject = mol->beginIntegrableObject(ii);
513 >         integrableObject != NULL;
514 >         integrableObject = mol->nextIntegrableObject(ii)) {
515 >      
516 >      if (integrableObject->isRigidBody()) {
517 >        rb = static_cast<RigidBody*>(integrableObject);
518 >        vector<Atom*> atoms = rb->getAtoms();
519 >        set<int> rigidAtoms;
520 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
521 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
522 >        }
523 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
524 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
525 >        }      
526 >      } else {
527 >        set<int> oneAtomSet;
528 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
529 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
530 >      }
531 >    }  
532 >
533 >    for (bond= mol->beginBond(bondIter); bond != NULL;
534 >         bond = mol->nextBond(bondIter)) {
535 >      
536 >      a = bond->getAtomA()->getGlobalIndex();
537 >      b = bond->getAtomB()->getGlobalIndex();  
538 >    
539 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
540 >        oneTwoInteractions_.removePair(a, b);
541 >      } else {
542 >        excludedInteractions_.removePair(a, b);
543 >      }
544      }
545  
546 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
547 <        a = bend->getAtomA()->getGlobalIndex();
392 <        b = bend->getAtomB()->getGlobalIndex();        
393 <        c = bend->getAtomC()->getGlobalIndex();
546 >    for (bend= mol->beginBend(bendIter); bend != NULL;
547 >         bend = mol->nextBend(bendIter)) {
548  
549 <        exclude_.removePair(a, b);
550 <        exclude_.removePair(a, c);
551 <        exclude_.removePair(b, c);        
549 >      a = bend->getAtomA()->getGlobalIndex();
550 >      b = bend->getAtomB()->getGlobalIndex();        
551 >      c = bend->getAtomC()->getGlobalIndex();
552 >      
553 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
554 >        oneTwoInteractions_.removePair(a, b);      
555 >        oneTwoInteractions_.removePair(b, c);
556 >      } else {
557 >        excludedInteractions_.removePair(a, b);
558 >        excludedInteractions_.removePair(b, c);
559 >      }
560 >
561 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
562 >        oneThreeInteractions_.removePair(a, c);      
563 >      } else {
564 >        excludedInteractions_.removePair(a, c);
565 >      }
566      }
567  
568 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
569 <        a = torsion->getAtomA()->getGlobalIndex();
402 <        b = torsion->getAtomB()->getGlobalIndex();        
403 <        c = torsion->getAtomC()->getGlobalIndex();        
404 <        d = torsion->getAtomD()->getGlobalIndex();        
568 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
569 >         torsion = mol->nextTorsion(torsionIter)) {
570  
571 <        exclude_.removePair(a, b);
572 <        exclude_.removePair(a, c);
573 <        exclude_.removePair(a, d);
574 <        exclude_.removePair(b, c);
575 <        exclude_.removePair(b, d);
576 <        exclude_.removePair(c, d);        
571 >      a = torsion->getAtomA()->getGlobalIndex();
572 >      b = torsion->getAtomB()->getGlobalIndex();        
573 >      c = torsion->getAtomC()->getGlobalIndex();        
574 >      d = torsion->getAtomD()->getGlobalIndex();      
575 >  
576 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
577 >        oneTwoInteractions_.removePair(a, b);      
578 >        oneTwoInteractions_.removePair(b, c);
579 >        oneTwoInteractions_.removePair(c, d);
580 >      } else {
581 >        excludedInteractions_.removePair(a, b);
582 >        excludedInteractions_.removePair(b, c);
583 >        excludedInteractions_.removePair(c, d);
584 >      }
585 >
586 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
587 >        oneThreeInteractions_.removePair(a, c);      
588 >        oneThreeInteractions_.removePair(b, d);      
589 >      } else {
590 >        excludedInteractions_.removePair(a, c);
591 >        excludedInteractions_.removePair(b, d);
592 >      }
593 >
594 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
595 >        oneFourInteractions_.removePair(a, d);      
596 >      } else {
597 >        excludedInteractions_.removePair(a, d);
598 >      }
599      }
600  
601 < }
601 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
602 >         inversion = mol->nextInversion(inversionIter)) {
603  
604 +      a = inversion->getAtomA()->getGlobalIndex();
605 +      b = inversion->getAtomB()->getGlobalIndex();        
606 +      c = inversion->getAtomC()->getGlobalIndex();        
607 +      d = inversion->getAtomD()->getGlobalIndex();        
608  
609 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
610 <    int curStampId;
609 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
610 >        oneTwoInteractions_.removePair(a, b);      
611 >        oneTwoInteractions_.removePair(a, c);
612 >        oneTwoInteractions_.removePair(a, d);
613 >      } else {
614 >        excludedInteractions_.removePair(a, b);
615 >        excludedInteractions_.removePair(a, c);
616 >        excludedInteractions_.removePair(a, d);
617 >      }
618  
619 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
620 +        oneThreeInteractions_.removePair(b, c);    
621 +        oneThreeInteractions_.removePair(b, d);    
622 +        oneThreeInteractions_.removePair(c, d);      
623 +      } else {
624 +        excludedInteractions_.removePair(b, c);
625 +        excludedInteractions_.removePair(b, d);
626 +        excludedInteractions_.removePair(c, d);
627 +      }
628 +    }
629 +
630 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
631 +         rb = mol->nextRigidBody(rbIter)) {
632 +      vector<Atom*> atoms = rb->getAtoms();
633 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
634 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
635 +          a = atoms[i]->getGlobalIndex();
636 +          b = atoms[j]->getGlobalIndex();
637 +          excludedInteractions_.removePair(a, b);
638 +        }
639 +      }
640 +    }        
641 +    
642 +  }
643 +  
644 +  
645 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
646 +    int curStampId;
647 +    
648      //index from 0
649      curStampId = moleculeStamps_.size();
650  
651      moleculeStamps_.push_back(molStamp);
652      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
653 < }
653 >  }
654  
427 void SimInfo::update() {
655  
656 <    setupSimType();
656 >  /**
657 >   * update
658 >   *
659 >   *  Performs the global checks and variable settings after the objects have been
660 >   *  created.
661 >   *
662 >   */
663 >  void SimInfo::update() {
664 >    
665 >    setupSimVariables();
666 >    setupCutoffs();
667 >    setupSwitching();
668 >    setupElectrostatics();
669 >    setupNeighborlists();
670  
671   #ifdef IS_MPI
672      setupFortranParallel();
673   #endif
434
674      setupFortranSim();
675 +    fortranInitialized_ = true;
676  
437    //setup fortran force field
438    /** @deprecate */    
439    int isError = 0;
440    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
441    if(isError){
442        sprintf( painCave.errMsg,
443         "ForceField error: There was an error initializing the forceField in fortran.\n" );
444        painCave.isFatal = 1;
445        simError();
446    }
447  
448    
449    setupCutoff();
450
677      calcNdf();
678      calcNdfRaw();
679      calcNdfTrans();
680 <
681 <    fortranInitialized_ = true;
682 < }
457 <
458 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
680 >  }
681 >  
682 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
683      SimInfo::MoleculeIterator mi;
684      Molecule* mol;
685      Molecule::AtomIterator ai;
686      Atom* atom;
687 <    std::set<AtomType*> atomTypes;
688 <
689 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
690 <
691 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
692 <            atomTypes.insert(atom->getAtomType());
693 <        }
470 <        
471 <    }
472 <
687 >    set<AtomType*> atomTypes;
688 >    
689 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
690 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
691 >        atomTypes.insert(atom->getAtomType());
692 >      }      
693 >    }    
694      return atomTypes;        
695 < }
695 >  }
696  
697 < void SimInfo::setupSimType() {
698 <    std::set<AtomType*>::iterator i;
699 <    std::set<AtomType*> atomTypes;
700 <    atomTypes = getUniqueAtomTypes();
697 >  /**
698 >   * setupCutoffs
699 >   *
700 >   * Sets the values of cutoffRadius and cutoffMethod
701 >   *
702 >   * cutoffRadius : realType
703 >   *  If the cutoffRadius was explicitly set, use that value.
704 >   *  If the cutoffRadius was not explicitly set:
705 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
706 >   *      No electrostatic atoms?  Poll the atom types present in the
707 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
708 >   *      Use the maximum suggested value that was found.
709 >   *
710 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL)
711 >   *      If cutoffMethod was explicitly set, use that choice.
712 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
713 >   */
714 >  void SimInfo::setupCutoffs() {
715      
716 <    int useLennardJones = 0;
717 <    int useElectrostatic = 0;
718 <    int useEAM = 0;
719 <    int useCharge = 0;
720 <    int useDirectional = 0;
721 <    int useDipole = 0;
722 <    int useGayBerne = 0;
723 <    int useSticky = 0;
724 <    int useShape = 0;
725 <    int useFLARB = 0; //it is not in AtomType yet
726 <    int useDirectionalAtom = 0;    
727 <    int useElectrostatics = 0;
728 <    //usePBC and useRF are from simParams
729 <    int usePBC = simParams_->getPBC();
730 <    int useRF = simParams_->getUseRF();
731 <
732 <    //loop over all of the atom types
733 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
734 <        useLennardJones |= (*i)->isLennardJones();
735 <        useElectrostatic |= (*i)->isElectrostatic();
736 <        useEAM |= (*i)->isEAM();
737 <        useCharge |= (*i)->isCharge();
738 <        useDirectional |= (*i)->isDirectional();
739 <        useDipole |= (*i)->isDipole();
740 <        useGayBerne |= (*i)->isGayBerne();
741 <        useSticky |= (*i)->isSticky();
742 <        useShape |= (*i)->isShape();
716 >    if (simParams_->haveCutoffRadius()) {
717 >      cutoffRadius_ = simParams_->getCutoffRadius();
718 >    } else {      
719 >      if (usesElectrostaticAtoms_) {
720 >        sprintf(painCave.errMsg,
721 >                "SimInfo: No value was set for the cutoffRadius.\n"
722 >                "\tOpenMD will use a default value of 12.0 angstroms"
723 >                "\tfor the cutoffRadius.\n");
724 >        painCave.isFatal = 0;
725 >        painCave.severity = OPENMD_INFO;
726 >        simError();
727 >        cutoffRadius_ = 12.0;
728 >      } else {
729 >        RealType thisCut;
730 >        set<AtomType*>::iterator i;
731 >        set<AtomType*> atomTypes;
732 >        atomTypes = getSimulatedAtomTypes();        
733 >        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
734 >          thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i));
735 >          cutoffRadius_ = max(thisCut, cutoffRadius_);
736 >        }
737 >        sprintf(painCave.errMsg,
738 >                "SimInfo: No value was set for the cutoffRadius.\n"
739 >                "\tOpenMD will use %lf angstroms.\n",
740 >                cutoffRadius_);
741 >        painCave.isFatal = 0;
742 >        painCave.severity = OPENMD_INFO;
743 >        simError();
744 >      }            
745      }
746  
747 <    if (useSticky || useDipole || useGayBerne || useShape) {
748 <        useDirectionalAtom = 1;
747 >    map<string, CutoffMethod> stringToCutoffMethod;
748 >    stringToCutoffMethod["HARD"] = HARD;
749 >    stringToCutoffMethod["SWITCHING_FUNCTION"] = SWITCHING_FUNCTION;
750 >    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
751 >    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
752 >  
753 >    if (simParams_->haveCutoffMethod()) {
754 >      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
755 >      map<string, CutoffMethod>::iterator i;
756 >      i = stringToCutoffMethod.find(cutMeth);
757 >      if (i == stringToCutoffMethod.end()) {
758 >        sprintf(painCave.errMsg,
759 >                "SimInfo: Could not find chosen cutoffMethod %s\n"
760 >                "\tShould be one of: "
761 >                "HARD, SWITCHING_FUNCTION, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
762 >                cutMeth.c_str());
763 >        painCave.isFatal = 1;
764 >        painCave.severity = OPENMD_ERROR;
765 >        simError();
766 >      } else {
767 >        cutoffMethod_ = i->second;
768 >      }
769 >    } else {
770 >      sprintf(painCave.errMsg,
771 >              "SimInfo: No value was set for the cutoffMethod.\n"
772 >              "\tOpenMD will use SHIFTED_FORCE.\n");
773 >        painCave.isFatal = 0;
774 >        painCave.severity = OPENMD_INFO;
775 >        simError();
776 >        cutoffMethod_ = SHIFTED_FORCE;        
777      }
778 +  }
779 +  
780 +  /**
781 +   * setupSwitching
782 +   *
783 +   * Sets the values of switchingRadius and
784 +   *  If the switchingRadius was explicitly set, use that value (but check it)
785 +   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
786 +   */
787 +  void SimInfo::setupSwitching() {
788 +    
789 +    if (simParams_->haveSwitchingRadius()) {
790 +      switchingRadius_ = simParams_->getSwitchingRadius();
791 +      if (switchingRadius_ > cutoffRadius_) {        
792 +        sprintf(painCave.errMsg,
793 +                "SimInfo: switchingRadius (%f) is larger than cutoffRadius(%f)\n",
794 +                switchingRadius_, cutoffRadius_);
795 +        painCave.isFatal = 1;
796 +        painCave.severity = OPENMD_ERROR;
797 +        simError();
798 +      }
799 +    } else {      
800 +      switchingRadius_ = 0.85 * cutoffRadius_;
801 +      sprintf(painCave.errMsg,
802 +              "SimInfo: No value was set for the switchingRadius.\n"
803 +              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
804 +              "\tswitchingRadius = %f. for this simulation\n", switchingRadius_);
805 +      painCave.isFatal = 0;
806 +      painCave.severity = OPENMD_WARNING;
807 +      simError();
808 +    }          
809 +    
810 +    if (simParams_->haveSwitchingFunctionType()) {
811 +      string funcType = simParams_->getSwitchingFunctionType();
812 +      toUpper(funcType);
813 +      if (funcType == "CUBIC") {
814 +        sft_ = cubic;
815 +      } else {
816 +        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
817 +          sft_ = fifth_order_poly;
818 +        } else {
819 +          // throw error        
820 +          sprintf( painCave.errMsg,
821 +                   "SimInfo : Unknown switchingFunctionType. (Input file specified %s .)\n"
822 +                   "\tswitchingFunctionType must be one of: "
823 +                   "\"cubic\" or \"fifth_order_polynomial\".",
824 +                   funcType.c_str() );
825 +          painCave.isFatal = 1;
826 +          painCave.severity = OPENMD_ERROR;
827 +          simError();
828 +        }          
829 +      }
830 +    }
831 +  }
832  
833 <    if (useCharge || useDipole) {
834 <        useElectrostatics = 1;
833 >  /**
834 >   * setupNeighborlists
835 >   *
836 >   *  If the skinThickness was explicitly set, use that value (but check it)
837 >   *  If the skinThickness was not explicitly set: use 1.0 angstroms
838 >   */
839 >  void SimInfo::setupNeighborlists() {    
840 >    if (simParams_->haveSkinThickness()) {
841 >      skinThickness_ = simParams_->getSkinThickness();
842 >    } else {      
843 >      skinThickness_ = 1.0;
844 >      sprintf(painCave.errMsg,
845 >              "SimInfo: No value was set for the skinThickness.\n"
846 >              "\tOpenMD will use a default value of %f Angstroms\n"
847 >              "\tfor this simulation\n", skinThickness_);
848 >      painCave.severity = OPENMD_INFO;
849 >      painCave.isFatal = 0;
850 >      simError();
851 >    }            
852 >  }
853 >
854 >  void SimInfo::setupSimVariables() {
855 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
856 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
857 >    calcBoxDipole_ = false;
858 >    if ( simParams_->haveAccumulateBoxDipole() )
859 >      if ( simParams_->getAccumulateBoxDipole() ) {
860 >        calcBoxDipole_ = true;      
861 >      }
862 >
863 >    set<AtomType*>::iterator i;
864 >    set<AtomType*> atomTypes;
865 >    atomTypes = getSimulatedAtomTypes();    
866 >    int usesElectrostatic = 0;
867 >    int usesMetallic = 0;
868 >    int usesDirectional = 0;
869 >    //loop over all of the atom types
870 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
871 >      usesElectrostatic |= (*i)->isElectrostatic();
872 >      usesMetallic |= (*i)->isMetal();
873 >      usesDirectional |= (*i)->isDirectional();
874      }
875  
876   #ifdef IS_MPI    
877      int temp;
878 +    temp = usesDirectional;
879 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
880  
881 <    temp = usePBC;
882 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
881 >    temp = usesMetallic;
882 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
883  
884 <    temp = useDirectionalAtom;
885 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
884 >    temp = usesElectrostatic;
885 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
886 > #endif
887 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
888 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
889 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
890 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
891 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
892 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
893 >  }
894  
895 <    temp = useLennardJones;
896 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
897 <
898 <    temp = useElectrostatics;
531 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
532 <
533 <    temp = useCharge;
534 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
535 <
536 <    temp = useDipole;
537 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
538 <
539 <    temp = useSticky;
540 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
541 <
542 <    temp = useGayBerne;
543 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
544 <
545 <    temp = useEAM;
546 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
547 <
548 <    temp = useShape;
549 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
550 <
551 <    temp = useFLARB;
552 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
553 <
554 <    temp = useRF;
555 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
895 >  void SimInfo::setupFortranSim() {
896 >    int isError;
897 >    int nExclude, nOneTwo, nOneThree, nOneFour;
898 >    vector<int> fortranGlobalGroupMembership;
899      
900 < #endif
900 >    notifyFortranSkinThickness(&skinThickness_);
901  
902 <    fInfo_.SIM_uses_PBC = usePBC;    
903 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
904 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
562 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
563 <    fInfo_.SIM_uses_Charges = useCharge;
564 <    fInfo_.SIM_uses_Dipoles = useDipole;
565 <    fInfo_.SIM_uses_Sticky = useSticky;
566 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
567 <    fInfo_.SIM_uses_EAM = useEAM;
568 <    fInfo_.SIM_uses_Shapes = useShape;
569 <    fInfo_.SIM_uses_FLARB = useFLARB;
570 <    fInfo_.SIM_uses_RF = useRF;
571 <
572 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
573 <
574 <        if (simParams_->haveDielectric()) {
575 <            fInfo_.dielect = simParams_->getDielectric();
576 <        } else {
577 <            sprintf(painCave.errMsg,
578 <                    "SimSetup Error: No Dielectric constant was set.\n"
579 <                    "\tYou are trying to use Reaction Field without"
580 <                    "\tsetting a dielectric constant!\n");
581 <            painCave.isFatal = 1;
582 <            simError();
583 <        }
584 <        
585 <    } else {
586 <        fInfo_.dielect = 0.0;
587 <    }
902 >    int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0;
903 >    int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0;
904 >    notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf);
905  
589 }
590
591 void SimInfo::setupFortranSim() {
592    int isError;
593    int nExclude;
594    std::vector<int> fortranGlobalGroupMembership;
595    
596    nExclude = exclude_.getSize();
906      isError = 0;
907  
908      //globalGroupMembership_ is filled by SimCreator    
909      for (int i = 0; i < nGlobalAtoms_; i++) {
910 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
910 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
911      }
912  
913      //calculate mass ratio of cutoff group
914 <    std::vector<double> mfact;
914 >    vector<RealType> mfact;
915      SimInfo::MoleculeIterator mi;
916      Molecule* mol;
917      Molecule::CutoffGroupIterator ci;
918      CutoffGroup* cg;
919      Molecule::AtomIterator ai;
920      Atom* atom;
921 <    double totalMass;
921 >    RealType totalMass;
922  
923      //to avoid memory reallocation, reserve enough space for mfact
924      mfact.reserve(getNCutoffGroups());
925      
926      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
927 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
927 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
928  
929 <            totalMass = cg->getMass();
930 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
931 <                        mfact.push_back(atom->getMass()/totalMass);
932 <            }
933 <
934 <        }      
929 >        totalMass = cg->getMass();
930 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
931 >          // Check for massless groups - set mfact to 1 if true
932 >          if (totalMass != 0)
933 >            mfact.push_back(atom->getMass()/totalMass);
934 >          else
935 >            mfact.push_back( 1.0 );
936 >        }
937 >      }      
938      }
939  
940      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
941 <    std::vector<int> identArray;
941 >    vector<int> identArray;
942  
943      //to avoid memory reallocation, reserve enough space identArray
944      identArray.reserve(getNAtoms());
945      
946      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
947 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
948 <            identArray.push_back(atom->getIdent());
949 <        }
947 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
948 >        identArray.push_back(atom->getIdent());
949 >      }
950      }    
951  
952      //fill molMembershipArray
953      //molMembershipArray is filled by SimCreator    
954 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
954 >    vector<int> molMembershipArray(nGlobalAtoms_);
955      for (int i = 0; i < nGlobalAtoms_; i++) {
956 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
956 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
957      }
958      
959      //setup fortran simulation
648    //gloalExcludes and molMembershipArray should go away (They are never used)
649    //why the hell fortran need to know molecule?
650    //OOPSE = Object-Obfuscated Parallel Simulation Engine
651    int nGlobalExcludes = 0;
652    int* globalExcludes = NULL;
653    int* excludeList = exclude_.getExcludeList();
654    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
655                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
656                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
960  
961 <    if( isError ){
961 >    nExclude = excludedInteractions_.getSize();
962 >    nOneTwo = oneTwoInteractions_.getSize();
963 >    nOneThree = oneThreeInteractions_.getSize();
964 >    nOneFour = oneFourInteractions_.getSize();
965  
966 <        sprintf( painCave.errMsg,
967 <                 "There was an error setting the simulation information in fortran.\n" );
968 <        painCave.isFatal = 1;
969 <        painCave.severity = OOPSE_ERROR;
664 <        simError();
665 <    }
966 >    int* excludeList = excludedInteractions_.getPairList();
967 >    int* oneTwoList = oneTwoInteractions_.getPairList();
968 >    int* oneThreeList = oneThreeInteractions_.getPairList();
969 >    int* oneFourList = oneFourInteractions_.getPairList();
970  
971 < #ifdef IS_MPI
971 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
972 >                   &nExclude, excludeList,
973 >                   &nOneTwo, oneTwoList,
974 >                   &nOneThree, oneThreeList,
975 >                   &nOneFour, oneFourList,
976 >                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
977 >                   &fortranGlobalGroupMembership[0], &isError);
978 >    
979 >    if( isError ){
980 >      
981 >      sprintf( painCave.errMsg,
982 >               "There was an error setting the simulation information in fortran.\n" );
983 >      painCave.isFatal = 1;
984 >      painCave.severity = OPENMD_ERROR;
985 >      simError();
986 >    }
987 >    
988 >    
989      sprintf( checkPointMsg,
990 <       "succesfully sent the simulation information to fortran.\n");
991 <    MPIcheckPoint();
992 < #endif // is_mpi
993 < }
990 >             "succesfully sent the simulation information to fortran.\n");
991 >    
992 >    errorCheckPoint();
993 >    
994 >    // Setup number of neighbors in neighbor list if present
995 >    if (simParams_->haveNeighborListNeighbors()) {
996 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
997 >      setNeighbors(&nlistNeighbors);
998 >    }
999 >  
1000  
1001 +  }
1002  
1003 < #ifdef IS_MPI
1004 < void SimInfo::setupFortranParallel() {
1005 <    
1003 >
1004 >  void SimInfo::setupFortranParallel() {
1005 > #ifdef IS_MPI    
1006      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
1007 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
1008 <    std::vector<int> localToGlobalCutoffGroupIndex;
1007 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
1008 >    vector<int> localToGlobalCutoffGroupIndex;
1009      SimInfo::MoleculeIterator mi;
1010      Molecule::AtomIterator ai;
1011      Molecule::CutoffGroupIterator ci;
# Line 689 | Line 1017 | void SimInfo::setupFortranParallel() {
1017  
1018      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
1019  
1020 <        //local index(index in DataStorge) of atom is important
1021 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1022 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1023 <        }
1020 >      //local index(index in DataStorge) of atom is important
1021 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1022 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1023 >      }
1024  
1025 <        //local index of cutoff group is trivial, it only depends on the order of travesing
1026 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1027 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1028 <        }        
1025 >      //local index of cutoff group is trivial, it only depends on the order of travesing
1026 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1027 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1028 >      }        
1029          
1030      }
1031  
# Line 717 | Line 1045 | void SimInfo::setupFortranParallel() {
1045                      &localToGlobalCutoffGroupIndex[0], &isError);
1046  
1047      if (isError) {
1048 <        sprintf(painCave.errMsg,
1049 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
1050 <        painCave.isFatal = 1;
1051 <        simError();
1048 >      sprintf(painCave.errMsg,
1049 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
1050 >      painCave.isFatal = 1;
1051 >      simError();
1052      }
1053  
1054      sprintf(checkPointMsg, " mpiRefresh successful.\n");
1055 <    MPIcheckPoint();
1055 >    errorCheckPoint();
1056  
729
730 }
731
1057   #endif
1058 +  }
1059  
734 double SimInfo::calcMaxCutoffRadius() {
1060  
1061 +  void SimInfo::setupAccumulateBoxDipole() {    
1062  
737    std::set<AtomType*> atomTypes;
738    std::set<AtomType*>::iterator i;
739    std::vector<double> cutoffRadius;
1063  
1064 <    //get the unique atom types
742 <    atomTypes = getUniqueAtomTypes();
1064 >  }
1065  
1066 <    //query the max cutoff radius among these atom types
1067 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
1068 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
747 <    }
1066 >  void SimInfo::addProperty(GenericData* genData) {
1067 >    properties_.addProperty(genData);  
1068 >  }
1069  
1070 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
1071 < #ifdef IS_MPI
1072 <    //pick the max cutoff radius among the processors
752 < #endif
1070 >  void SimInfo::removeProperty(const string& propName) {
1071 >    properties_.removeProperty(propName);  
1072 >  }
1073  
1074 <    return maxCutoffRadius;
755 < }
756 <
757 < void SimInfo::getCutoff(double& rcut, double& rsw) {
758 <    
759 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
760 <        
761 <        if (!simParams_->haveRcut()){
762 <            sprintf(painCave.errMsg,
763 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
764 <                "\tOOPSE will use a default value of 15.0 angstroms"
765 <                "\tfor the cutoffRadius.\n");
766 <            painCave.isFatal = 0;
767 <            simError();
768 <            rcut = 15.0;
769 <        } else{
770 <            rcut = simParams_->getRcut();
771 <        }
772 <
773 <        if (!simParams_->haveRsw()){
774 <            sprintf(painCave.errMsg,
775 <                "SimCreator Warning: No value was set for switchingRadius.\n"
776 <                "\tOOPSE will use a default value of\n"
777 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
778 <            painCave.isFatal = 0;
779 <            simError();
780 <            rsw = 0.95 * rcut;
781 <        } else{
782 <            rsw = simParams_->getRsw();
783 <        }
784 <
785 <    } else {
786 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
787 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
788 <        
789 <        if (simParams_->haveRcut()) {
790 <            rcut = simParams_->getRcut();
791 <        } else {
792 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
793 <            rcut = calcMaxCutoffRadius();
794 <        }
795 <
796 <        if (simParams_->haveRsw()) {
797 <            rsw  = simParams_->getRsw();
798 <        } else {
799 <            rsw = rcut;
800 <        }
801 <    
802 <    }
803 < }
804 <
805 < void SimInfo::setupCutoff() {
806 <    getCutoff(rcut_, rsw_);    
807 <    double rnblist = rcut_ + 1; // skin of neighbor list
808 <
809 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
810 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
811 < }
812 <
813 < void SimInfo::addProperty(GenericData* genData) {
814 <    properties_.addProperty(genData);  
815 < }
816 <
817 < void SimInfo::removeProperty(const std::string& propName) {
818 <    properties_.removeProperty(propName);  
819 < }
820 <
821 < void SimInfo::clearProperties() {
1074 >  void SimInfo::clearProperties() {
1075      properties_.clearProperties();
1076 < }
1076 >  }
1077  
1078 < std::vector<std::string> SimInfo::getPropertyNames() {
1078 >  vector<string> SimInfo::getPropertyNames() {
1079      return properties_.getPropertyNames();  
1080 < }
1080 >  }
1081        
1082 < std::vector<GenericData*> SimInfo::getProperties() {
1082 >  vector<GenericData*> SimInfo::getProperties() {
1083      return properties_.getProperties();
1084 < }
1084 >  }
1085  
1086 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1086 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
1087      return properties_.getPropertyByName(propName);
1088 < }
1088 >  }
1089  
1090 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1091 <    //if (sman_ == sman_) {
1092 <    //    return;
1093 <    //}
1094 <    
842 <    //delete sman_;
1090 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1091 >    if (sman_ == sman) {
1092 >      return;
1093 >    }    
1094 >    delete sman_;
1095      sman_ = sman;
1096  
1097      Molecule* mol;
# Line 851 | Line 1103 | void SimInfo::setSnapshotManager(SnapshotManager* sman
1103  
1104      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1105          
1106 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1107 <            atom->setSnapshotManager(sman_);
1108 <        }
1106 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1107 >        atom->setSnapshotManager(sman_);
1108 >      }
1109          
1110 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1111 <            rb->setSnapshotManager(sman_);
1112 <        }
1110 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1111 >        rb->setSnapshotManager(sman_);
1112 >      }
1113      }    
1114      
1115 < }
1115 >  }
1116  
1117 < Vector3d SimInfo::getComVel(){
1117 >  Vector3d SimInfo::getComVel(){
1118      SimInfo::MoleculeIterator i;
1119      Molecule* mol;
1120  
1121      Vector3d comVel(0.0);
1122 <    double totalMass = 0.0;
1122 >    RealType totalMass = 0.0;
1123      
1124  
1125      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1126 <        double mass = mol->getMass();
1127 <        totalMass += mass;
1128 <        comVel += mass * mol->getComVel();
1126 >      RealType mass = mol->getMass();
1127 >      totalMass += mass;
1128 >      comVel += mass * mol->getComVel();
1129      }  
1130  
1131   #ifdef IS_MPI
1132 <    double tmpMass = totalMass;
1132 >    RealType tmpMass = totalMass;
1133      Vector3d tmpComVel(comVel);    
1134 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1135 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1134 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1135 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1136   #endif
1137  
1138      comVel /= totalMass;
1139  
1140      return comVel;
1141 < }
1141 >  }
1142  
1143 < Vector3d SimInfo::getCom(){
1143 >  Vector3d SimInfo::getCom(){
1144      SimInfo::MoleculeIterator i;
1145      Molecule* mol;
1146  
1147      Vector3d com(0.0);
1148 <    double totalMass = 0.0;
1148 >    RealType totalMass = 0.0;
1149      
1150      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1151 <        double mass = mol->getMass();
1152 <        totalMass += mass;
1153 <        com += mass * mol->getCom();
1151 >      RealType mass = mol->getMass();
1152 >      totalMass += mass;
1153 >      com += mass * mol->getCom();
1154      }  
1155  
1156   #ifdef IS_MPI
1157 <    double tmpMass = totalMass;
1157 >    RealType tmpMass = totalMass;
1158      Vector3d tmpCom(com);    
1159 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1160 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1159 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1160 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1161   #endif
1162  
1163      com /= totalMass;
1164  
1165      return com;
1166  
1167 < }        
1167 >  }        
1168  
1169 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1169 >  ostream& operator <<(ostream& o, SimInfo& info) {
1170  
1171      return o;
1172 < }
1172 >  }
1173 >  
1174 >  
1175 >   /*
1176 >   Returns center of mass and center of mass velocity in one function call.
1177 >   */
1178 >  
1179 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1180 >      SimInfo::MoleculeIterator i;
1181 >      Molecule* mol;
1182 >      
1183 >    
1184 >      RealType totalMass = 0.0;
1185 >    
1186  
1187 < }//end namespace oopse
1187 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1188 >         RealType mass = mol->getMass();
1189 >         totalMass += mass;
1190 >         com += mass * mol->getCom();
1191 >         comVel += mass * mol->getComVel();          
1192 >      }  
1193 >      
1194 > #ifdef IS_MPI
1195 >      RealType tmpMass = totalMass;
1196 >      Vector3d tmpCom(com);  
1197 >      Vector3d tmpComVel(comVel);
1198 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1199 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1200 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1201 > #endif
1202 >      
1203 >      com /= totalMass;
1204 >      comVel /= totalMass;
1205 >   }        
1206 >  
1207 >   /*
1208 >   Return intertia tensor for entire system and angular momentum Vector.
1209  
1210 +
1211 +       [  Ixx -Ixy  -Ixz ]
1212 +    J =| -Iyx  Iyy  -Iyz |
1213 +       [ -Izx -Iyz   Izz ]
1214 +    */
1215 +
1216 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1217 +      
1218 +
1219 +      RealType xx = 0.0;
1220 +      RealType yy = 0.0;
1221 +      RealType zz = 0.0;
1222 +      RealType xy = 0.0;
1223 +      RealType xz = 0.0;
1224 +      RealType yz = 0.0;
1225 +      Vector3d com(0.0);
1226 +      Vector3d comVel(0.0);
1227 +      
1228 +      getComAll(com, comVel);
1229 +      
1230 +      SimInfo::MoleculeIterator i;
1231 +      Molecule* mol;
1232 +      
1233 +      Vector3d thisq(0.0);
1234 +      Vector3d thisv(0.0);
1235 +
1236 +      RealType thisMass = 0.0;
1237 +    
1238 +      
1239 +      
1240 +  
1241 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1242 +        
1243 +         thisq = mol->getCom()-com;
1244 +         thisv = mol->getComVel()-comVel;
1245 +         thisMass = mol->getMass();
1246 +         // Compute moment of intertia coefficients.
1247 +         xx += thisq[0]*thisq[0]*thisMass;
1248 +         yy += thisq[1]*thisq[1]*thisMass;
1249 +         zz += thisq[2]*thisq[2]*thisMass;
1250 +        
1251 +         // compute products of intertia
1252 +         xy += thisq[0]*thisq[1]*thisMass;
1253 +         xz += thisq[0]*thisq[2]*thisMass;
1254 +         yz += thisq[1]*thisq[2]*thisMass;
1255 +            
1256 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1257 +            
1258 +      }  
1259 +      
1260 +      
1261 +      inertiaTensor(0,0) = yy + zz;
1262 +      inertiaTensor(0,1) = -xy;
1263 +      inertiaTensor(0,2) = -xz;
1264 +      inertiaTensor(1,0) = -xy;
1265 +      inertiaTensor(1,1) = xx + zz;
1266 +      inertiaTensor(1,2) = -yz;
1267 +      inertiaTensor(2,0) = -xz;
1268 +      inertiaTensor(2,1) = -yz;
1269 +      inertiaTensor(2,2) = xx + yy;
1270 +      
1271 + #ifdef IS_MPI
1272 +      Mat3x3d tmpI(inertiaTensor);
1273 +      Vector3d tmpAngMom;
1274 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1275 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1276 + #endif
1277 +              
1278 +      return;
1279 +   }
1280 +
1281 +   //Returns the angular momentum of the system
1282 +   Vector3d SimInfo::getAngularMomentum(){
1283 +      
1284 +      Vector3d com(0.0);
1285 +      Vector3d comVel(0.0);
1286 +      Vector3d angularMomentum(0.0);
1287 +      
1288 +      getComAll(com,comVel);
1289 +      
1290 +      SimInfo::MoleculeIterator i;
1291 +      Molecule* mol;
1292 +      
1293 +      Vector3d thisr(0.0);
1294 +      Vector3d thisp(0.0);
1295 +      
1296 +      RealType thisMass;
1297 +      
1298 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1299 +        thisMass = mol->getMass();
1300 +        thisr = mol->getCom()-com;
1301 +        thisp = (mol->getComVel()-comVel)*thisMass;
1302 +        
1303 +        angularMomentum += cross( thisr, thisp );
1304 +        
1305 +      }  
1306 +      
1307 + #ifdef IS_MPI
1308 +      Vector3d tmpAngMom;
1309 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1310 + #endif
1311 +      
1312 +      return angularMomentum;
1313 +   }
1314 +  
1315 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1316 +    return IOIndexToIntegrableObject.at(index);
1317 +  }
1318 +  
1319 +  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1320 +    IOIndexToIntegrableObject= v;
1321 +  }
1322 +
1323 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1324 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1325 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1326 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1327 +  */
1328 +  void SimInfo::getGyrationalVolume(RealType &volume){
1329 +    Mat3x3d intTensor;
1330 +    RealType det;
1331 +    Vector3d dummyAngMom;
1332 +    RealType sysconstants;
1333 +    RealType geomCnst;
1334 +
1335 +    geomCnst = 3.0/2.0;
1336 +    /* Get the inertial tensor and angular momentum for free*/
1337 +    getInertiaTensor(intTensor,dummyAngMom);
1338 +    
1339 +    det = intTensor.determinant();
1340 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1341 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1342 +    return;
1343 +  }
1344 +
1345 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1346 +    Mat3x3d intTensor;
1347 +    Vector3d dummyAngMom;
1348 +    RealType sysconstants;
1349 +    RealType geomCnst;
1350 +
1351 +    geomCnst = 3.0/2.0;
1352 +    /* Get the inertial tensor and angular momentum for free*/
1353 +    getInertiaTensor(intTensor,dummyAngMom);
1354 +    
1355 +    detI = intTensor.determinant();
1356 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1357 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1358 +    return;
1359 +  }
1360 + /*
1361 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1362 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1363 +      sdByGlobalIndex_ = v;
1364 +    }
1365 +
1366 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1367 +      //assert(index < nAtoms_ + nRigidBodies_);
1368 +      return sdByGlobalIndex_.at(index);
1369 +    }  
1370 + */  
1371 +  int SimInfo::getNGlobalConstraints() {
1372 +    int nGlobalConstraints;
1373 + #ifdef IS_MPI
1374 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1375 +                  MPI_COMM_WORLD);    
1376 + #else
1377 +    nGlobalConstraints =  nConstraints_;
1378 + #endif
1379 +    return nGlobalConstraints;
1380 +  }
1381 +
1382 + }//end namespace OpenMD
1383 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 334 by tim, Mon Feb 14 17:57:01 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1534 by gezelter, Wed Dec 29 21:53:28 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines