ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 292 by tim, Fri Feb 4 22:44:15 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1535 by gezelter, Fri Dec 31 18:31:56 2010 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 < #include "UseTheForce/doForces_interface.h"
57 < #include "UseTheForce/notifyCutoffs_interface.h"
56 > #include "primitives/StuntDouble.hpp"
57 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60 + #include "selection/SelectionManager.hpp"
61 + #include "io/ForceFieldOptions.hpp"
62 + #include "UseTheForce/ForceField.hpp"
63 + #include "nonbonded/SwitchingFunction.hpp"
64  
65   #ifdef IS_MPI
66   #include "UseTheForce/mpiComponentPlan.h"
67   #include "UseTheForce/DarkSide/simParallel_interface.h"
68   #endif
69  
70 < namespace oopse {
71 <
72 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
73 <                                ForceField* ff, Globals* simParams) :
74 <                                forceField_(ff), simParams_(simParams),
75 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
76 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
77 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
78 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
79 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
80 <                                sman_(NULL), fortranInitialized_(false), selectMan_(NULL) {
81 <
82 <            
78 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
70 > using namespace std;
71 > namespace OpenMD {
72 >  
73 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
74 >    forceField_(ff), simParams_(simParams),
75 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
76 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
77 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
78 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
79 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
80 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
81 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
82 >    
83      MoleculeStamp* molStamp;
84      int nMolWithSameStamp;
85      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
86 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
87      CutoffGroupStamp* cgStamp;    
88      RigidBodyStamp* rbStamp;
89      int nRigidAtoms = 0;
90      
91 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
92 <        molStamp = i->first;
93 <        nMolWithSameStamp = i->second;
94 <        
95 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
96 <
97 <        //calculate atoms in molecules
98 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
99 <
100 <
101 <        //calculate atoms in cutoff groups
102 <        int nAtomsInGroups = 0;
103 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
104 <        
105 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
106 <            cgStamp = molStamp->getCutoffGroup(j);
107 <            nAtomsInGroups += cgStamp->getNMembers();
108 <        }
109 <
110 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
111 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
112 <
113 <        //calculate atoms in rigid bodies
114 <        int nAtomsInRigidBodies = 0;
115 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116 <        
117 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
118 <            rbStamp = molStamp->getRigidBody(j);
119 <            nAtomsInRigidBodies += rbStamp->getNMembers();
120 <        }
121 <
122 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
124 <        
91 >    vector<Component*> components = simParams->getComponents();
92 >    
93 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
94 >      molStamp = (*i)->getMoleculeStamp();
95 >      nMolWithSameStamp = (*i)->getNMol();
96 >      
97 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
98 >      
99 >      //calculate atoms in molecules
100 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
101 >      
102 >      //calculate atoms in cutoff groups
103 >      int nAtomsInGroups = 0;
104 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
105 >      
106 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
107 >        cgStamp = molStamp->getCutoffGroupStamp(j);
108 >        nAtomsInGroups += cgStamp->getNMembers();
109 >      }
110 >      
111 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
112 >      
113 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
114 >      
115 >      //calculate atoms in rigid bodies
116 >      int nAtomsInRigidBodies = 0;
117 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
118 >      
119 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
120 >        rbStamp = molStamp->getRigidBodyStamp(j);
121 >        nAtomsInRigidBodies += rbStamp->getNMembers();
122 >      }
123 >      
124 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
125 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
126 >      
127      }
128 <
129 <    //every free atom (atom does not belong to cutoff groups) is a cutoff group
130 <    //therefore the total number of cutoff groups in the system is equal to
131 <    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
132 <    //file plus the number of cutoff groups defined in meta-data file
128 >    
129 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
130 >    //group therefore the total number of cutoff groups in the system is
131 >    //equal to the total number of atoms minus number of atoms belong to
132 >    //cutoff group defined in meta-data file plus the number of cutoff
133 >    //groups defined in meta-data file
134      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
135 <
136 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
137 <    //therefore the total number of  integrable objects in the system is equal to
138 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
139 <    //file plus the number of  rigid bodies defined in meta-data file
140 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
141 <
135 >    
136 >    //every free atom (atom does not belong to rigid bodies) is an
137 >    //integrable object therefore the total number of integrable objects
138 >    //in the system is equal to the total number of atoms minus number of
139 >    //atoms belong to rigid body defined in meta-data file plus the number
140 >    //of rigid bodies defined in meta-data file
141 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
142 >      + nGlobalRigidBodies_;
143 >    
144      nGlobalMols_ = molStampIds_.size();
136
137 #ifdef IS_MPI    
145      molToProcMap_.resize(nGlobalMols_);
146 < #endif
147 <
148 <    selectMan_ = new SelectionManager(nGlobalAtoms_ + nGlobalRigidBodies_);
149 <    selectMan_->selectAll();
150 < }
151 <
152 < SimInfo::~SimInfo() {
153 <    //MemoryUtils::deleteVectorOfPointer(molecules_);
154 <
148 <    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
149 <    
146 >  }
147 >  
148 >  SimInfo::~SimInfo() {
149 >    map<int, Molecule*>::iterator i;
150 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
151 >      delete i->second;
152 >    }
153 >    molecules_.clear();
154 >      
155      delete sman_;
156      delete simParams_;
157      delete forceField_;
158 <    delete selectMan_;
154 < }
158 >  }
159  
156 int SimInfo::getNGlobalConstraints() {
157    int nGlobalConstraints;
158 #ifdef IS_MPI
159    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
160                  MPI_COMM_WORLD);    
161 #else
162    nGlobalConstraints =  nConstraints_;
163 #endif
164    return nGlobalConstraints;
165 }
160  
161 < bool SimInfo::addMolecule(Molecule* mol) {
161 >  bool SimInfo::addMolecule(Molecule* mol) {
162      MoleculeIterator i;
163 <
163 >    
164      i = molecules_.find(mol->getGlobalIndex());
165      if (i == molecules_.end() ) {
166 <
167 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
168 <        
169 <        nAtoms_ += mol->getNAtoms();
170 <        nBonds_ += mol->getNBonds();
171 <        nBends_ += mol->getNBends();
172 <        nTorsions_ += mol->getNTorsions();
173 <        nRigidBodies_ += mol->getNRigidBodies();
174 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
175 <        nCutoffGroups_ += mol->getNCutoffGroups();
176 <        nConstraints_ += mol->getNConstraintPairs();
177 <
178 <        addExcludePairs(mol);
179 <        
180 <        return true;
181 <    } else {
182 <        return false;
166 >      
167 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
168 >      
169 >      nAtoms_ += mol->getNAtoms();
170 >      nBonds_ += mol->getNBonds();
171 >      nBends_ += mol->getNBends();
172 >      nTorsions_ += mol->getNTorsions();
173 >      nInversions_ += mol->getNInversions();
174 >      nRigidBodies_ += mol->getNRigidBodies();
175 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
176 >      nCutoffGroups_ += mol->getNCutoffGroups();
177 >      nConstraints_ += mol->getNConstraintPairs();
178 >      
179 >      addInteractionPairs(mol);
180 >      
181 >      return true;
182 >    } else {
183 >      return false;
184      }
185 < }
186 <
187 < bool SimInfo::removeMolecule(Molecule* mol) {
185 >  }
186 >  
187 >  bool SimInfo::removeMolecule(Molecule* mol) {
188      MoleculeIterator i;
189      i = molecules_.find(mol->getGlobalIndex());
190  
191      if (i != molecules_.end() ) {
192  
193 <        assert(mol == i->second);
193 >      assert(mol == i->second);
194          
195 <        nAtoms_ -= mol->getNAtoms();
196 <        nBonds_ -= mol->getNBonds();
197 <        nBends_ -= mol->getNBends();
198 <        nTorsions_ -= mol->getNTorsions();
199 <        nRigidBodies_ -= mol->getNRigidBodies();
200 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
201 <        nCutoffGroups_ -= mol->getNCutoffGroups();
202 <        nConstraints_ -= mol->getNConstraintPairs();
195 >      nAtoms_ -= mol->getNAtoms();
196 >      nBonds_ -= mol->getNBonds();
197 >      nBends_ -= mol->getNBends();
198 >      nTorsions_ -= mol->getNTorsions();
199 >      nInversions_ -= mol->getNInversions();
200 >      nRigidBodies_ -= mol->getNRigidBodies();
201 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
202 >      nCutoffGroups_ -= mol->getNCutoffGroups();
203 >      nConstraints_ -= mol->getNConstraintPairs();
204  
205 <        removeExcludePairs(mol);
206 <        molecules_.erase(mol->getGlobalIndex());
205 >      removeInteractionPairs(mol);
206 >      molecules_.erase(mol->getGlobalIndex());
207  
208 <        delete mol;
208 >      delete mol;
209          
210 <        return true;
210 >      return true;
211      } else {
212 <        return false;
212 >      return false;
213      }
214 +  }    
215  
219
220 }    
221
216          
217 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
217 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
218      i = molecules_.begin();
219      return i == molecules_.end() ? NULL : i->second;
220 < }    
220 >  }    
221  
222 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
222 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
223      ++i;
224      return i == molecules_.end() ? NULL : i->second;    
225 < }
225 >  }
226  
227  
228 < void SimInfo::calcNdf() {
228 >  void SimInfo::calcNdf() {
229      int ndf_local;
230      MoleculeIterator i;
231 <    std::vector<StuntDouble*>::iterator j;
231 >    vector<StuntDouble*>::iterator j;
232      Molecule* mol;
233      StuntDouble* integrableObject;
234  
235      ndf_local = 0;
236      
237      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
238 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
239 <               integrableObject = mol->nextIntegrableObject(j)) {
238 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
239 >           integrableObject = mol->nextIntegrableObject(j)) {
240  
241 <            ndf_local += 3;
241 >        ndf_local += 3;
242  
243 <            if (integrableObject->isDirectional()) {
244 <                if (integrableObject->isLinear()) {
245 <                    ndf_local += 2;
246 <                } else {
247 <                    ndf_local += 3;
248 <                }
249 <            }
243 >        if (integrableObject->isDirectional()) {
244 >          if (integrableObject->isLinear()) {
245 >            ndf_local += 2;
246 >          } else {
247 >            ndf_local += 3;
248 >          }
249 >        }
250              
251 <        }//end for (integrableObject)
252 <    }// end for (mol)
251 >      }
252 >    }
253      
254      // n_constraints is local, so subtract them on each processor
255      ndf_local -= nConstraints_;
# Line 270 | Line 264 | void SimInfo::calcNdf() {
264      // entire system:
265      ndf_ = ndf_ - 3 - nZconstraint_;
266  
267 < }
267 >  }
268  
269 < void SimInfo::calcNdfRaw() {
269 >  int SimInfo::getFdf() {
270 > #ifdef IS_MPI
271 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
272 > #else
273 >    fdf_ = fdf_local;
274 > #endif
275 >    return fdf_;
276 >  }
277 >    
278 >  void SimInfo::calcNdfRaw() {
279      int ndfRaw_local;
280  
281      MoleculeIterator i;
282 <    std::vector<StuntDouble*>::iterator j;
282 >    vector<StuntDouble*>::iterator j;
283      Molecule* mol;
284      StuntDouble* integrableObject;
285  
# Line 284 | Line 287 | void SimInfo::calcNdfRaw() {
287      ndfRaw_local = 0;
288      
289      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
290 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
291 <               integrableObject = mol->nextIntegrableObject(j)) {
290 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
291 >           integrableObject = mol->nextIntegrableObject(j)) {
292  
293 <            ndfRaw_local += 3;
293 >        ndfRaw_local += 3;
294  
295 <            if (integrableObject->isDirectional()) {
296 <                if (integrableObject->isLinear()) {
297 <                    ndfRaw_local += 2;
298 <                } else {
299 <                    ndfRaw_local += 3;
300 <                }
301 <            }
295 >        if (integrableObject->isDirectional()) {
296 >          if (integrableObject->isLinear()) {
297 >            ndfRaw_local += 2;
298 >          } else {
299 >            ndfRaw_local += 3;
300 >          }
301 >        }
302              
303 <        }
303 >      }
304      }
305      
306   #ifdef IS_MPI
# Line 305 | Line 308 | void SimInfo::calcNdfRaw() {
308   #else
309      ndfRaw_ = ndfRaw_local;
310   #endif
311 < }
311 >  }
312  
313 < void SimInfo::calcNdfTrans() {
313 >  void SimInfo::calcNdfTrans() {
314      int ndfTrans_local;
315  
316      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 321 | Line 324 | void SimInfo::calcNdfTrans() {
324  
325      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
326  
327 < }
327 >  }
328  
329 < void SimInfo::addExcludePairs(Molecule* mol) {
330 <    std::vector<Bond*>::iterator bondIter;
331 <    std::vector<Bend*>::iterator bendIter;
332 <    std::vector<Torsion*>::iterator torsionIter;
329 >  void SimInfo::addInteractionPairs(Molecule* mol) {
330 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
331 >    vector<Bond*>::iterator bondIter;
332 >    vector<Bend*>::iterator bendIter;
333 >    vector<Torsion*>::iterator torsionIter;
334 >    vector<Inversion*>::iterator inversionIter;
335      Bond* bond;
336      Bend* bend;
337      Torsion* torsion;
338 +    Inversion* inversion;
339      int a;
340      int b;
341      int c;
342      int d;
337    
338    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
339        a = bond->getAtomA()->getGlobalIndex();
340        b = bond->getAtomB()->getGlobalIndex();        
341        exclude_.addPair(a, b);
342    }
343  
344 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
345 <        a = bend->getAtomA()->getGlobalIndex();
346 <        b = bend->getAtomB()->getGlobalIndex();        
347 <        c = bend->getAtomC()->getGlobalIndex();
344 >    // atomGroups can be used to add special interaction maps between
345 >    // groups of atoms that are in two separate rigid bodies.
346 >    // However, most site-site interactions between two rigid bodies
347 >    // are probably not special, just the ones between the physically
348 >    // bonded atoms.  Interactions *within* a single rigid body should
349 >    // always be excluded.  These are done at the bottom of this
350 >    // function.
351  
352 <        exclude_.addPair(a, b);
353 <        exclude_.addPair(a, c);
354 <        exclude_.addPair(b, c);        
355 <    }
356 <
357 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
358 <        a = torsion->getAtomA()->getGlobalIndex();
359 <        b = torsion->getAtomB()->getGlobalIndex();        
360 <        c = torsion->getAtomC()->getGlobalIndex();        
361 <        d = torsion->getAtomD()->getGlobalIndex();        
352 >    map<int, set<int> > atomGroups;
353 >    Molecule::RigidBodyIterator rbIter;
354 >    RigidBody* rb;
355 >    Molecule::IntegrableObjectIterator ii;
356 >    StuntDouble* integrableObject;
357 >    
358 >    for (integrableObject = mol->beginIntegrableObject(ii);
359 >         integrableObject != NULL;
360 >         integrableObject = mol->nextIntegrableObject(ii)) {
361 >      
362 >      if (integrableObject->isRigidBody()) {
363 >        rb = static_cast<RigidBody*>(integrableObject);
364 >        vector<Atom*> atoms = rb->getAtoms();
365 >        set<int> rigidAtoms;
366 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
367 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
368 >        }
369 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
370 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
371 >        }      
372 >      } else {
373 >        set<int> oneAtomSet;
374 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
375 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
376 >      }
377 >    }  
378 >          
379 >    for (bond= mol->beginBond(bondIter); bond != NULL;
380 >         bond = mol->nextBond(bondIter)) {
381  
382 <        exclude_.addPair(a, b);
383 <        exclude_.addPair(a, c);
384 <        exclude_.addPair(a, d);
385 <        exclude_.addPair(b, c);
386 <        exclude_.addPair(b, d);
387 <        exclude_.addPair(c, d);        
382 >      a = bond->getAtomA()->getGlobalIndex();
383 >      b = bond->getAtomB()->getGlobalIndex();  
384 >    
385 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
386 >        oneTwoInteractions_.addPair(a, b);
387 >      } else {
388 >        excludedInteractions_.addPair(a, b);
389 >      }
390      }
391  
392 <    
393 < }
392 >    for (bend= mol->beginBend(bendIter); bend != NULL;
393 >         bend = mol->nextBend(bendIter)) {
394  
395 < void SimInfo::removeExcludePairs(Molecule* mol) {
396 <    std::vector<Bond*>::iterator bondIter;
397 <    std::vector<Bend*>::iterator bendIter;
398 <    std::vector<Torsion*>::iterator torsionIter;
395 >      a = bend->getAtomA()->getGlobalIndex();
396 >      b = bend->getAtomB()->getGlobalIndex();        
397 >      c = bend->getAtomC()->getGlobalIndex();
398 >      
399 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
400 >        oneTwoInteractions_.addPair(a, b);      
401 >        oneTwoInteractions_.addPair(b, c);
402 >      } else {
403 >        excludedInteractions_.addPair(a, b);
404 >        excludedInteractions_.addPair(b, c);
405 >      }
406 >
407 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
408 >        oneThreeInteractions_.addPair(a, c);      
409 >      } else {
410 >        excludedInteractions_.addPair(a, c);
411 >      }
412 >    }
413 >
414 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
415 >         torsion = mol->nextTorsion(torsionIter)) {
416 >
417 >      a = torsion->getAtomA()->getGlobalIndex();
418 >      b = torsion->getAtomB()->getGlobalIndex();        
419 >      c = torsion->getAtomC()->getGlobalIndex();        
420 >      d = torsion->getAtomD()->getGlobalIndex();      
421 >
422 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
423 >        oneTwoInteractions_.addPair(a, b);      
424 >        oneTwoInteractions_.addPair(b, c);
425 >        oneTwoInteractions_.addPair(c, d);
426 >      } else {
427 >        excludedInteractions_.addPair(a, b);
428 >        excludedInteractions_.addPair(b, c);
429 >        excludedInteractions_.addPair(c, d);
430 >      }
431 >
432 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
433 >        oneThreeInteractions_.addPair(a, c);      
434 >        oneThreeInteractions_.addPair(b, d);      
435 >      } else {
436 >        excludedInteractions_.addPair(a, c);
437 >        excludedInteractions_.addPair(b, d);
438 >      }
439 >
440 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
441 >        oneFourInteractions_.addPair(a, d);      
442 >      } else {
443 >        excludedInteractions_.addPair(a, d);
444 >      }
445 >    }
446 >
447 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
448 >         inversion = mol->nextInversion(inversionIter)) {
449 >
450 >      a = inversion->getAtomA()->getGlobalIndex();
451 >      b = inversion->getAtomB()->getGlobalIndex();        
452 >      c = inversion->getAtomC()->getGlobalIndex();        
453 >      d = inversion->getAtomD()->getGlobalIndex();        
454 >
455 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
456 >        oneTwoInteractions_.addPair(a, b);      
457 >        oneTwoInteractions_.addPair(a, c);
458 >        oneTwoInteractions_.addPair(a, d);
459 >      } else {
460 >        excludedInteractions_.addPair(a, b);
461 >        excludedInteractions_.addPair(a, c);
462 >        excludedInteractions_.addPair(a, d);
463 >      }
464 >
465 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
466 >        oneThreeInteractions_.addPair(b, c);    
467 >        oneThreeInteractions_.addPair(b, d);    
468 >        oneThreeInteractions_.addPair(c, d);      
469 >      } else {
470 >        excludedInteractions_.addPair(b, c);
471 >        excludedInteractions_.addPair(b, d);
472 >        excludedInteractions_.addPair(c, d);
473 >      }
474 >    }
475 >
476 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
477 >         rb = mol->nextRigidBody(rbIter)) {
478 >      vector<Atom*> atoms = rb->getAtoms();
479 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
480 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
481 >          a = atoms[i]->getGlobalIndex();
482 >          b = atoms[j]->getGlobalIndex();
483 >          excludedInteractions_.addPair(a, b);
484 >        }
485 >      }
486 >    }        
487 >
488 >  }
489 >
490 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
491 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
492 >    vector<Bond*>::iterator bondIter;
493 >    vector<Bend*>::iterator bendIter;
494 >    vector<Torsion*>::iterator torsionIter;
495 >    vector<Inversion*>::iterator inversionIter;
496      Bond* bond;
497      Bend* bend;
498      Torsion* torsion;
499 +    Inversion* inversion;
500      int a;
501      int b;
502      int c;
503      int d;
504 +
505 +    map<int, set<int> > atomGroups;
506 +    Molecule::RigidBodyIterator rbIter;
507 +    RigidBody* rb;
508 +    Molecule::IntegrableObjectIterator ii;
509 +    StuntDouble* integrableObject;
510      
511 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
512 <        a = bond->getAtomA()->getGlobalIndex();
513 <        b = bond->getAtomB()->getGlobalIndex();        
514 <        exclude_.removePair(a, b);
511 >    for (integrableObject = mol->beginIntegrableObject(ii);
512 >         integrableObject != NULL;
513 >         integrableObject = mol->nextIntegrableObject(ii)) {
514 >      
515 >      if (integrableObject->isRigidBody()) {
516 >        rb = static_cast<RigidBody*>(integrableObject);
517 >        vector<Atom*> atoms = rb->getAtoms();
518 >        set<int> rigidAtoms;
519 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
520 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
521 >        }
522 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
523 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
524 >        }      
525 >      } else {
526 >        set<int> oneAtomSet;
527 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
528 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
529 >      }
530 >    }  
531 >
532 >    for (bond= mol->beginBond(bondIter); bond != NULL;
533 >         bond = mol->nextBond(bondIter)) {
534 >      
535 >      a = bond->getAtomA()->getGlobalIndex();
536 >      b = bond->getAtomB()->getGlobalIndex();  
537 >    
538 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
539 >        oneTwoInteractions_.removePair(a, b);
540 >      } else {
541 >        excludedInteractions_.removePair(a, b);
542 >      }
543      }
544  
545 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
546 <        a = bend->getAtomA()->getGlobalIndex();
391 <        b = bend->getAtomB()->getGlobalIndex();        
392 <        c = bend->getAtomC()->getGlobalIndex();
545 >    for (bend= mol->beginBend(bendIter); bend != NULL;
546 >         bend = mol->nextBend(bendIter)) {
547  
548 <        exclude_.removePair(a, b);
549 <        exclude_.removePair(a, c);
550 <        exclude_.removePair(b, c);        
548 >      a = bend->getAtomA()->getGlobalIndex();
549 >      b = bend->getAtomB()->getGlobalIndex();        
550 >      c = bend->getAtomC()->getGlobalIndex();
551 >      
552 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
553 >        oneTwoInteractions_.removePair(a, b);      
554 >        oneTwoInteractions_.removePair(b, c);
555 >      } else {
556 >        excludedInteractions_.removePair(a, b);
557 >        excludedInteractions_.removePair(b, c);
558 >      }
559 >
560 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
561 >        oneThreeInteractions_.removePair(a, c);      
562 >      } else {
563 >        excludedInteractions_.removePair(a, c);
564 >      }
565      }
566  
567 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
568 <        a = torsion->getAtomA()->getGlobalIndex();
401 <        b = torsion->getAtomB()->getGlobalIndex();        
402 <        c = torsion->getAtomC()->getGlobalIndex();        
403 <        d = torsion->getAtomD()->getGlobalIndex();        
567 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
568 >         torsion = mol->nextTorsion(torsionIter)) {
569  
570 <        exclude_.removePair(a, b);
571 <        exclude_.removePair(a, c);
572 <        exclude_.removePair(a, d);
573 <        exclude_.removePair(b, c);
574 <        exclude_.removePair(b, d);
575 <        exclude_.removePair(c, d);        
570 >      a = torsion->getAtomA()->getGlobalIndex();
571 >      b = torsion->getAtomB()->getGlobalIndex();        
572 >      c = torsion->getAtomC()->getGlobalIndex();        
573 >      d = torsion->getAtomD()->getGlobalIndex();      
574 >  
575 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
576 >        oneTwoInteractions_.removePair(a, b);      
577 >        oneTwoInteractions_.removePair(b, c);
578 >        oneTwoInteractions_.removePair(c, d);
579 >      } else {
580 >        excludedInteractions_.removePair(a, b);
581 >        excludedInteractions_.removePair(b, c);
582 >        excludedInteractions_.removePair(c, d);
583 >      }
584 >
585 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
586 >        oneThreeInteractions_.removePair(a, c);      
587 >        oneThreeInteractions_.removePair(b, d);      
588 >      } else {
589 >        excludedInteractions_.removePair(a, c);
590 >        excludedInteractions_.removePair(b, d);
591 >      }
592 >
593 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
594 >        oneFourInteractions_.removePair(a, d);      
595 >      } else {
596 >        excludedInteractions_.removePair(a, d);
597 >      }
598      }
599  
600 < }
600 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
601 >         inversion = mol->nextInversion(inversionIter)) {
602  
603 +      a = inversion->getAtomA()->getGlobalIndex();
604 +      b = inversion->getAtomB()->getGlobalIndex();        
605 +      c = inversion->getAtomC()->getGlobalIndex();        
606 +      d = inversion->getAtomD()->getGlobalIndex();        
607  
608 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
609 <    int curStampId;
608 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
609 >        oneTwoInteractions_.removePair(a, b);      
610 >        oneTwoInteractions_.removePair(a, c);
611 >        oneTwoInteractions_.removePair(a, d);
612 >      } else {
613 >        excludedInteractions_.removePair(a, b);
614 >        excludedInteractions_.removePair(a, c);
615 >        excludedInteractions_.removePair(a, d);
616 >      }
617  
618 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
619 +        oneThreeInteractions_.removePair(b, c);    
620 +        oneThreeInteractions_.removePair(b, d);    
621 +        oneThreeInteractions_.removePair(c, d);      
622 +      } else {
623 +        excludedInteractions_.removePair(b, c);
624 +        excludedInteractions_.removePair(b, d);
625 +        excludedInteractions_.removePair(c, d);
626 +      }
627 +    }
628 +
629 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
630 +         rb = mol->nextRigidBody(rbIter)) {
631 +      vector<Atom*> atoms = rb->getAtoms();
632 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
633 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
634 +          a = atoms[i]->getGlobalIndex();
635 +          b = atoms[j]->getGlobalIndex();
636 +          excludedInteractions_.removePair(a, b);
637 +        }
638 +      }
639 +    }        
640 +    
641 +  }
642 +  
643 +  
644 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
645 +    int curStampId;
646 +    
647      //index from 0
648      curStampId = moleculeStamps_.size();
649  
650      moleculeStamps_.push_back(molStamp);
651      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
652 < }
652 >  }
653  
426 void SimInfo::update() {
654  
655 <    setupSimType();
656 <
657 < #ifdef IS_MPI
658 <    setupFortranParallel();
659 < #endif
660 <
661 <    setupFortranSim();
662 <
663 <    //setup fortran force field
437 <    /** @deprecate */    
438 <    int isError = 0;
439 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
440 <    if(isError){
441 <        sprintf( painCave.errMsg,
442 <         "ForceField error: There was an error initializing the forceField in fortran.\n" );
443 <        painCave.isFatal = 1;
444 <        simError();
445 <    }
446 <  
447 <    
448 <    setupCutoff();
449 <
655 >  /**
656 >   * update
657 >   *
658 >   *  Performs the global checks and variable settings after the
659 >   *  objects have been created.
660 >   *
661 >   */
662 >  void SimInfo::update() {  
663 >    setupSimVariables();
664      calcNdf();
665      calcNdfRaw();
666      calcNdfTrans();
667 <
668 <    fortranInitialized_ = true;
669 < }
670 <
671 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
667 >  }
668 >  
669 >  /**
670 >   * getSimulatedAtomTypes
671 >   *
672 >   * Returns an STL set of AtomType* that are actually present in this
673 >   * simulation.  Must query all processors to assemble this information.
674 >   *
675 >   */
676 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
677      SimInfo::MoleculeIterator mi;
678      Molecule* mol;
679      Molecule::AtomIterator ai;
680      Atom* atom;
681 <    std::set<AtomType*> atomTypes;
681 >    set<AtomType*> atomTypes;
682 >    
683 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
684 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
685 >        atomTypes.insert(atom->getAtomType());
686 >      }      
687 >    }    
688  
689 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
689 > #ifdef IS_MPI
690  
691 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
692 <            atomTypes.insert(atom->getAtomType());
468 <        }
469 <        
470 <    }
691 >    // loop over the found atom types on this processor, and add their
692 >    // numerical idents to a vector:
693  
694 <    return atomTypes;        
695 < }
696 <
697 < void SimInfo::setupSimType() {
476 <    std::set<AtomType*>::iterator i;
477 <    std::set<AtomType*> atomTypes;
478 <    atomTypes = getUniqueAtomTypes();
479 <    
480 <    int useLennardJones = 0;
481 <    int useElectrostatic = 0;
482 <    int useEAM = 0;
483 <    int useCharge = 0;
484 <    int useDirectional = 0;
485 <    int useDipole = 0;
486 <    int useGayBerne = 0;
487 <    int useSticky = 0;
488 <    int useShape = 0;
489 <    int useFLARB = 0; //it is not in AtomType yet
490 <    int useDirectionalAtom = 0;    
491 <    int useElectrostatics = 0;
492 <    //usePBC and useRF are from simParams
493 <    int usePBC = simParams_->getPBC();
494 <    int useRF = simParams_->getUseRF();
694 >    vector<int> foundTypes;
695 >    set<AtomType*>::iterator i;
696 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
697 >      foundTypes.push_back( (*i)->getIdent() );
698  
699 <    //loop over all of the atom types
700 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
498 <        useLennardJones |= (*i)->isLennardJones();
499 <        useElectrostatic |= (*i)->isElectrostatic();
500 <        useEAM |= (*i)->isEAM();
501 <        useCharge |= (*i)->isCharge();
502 <        useDirectional |= (*i)->isDirectional();
503 <        useDipole |= (*i)->isDipole();
504 <        useGayBerne |= (*i)->isGayBerne();
505 <        useSticky |= (*i)->isSticky();
506 <        useShape |= (*i)->isShape();
507 <    }
699 >    // count_local holds the number of found types on this processor
700 >    int count_local = foundTypes.size();
701  
702 <    if (useSticky || useDipole || useGayBerne || useShape) {
703 <        useDirectionalAtom = 1;
704 <    }
702 >    // count holds the total number of found types on all processors
703 >    // (some will be redundant with the ones found locally):
704 >    int count;
705 >    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
706  
707 <    if (useCharge || useDipole) {
708 <        useElectrostatics = 1;
709 <    }
707 >    // create a vector to hold the globally found types, and resize it:
708 >    vector<int> ftGlobal;
709 >    ftGlobal.resize(count);
710 >    vector<int> counts;
711  
712 < #ifdef IS_MPI    
713 <    int temp;
712 >    int nproc = MPI::COMM_WORLD.Get_size();
713 >    counts.resize(nproc);
714 >    vector<int> disps;
715 >    disps.resize(nproc);
716  
717 <    temp = usePBC;
718 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
717 >    // now spray out the foundTypes to all the other processors:
718 >    
719 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
720 >                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
721  
722 <    temp = useDirectionalAtom;
723 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
724 <
725 <    temp = useLennardJones;
726 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
727 <
529 <    temp = useElectrostatics;
530 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
531 <
532 <    temp = useCharge;
533 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
534 <
535 <    temp = useDipole;
536 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
537 <
538 <    temp = useSticky;
539 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
540 <
541 <    temp = useGayBerne;
542 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
543 <
544 <    temp = useEAM;
545 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
546 <
547 <    temp = useShape;
548 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
549 <
550 <    temp = useFLARB;
551 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
552 <
553 <    temp = useRF;
554 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
722 >    // foundIdents is a stl set, so inserting an already found ident
723 >    // will have no effect.
724 >    set<int> foundIdents;
725 >    vector<int>::iterator j;
726 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
727 >      foundIdents.insert((*j));
728      
729 +    // now iterate over the foundIdents and get the actual atom types
730 +    // that correspond to these:
731 +    set<int>::iterator it;
732 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
733 +      atomTypes.insert( forceField_->getAtomType((*it)) );
734 +
735   #endif
736 +    
737 +    return atomTypes;        
738 +  }
739  
740 <    fInfo_.SIM_uses_PBC = usePBC;    
741 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
742 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
743 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
744 <    fInfo_.SIM_uses_Charges = useCharge;
745 <    fInfo_.SIM_uses_Dipoles = useDipole;
746 <    fInfo_.SIM_uses_Sticky = useSticky;
747 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
566 <    fInfo_.SIM_uses_EAM = useEAM;
567 <    fInfo_.SIM_uses_Shapes = useShape;
568 <    fInfo_.SIM_uses_FLARB = useFLARB;
569 <    fInfo_.SIM_uses_RF = useRF;
740 >  void SimInfo::setupSimVariables() {
741 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
742 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
743 >    calcBoxDipole_ = false;
744 >    if ( simParams_->haveAccumulateBoxDipole() )
745 >      if ( simParams_->getAccumulateBoxDipole() ) {
746 >        calcBoxDipole_ = true;      
747 >      }
748  
749 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
750 <
751 <        if (simParams_->haveDielectric()) {
752 <            fInfo_.dielect = simParams_->getDielectric();
753 <        } else {
754 <            sprintf(painCave.errMsg,
755 <                    "SimSetup Error: No Dielectric constant was set.\n"
756 <                    "\tYou are trying to use Reaction Field without"
757 <                    "\tsetting a dielectric constant!\n");
758 <            painCave.isFatal = 1;
759 <            simError();
582 <        }
583 <        
584 <    } else {
585 <        fInfo_.dielect = 0.0;
749 >    set<AtomType*>::iterator i;
750 >    set<AtomType*> atomTypes;
751 >    atomTypes = getSimulatedAtomTypes();    
752 >    int usesElectrostatic = 0;
753 >    int usesMetallic = 0;
754 >    int usesDirectional = 0;
755 >    //loop over all of the atom types
756 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
757 >      usesElectrostatic |= (*i)->isElectrostatic();
758 >      usesMetallic |= (*i)->isMetal();
759 >      usesDirectional |= (*i)->isDirectional();
760      }
761  
762 < }
762 > #ifdef IS_MPI    
763 >    int temp;
764 >    temp = usesDirectional;
765 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
766  
767 < void SimInfo::setupFortranSim() {
767 >    temp = usesMetallic;
768 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
769 >
770 >    temp = usesElectrostatic;
771 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
772 > #endif
773 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
774 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
775 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
776 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
777 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
778 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
779 >  }
780 >
781 >  void SimInfo::setupFortran() {
782      int isError;
783 <    int nExclude;
784 <    std::vector<int> fortranGlobalGroupMembership;
783 >    int nExclude, nOneTwo, nOneThree, nOneFour;
784 >    vector<int> fortranGlobalGroupMembership;
785      
595    nExclude = exclude_.getSize();
786      isError = 0;
787  
788      //globalGroupMembership_ is filled by SimCreator    
789      for (int i = 0; i < nGlobalAtoms_; i++) {
790 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
790 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
791      }
792  
793      //calculate mass ratio of cutoff group
794 <    std::vector<double> mfact;
794 >    vector<RealType> mfact;
795      SimInfo::MoleculeIterator mi;
796      Molecule* mol;
797      Molecule::CutoffGroupIterator ci;
798      CutoffGroup* cg;
799      Molecule::AtomIterator ai;
800      Atom* atom;
801 <    double totalMass;
801 >    RealType totalMass;
802  
803      //to avoid memory reallocation, reserve enough space for mfact
804      mfact.reserve(getNCutoffGroups());
805      
806      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
807 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
807 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
808  
809 <            totalMass = cg->getMass();
810 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
811 <                        mfact.push_back(atom->getMass()/totalMass);
812 <            }
813 <
814 <        }      
809 >        totalMass = cg->getMass();
810 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
811 >          // Check for massless groups - set mfact to 1 if true
812 >          if (totalMass != 0)
813 >            mfact.push_back(atom->getMass()/totalMass);
814 >          else
815 >            mfact.push_back( 1.0 );
816 >        }
817 >      }      
818      }
819  
820 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
821 <    std::vector<int> identArray;
820 >    //fill ident array of local atoms (it is actually ident of
821 >    //AtomType, it is so confusing !!!)
822 >    vector<int> identArray;
823  
824      //to avoid memory reallocation, reserve enough space identArray
825      identArray.reserve(getNAtoms());
826      
827      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
828 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
829 <            identArray.push_back(atom->getIdent());
830 <        }
828 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
829 >        identArray.push_back(atom->getIdent());
830 >      }
831      }    
832  
833      //fill molMembershipArray
834      //molMembershipArray is filled by SimCreator    
835 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
835 >    vector<int> molMembershipArray(nGlobalAtoms_);
836      for (int i = 0; i < nGlobalAtoms_; i++) {
837 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
837 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
838      }
839      
840      //setup fortran simulation
647    //gloalExcludes and molMembershipArray should go away (They are never used)
648    //why the hell fortran need to know molecule?
649    //OOPSE = Object-Obfuscated Parallel Simulation Engine
650    int nGlobalExcludes = 0;
651    int* globalExcludes = NULL;
652    int* excludeList = exclude_.getExcludeList();
653    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
654                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
655                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
841  
842 <    if( isError ){
842 >    nExclude = excludedInteractions_.getSize();
843 >    nOneTwo = oneTwoInteractions_.getSize();
844 >    nOneThree = oneThreeInteractions_.getSize();
845 >    nOneFour = oneFourInteractions_.getSize();
846  
847 <        sprintf( painCave.errMsg,
848 <                 "There was an error setting the simulation information in fortran.\n" );
849 <        painCave.isFatal = 1;
850 <        painCave.severity = OOPSE_ERROR;
663 <        simError();
664 <    }
847 >    int* excludeList = excludedInteractions_.getPairList();
848 >    int* oneTwoList = oneTwoInteractions_.getPairList();
849 >    int* oneThreeList = oneThreeInteractions_.getPairList();
850 >    int* oneFourList = oneFourInteractions_.getPairList();
851  
852 < #ifdef IS_MPI
852 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
853 >                   &nExclude, excludeList,
854 >                   &nOneTwo, oneTwoList,
855 >                   &nOneThree, oneThreeList,
856 >                   &nOneFour, oneFourList,
857 >                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
858 >                   &fortranGlobalGroupMembership[0], &isError);
859 >    
860 >    if( isError ){
861 >      
862 >      sprintf( painCave.errMsg,
863 >               "There was an error setting the simulation information in fortran.\n" );
864 >      painCave.isFatal = 1;
865 >      painCave.severity = OPENMD_ERROR;
866 >      simError();
867 >    }
868 >    
869 >    
870      sprintf( checkPointMsg,
871 <       "succesfully sent the simulation information to fortran.\n");
669 <    MPIcheckPoint();
670 < #endif // is_mpi
671 < }
672 <
673 <
674 < #ifdef IS_MPI
675 < void SimInfo::setupFortranParallel() {
871 >             "succesfully sent the simulation information to fortran.\n");
872      
873 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
874 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
875 <    std::vector<int> localToGlobalCutoffGroupIndex;
876 <    SimInfo::MoleculeIterator mi;
877 <    Molecule::AtomIterator ai;
878 <    Molecule::CutoffGroupIterator ci;
879 <    Molecule* mol;
880 <    Atom* atom;
881 <    CutoffGroup* cg;
873 >    errorCheckPoint();
874 >    
875 >    // Setup number of neighbors in neighbor list if present
876 >    if (simParams_->haveNeighborListNeighbors()) {
877 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
878 >      setNeighbors(&nlistNeighbors);
879 >    }
880 >  
881 > #ifdef IS_MPI    
882 >    //SimInfo is responsible for creating localToGlobalAtomIndex and
883 >    //localToGlobalGroupIndex
884 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
885 >    vector<int> localToGlobalCutoffGroupIndex;
886      mpiSimData parallelData;
687    int isError;
887  
888      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
889  
890 <        //local index(index in DataStorge) of atom is important
891 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
892 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
893 <        }
890 >      //local index(index in DataStorge) of atom is important
891 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
892 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
893 >      }
894  
895 <        //local index of cutoff group is trivial, it only depends on the order of travesing
896 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
897 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
898 <        }        
895 >      //local index of cutoff group is trivial, it only depends on the order of travesing
896 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
897 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
898 >      }        
899          
900      }
901  
# Line 716 | Line 915 | void SimInfo::setupFortranParallel() {
915                      &localToGlobalCutoffGroupIndex[0], &isError);
916  
917      if (isError) {
918 <        sprintf(painCave.errMsg,
919 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
920 <        painCave.isFatal = 1;
921 <        simError();
918 >      sprintf(painCave.errMsg,
919 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
920 >      painCave.isFatal = 1;
921 >      simError();
922      }
923  
924      sprintf(checkPointMsg, " mpiRefresh successful.\n");
925 <    MPIcheckPoint();
727 <
728 <
729 < }
730 <
925 >    errorCheckPoint();
926   #endif
927 +    fortranInitialized_ = true;
928 +  }
929  
930 < double SimInfo::calcMaxCutoffRadius() {
930 >  void SimInfo::addProperty(GenericData* genData) {
931 >    properties_.addProperty(genData);  
932 >  }
933  
934 +  void SimInfo::removeProperty(const string& propName) {
935 +    properties_.removeProperty(propName);  
936 +  }
937  
938 <    std::set<AtomType*> atomTypes;
939 <    std::set<AtomType*>::iterator i;
940 <    std::vector<double> cutoffRadius;
938 >  void SimInfo::clearProperties() {
939 >    properties_.clearProperties();
940 >  }
941  
942 <    //get the unique atom types
943 <    atomTypes = getUniqueAtomTypes();
942 >  vector<string> SimInfo::getPropertyNames() {
943 >    return properties_.getPropertyNames();  
944 >  }
945 >      
946 >  vector<GenericData*> SimInfo::getProperties() {
947 >    return properties_.getProperties();
948 >  }
949  
950 <    //query the max cutoff radius among these atom types
951 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
952 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
746 <    }
950 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
951 >    return properties_.getPropertyByName(propName);
952 >  }
953  
954 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
955 < #ifdef IS_MPI
956 <    //pick the max cutoff radius among the processors
957 < #endif
958 <
753 <    return maxCutoffRadius;
754 < }
755 <
756 < void SimInfo::setupCutoff() {
757 <    double rcut_;  //cutoff radius
758 <    double rsw_; //switching radius
759 <    
760 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
761 <        
762 <        if (!simParams_->haveRcut()){
763 <            sprintf(painCave.errMsg,
764 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
765 <                "\tOOPSE will use a default value of 15.0 angstroms"
766 <                "\tfor the cutoffRadius.\n");
767 <            painCave.isFatal = 0;
768 <            simError();
769 <            rcut_ = 15.0;
770 <        } else{
771 <            rcut_ = simParams_->getRcut();
772 <        }
773 <
774 <        if (!simParams_->haveRsw()){
775 <            sprintf(painCave.errMsg,
776 <                "SimCreator Warning: No value was set for switchingRadius.\n"
777 <                "\tOOPSE will use a default value of\n"
778 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
779 <            painCave.isFatal = 0;
780 <            simError();
781 <            rsw_ = 0.95 * rcut_;
782 <        } else{
783 <            rsw_ = simParams_->getRsw();
784 <        }
785 <
786 <    } else {
787 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
788 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
789 <        
790 <        if (simParams_->haveRcut()) {
791 <            rcut_ = simParams_->getRcut();
792 <        } else {
793 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
794 <            rcut_ = calcMaxCutoffRadius();
795 <        }
796 <
797 <        if (simParams_->haveRsw()) {
798 <            rsw_  = simParams_->getRsw();
799 <        } else {
800 <            rsw_ = rcut_;
801 <        }
802 <    
803 <    }
804 <        
805 <    double rnblist = rcut_ + 1; // skin of neighbor list
806 <
807 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
808 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
809 < }
810 <
811 < void SimInfo::addProperty(GenericData* genData) {
812 <    properties_.addProperty(genData);  
813 < }
814 <
815 < void SimInfo::removeProperty(const std::string& propName) {
816 <    properties_.removeProperty(propName);  
817 < }
818 <
819 < void SimInfo::clearProperties() {
820 <    properties_.clearProperties();
821 < }
822 <
823 < std::vector<std::string> SimInfo::getPropertyNames() {
824 <    return properties_.getPropertyNames();  
825 < }
826 <      
827 < std::vector<GenericData*> SimInfo::getProperties() {
828 <    return properties_.getProperties();
829 < }
830 <
831 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
832 <    return properties_.getPropertyByName(propName);
833 < }
834 <
835 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
954 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
955 >    if (sman_ == sman) {
956 >      return;
957 >    }    
958 >    delete sman_;
959      sman_ = sman;
960  
961      Molecule* mol;
# Line 844 | Line 967 | void SimInfo::setSnapshotManager(SnapshotManager* sman
967  
968      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
969          
970 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
971 <            atom->setSnapshotManager(sman_);
972 <        }
970 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
971 >        atom->setSnapshotManager(sman_);
972 >      }
973          
974 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
975 <            rb->setSnapshotManager(sman_);
976 <        }
974 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
975 >        rb->setSnapshotManager(sman_);
976 >      }
977      }    
978      
979 < }
979 >  }
980  
981 < Vector3d SimInfo::getComVel(){
981 >  Vector3d SimInfo::getComVel(){
982      SimInfo::MoleculeIterator i;
983      Molecule* mol;
984  
985      Vector3d comVel(0.0);
986 <    double totalMass = 0.0;
986 >    RealType totalMass = 0.0;
987      
988  
989      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
990 <        double mass = mol->getMass();
991 <        totalMass += mass;
992 <        comVel += mass * mol->getComVel();
990 >      RealType mass = mol->getMass();
991 >      totalMass += mass;
992 >      comVel += mass * mol->getComVel();
993      }  
994  
995   #ifdef IS_MPI
996 <    double tmpMass = totalMass;
996 >    RealType tmpMass = totalMass;
997      Vector3d tmpComVel(comVel);    
998 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
999 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
998 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
999 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1000   #endif
1001  
1002      comVel /= totalMass;
1003  
1004      return comVel;
1005 < }
1005 >  }
1006  
1007 < Vector3d SimInfo::getCom(){
1007 >  Vector3d SimInfo::getCom(){
1008      SimInfo::MoleculeIterator i;
1009      Molecule* mol;
1010  
1011      Vector3d com(0.0);
1012 <    double totalMass = 0.0;
1012 >    RealType totalMass = 0.0;
1013      
1014      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1015 <        double mass = mol->getMass();
1016 <        totalMass += mass;
1017 <        com += mass * mol->getCom();
1015 >      RealType mass = mol->getMass();
1016 >      totalMass += mass;
1017 >      com += mass * mol->getCom();
1018      }  
1019  
1020   #ifdef IS_MPI
1021 <    double tmpMass = totalMass;
1021 >    RealType tmpMass = totalMass;
1022      Vector3d tmpCom(com);    
1023 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1024 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1023 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1024 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1025   #endif
1026  
1027      com /= totalMass;
1028  
1029      return com;
1030  
1031 < }        
1031 >  }        
1032  
1033 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1033 >  ostream& operator <<(ostream& o, SimInfo& info) {
1034  
1035      return o;
1036 < }
1036 >  }
1037 >  
1038 >  
1039 >   /*
1040 >   Returns center of mass and center of mass velocity in one function call.
1041 >   */
1042 >  
1043 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1044 >      SimInfo::MoleculeIterator i;
1045 >      Molecule* mol;
1046 >      
1047 >    
1048 >      RealType totalMass = 0.0;
1049 >    
1050  
1051 < }//end namespace oopse
1051 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1052 >         RealType mass = mol->getMass();
1053 >         totalMass += mass;
1054 >         com += mass * mol->getCom();
1055 >         comVel += mass * mol->getComVel();          
1056 >      }  
1057 >      
1058 > #ifdef IS_MPI
1059 >      RealType tmpMass = totalMass;
1060 >      Vector3d tmpCom(com);  
1061 >      Vector3d tmpComVel(comVel);
1062 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1063 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1064 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1065 > #endif
1066 >      
1067 >      com /= totalMass;
1068 >      comVel /= totalMass;
1069 >   }        
1070 >  
1071 >   /*
1072 >   Return intertia tensor for entire system and angular momentum Vector.
1073  
1074 +
1075 +       [  Ixx -Ixy  -Ixz ]
1076 +    J =| -Iyx  Iyy  -Iyz |
1077 +       [ -Izx -Iyz   Izz ]
1078 +    */
1079 +
1080 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1081 +      
1082 +
1083 +      RealType xx = 0.0;
1084 +      RealType yy = 0.0;
1085 +      RealType zz = 0.0;
1086 +      RealType xy = 0.0;
1087 +      RealType xz = 0.0;
1088 +      RealType yz = 0.0;
1089 +      Vector3d com(0.0);
1090 +      Vector3d comVel(0.0);
1091 +      
1092 +      getComAll(com, comVel);
1093 +      
1094 +      SimInfo::MoleculeIterator i;
1095 +      Molecule* mol;
1096 +      
1097 +      Vector3d thisq(0.0);
1098 +      Vector3d thisv(0.0);
1099 +
1100 +      RealType thisMass = 0.0;
1101 +    
1102 +      
1103 +      
1104 +  
1105 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1106 +        
1107 +         thisq = mol->getCom()-com;
1108 +         thisv = mol->getComVel()-comVel;
1109 +         thisMass = mol->getMass();
1110 +         // Compute moment of intertia coefficients.
1111 +         xx += thisq[0]*thisq[0]*thisMass;
1112 +         yy += thisq[1]*thisq[1]*thisMass;
1113 +         zz += thisq[2]*thisq[2]*thisMass;
1114 +        
1115 +         // compute products of intertia
1116 +         xy += thisq[0]*thisq[1]*thisMass;
1117 +         xz += thisq[0]*thisq[2]*thisMass;
1118 +         yz += thisq[1]*thisq[2]*thisMass;
1119 +            
1120 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1121 +            
1122 +      }  
1123 +      
1124 +      
1125 +      inertiaTensor(0,0) = yy + zz;
1126 +      inertiaTensor(0,1) = -xy;
1127 +      inertiaTensor(0,2) = -xz;
1128 +      inertiaTensor(1,0) = -xy;
1129 +      inertiaTensor(1,1) = xx + zz;
1130 +      inertiaTensor(1,2) = -yz;
1131 +      inertiaTensor(2,0) = -xz;
1132 +      inertiaTensor(2,1) = -yz;
1133 +      inertiaTensor(2,2) = xx + yy;
1134 +      
1135 + #ifdef IS_MPI
1136 +      Mat3x3d tmpI(inertiaTensor);
1137 +      Vector3d tmpAngMom;
1138 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1139 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1140 + #endif
1141 +              
1142 +      return;
1143 +   }
1144 +
1145 +   //Returns the angular momentum of the system
1146 +   Vector3d SimInfo::getAngularMomentum(){
1147 +      
1148 +      Vector3d com(0.0);
1149 +      Vector3d comVel(0.0);
1150 +      Vector3d angularMomentum(0.0);
1151 +      
1152 +      getComAll(com,comVel);
1153 +      
1154 +      SimInfo::MoleculeIterator i;
1155 +      Molecule* mol;
1156 +      
1157 +      Vector3d thisr(0.0);
1158 +      Vector3d thisp(0.0);
1159 +      
1160 +      RealType thisMass;
1161 +      
1162 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1163 +        thisMass = mol->getMass();
1164 +        thisr = mol->getCom()-com;
1165 +        thisp = (mol->getComVel()-comVel)*thisMass;
1166 +        
1167 +        angularMomentum += cross( thisr, thisp );
1168 +        
1169 +      }  
1170 +      
1171 + #ifdef IS_MPI
1172 +      Vector3d tmpAngMom;
1173 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1174 + #endif
1175 +      
1176 +      return angularMomentum;
1177 +   }
1178 +  
1179 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1180 +    return IOIndexToIntegrableObject.at(index);
1181 +  }
1182 +  
1183 +  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1184 +    IOIndexToIntegrableObject= v;
1185 +  }
1186 +
1187 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1188 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1189 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1190 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1191 +  */
1192 +  void SimInfo::getGyrationalVolume(RealType &volume){
1193 +    Mat3x3d intTensor;
1194 +    RealType det;
1195 +    Vector3d dummyAngMom;
1196 +    RealType sysconstants;
1197 +    RealType geomCnst;
1198 +
1199 +    geomCnst = 3.0/2.0;
1200 +    /* Get the inertial tensor and angular momentum for free*/
1201 +    getInertiaTensor(intTensor,dummyAngMom);
1202 +    
1203 +    det = intTensor.determinant();
1204 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1205 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1206 +    return;
1207 +  }
1208 +
1209 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1210 +    Mat3x3d intTensor;
1211 +    Vector3d dummyAngMom;
1212 +    RealType sysconstants;
1213 +    RealType geomCnst;
1214 +
1215 +    geomCnst = 3.0/2.0;
1216 +    /* Get the inertial tensor and angular momentum for free*/
1217 +    getInertiaTensor(intTensor,dummyAngMom);
1218 +    
1219 +    detI = intTensor.determinant();
1220 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1221 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1222 +    return;
1223 +  }
1224 + /*
1225 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1226 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1227 +      sdByGlobalIndex_ = v;
1228 +    }
1229 +
1230 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1231 +      //assert(index < nAtoms_ + nRigidBodies_);
1232 +      return sdByGlobalIndex_.at(index);
1233 +    }  
1234 + */  
1235 +  int SimInfo::getNGlobalConstraints() {
1236 +    int nGlobalConstraints;
1237 + #ifdef IS_MPI
1238 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1239 +                  MPI_COMM_WORLD);    
1240 + #else
1241 +    nGlobalConstraints =  nConstraints_;
1242 + #endif
1243 +    return nGlobalConstraints;
1244 +  }
1245 +
1246 + }//end namespace OpenMD
1247 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 292 by tim, Fri Feb 4 22:44:15 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1535 by gezelter, Fri Dec 31 18:31:56 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines