ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 292 by tim, Fri Feb 4 22:44:15 2005 UTC vs.
Revision 1313 by gezelter, Wed Oct 22 20:01:49 2008 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57 + #include "UseTheForce/fCutoffPolicy.h"
58 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 + #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61   #include "UseTheForce/doForces_interface.h"
62 < #include "UseTheForce/notifyCutoffs_interface.h"
62 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
65   #include "utils/MemoryUtils.hpp"
66   #include "utils/simError.h"
67 + #include "selection/SelectionManager.hpp"
68 + #include "io/ForceFieldOptions.hpp"
69 + #include "UseTheForce/ForceField.hpp"
70  
71 +
72   #ifdef IS_MPI
73   #include "UseTheForce/mpiComponentPlan.h"
74   #include "UseTheForce/DarkSide/simParallel_interface.h"
75   #endif
76  
77   namespace oopse {
78 +  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 +    std::map<int, std::set<int> >::iterator i = container.find(index);
80 +    std::set<int> result;
81 +    if (i != container.end()) {
82 +        result = i->second;
83 +    }
84  
85 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
86 <                                ForceField* ff, Globals* simParams) :
87 <                                forceField_(ff), simParams_(simParams),
88 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
89 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
90 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
91 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
92 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
93 <                                sman_(NULL), fortranInitialized_(false), selectMan_(NULL) {
85 >    return result;
86 >  }
87 >  
88 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
89 >    forceField_(ff), simParams_(simParams),
90 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
94 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
95 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
96 >    calcBoxDipole_(false), useAtomicVirial_(true) {
97  
98 <            
99 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
100 <    MoleculeStamp* molStamp;
101 <    int nMolWithSameStamp;
102 <    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
103 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
104 <    CutoffGroupStamp* cgStamp;    
105 <    RigidBodyStamp* rbStamp;
106 <    int nRigidAtoms = 0;
107 <    
108 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
109 <        molStamp = i->first;
110 <        nMolWithSameStamp = i->second;
98 >
99 >      MoleculeStamp* molStamp;
100 >      int nMolWithSameStamp;
101 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
102 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
103 >      CutoffGroupStamp* cgStamp;    
104 >      RigidBodyStamp* rbStamp;
105 >      int nRigidAtoms = 0;
106 >
107 >      std::vector<Component*> components = simParams->getComponents();
108 >      
109 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
110 >        molStamp = (*i)->getMoleculeStamp();
111 >        nMolWithSameStamp = (*i)->getNMol();
112          
113          addMoleculeStamp(molStamp, nMolWithSameStamp);
114  
115          //calculate atoms in molecules
116          nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
117  
96
118          //calculate atoms in cutoff groups
119          int nAtomsInGroups = 0;
120          int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
121          
122          for (int j=0; j < nCutoffGroupsInStamp; j++) {
123 <            cgStamp = molStamp->getCutoffGroup(j);
124 <            nAtomsInGroups += cgStamp->getNMembers();
123 >          cgStamp = molStamp->getCutoffGroupStamp(j);
124 >          nAtomsInGroups += cgStamp->getNMembers();
125          }
126  
127          nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
128 +
129          nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
130  
131          //calculate atoms in rigid bodies
# Line 111 | Line 133 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
133          int nRigidBodiesInStamp = molStamp->getNRigidBodies();
134          
135          for (int j=0; j < nRigidBodiesInStamp; j++) {
136 <            rbStamp = molStamp->getRigidBody(j);
137 <            nAtomsInRigidBodies += rbStamp->getNMembers();
136 >          rbStamp = molStamp->getRigidBodyStamp(j);
137 >          nAtomsInRigidBodies += rbStamp->getNMembers();
138          }
139  
140          nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
141          nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
142          
143 <    }
143 >      }
144  
145 <    //every free atom (atom does not belong to cutoff groups) is a cutoff group
146 <    //therefore the total number of cutoff groups in the system is equal to
147 <    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
148 <    //file plus the number of cutoff groups defined in meta-data file
149 <    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
145 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
146 >      //group therefore the total number of cutoff groups in the system is
147 >      //equal to the total number of atoms minus number of atoms belong to
148 >      //cutoff group defined in meta-data file plus the number of cutoff
149 >      //groups defined in meta-data file
150 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
151  
152 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
153 <    //therefore the total number of  integrable objects in the system is equal to
154 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
155 <    //file plus the number of  rigid bodies defined in meta-data file
156 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
152 >      //every free atom (atom does not belong to rigid bodies) is an
153 >      //integrable object therefore the total number of integrable objects
154 >      //in the system is equal to the total number of atoms minus number of
155 >      //atoms belong to rigid body defined in meta-data file plus the number
156 >      //of rigid bodies defined in meta-data file
157 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
158 >                                                + nGlobalRigidBodies_;
159 >  
160 >      nGlobalMols_ = molStampIds_.size();
161 >      molToProcMap_.resize(nGlobalMols_);
162 >    }
163  
164 <    nGlobalMols_ = molStampIds_.size();
165 <
166 < #ifdef IS_MPI    
167 <    molToProcMap_.resize(nGlobalMols_);
168 < #endif
169 <
170 <    selectMan_ = new SelectionManager(nGlobalAtoms_ + nGlobalRigidBodies_);
142 <    selectMan_->selectAll();
143 < }
144 <
145 < SimInfo::~SimInfo() {
146 <    //MemoryUtils::deleteVectorOfPointer(molecules_);
147 <
148 <    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
149 <    
164 >  SimInfo::~SimInfo() {
165 >    std::map<int, Molecule*>::iterator i;
166 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
167 >      delete i->second;
168 >    }
169 >    molecules_.clear();
170 >      
171      delete sman_;
172      delete simParams_;
173      delete forceField_;
174 <    delete selectMan_;
154 < }
174 >  }
175  
176 < int SimInfo::getNGlobalConstraints() {
176 >  int SimInfo::getNGlobalConstraints() {
177      int nGlobalConstraints;
178   #ifdef IS_MPI
179      MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
# Line 162 | Line 182 | int SimInfo::getNGlobalConstraints() {
182      nGlobalConstraints =  nConstraints_;
183   #endif
184      return nGlobalConstraints;
185 < }
185 >  }
186  
187 < bool SimInfo::addMolecule(Molecule* mol) {
187 >  bool SimInfo::addMolecule(Molecule* mol) {
188      MoleculeIterator i;
189  
190      i = molecules_.find(mol->getGlobalIndex());
191      if (i == molecules_.end() ) {
192  
193 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
193 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
194          
195 <        nAtoms_ += mol->getNAtoms();
196 <        nBonds_ += mol->getNBonds();
197 <        nBends_ += mol->getNBends();
198 <        nTorsions_ += mol->getNTorsions();
199 <        nRigidBodies_ += mol->getNRigidBodies();
200 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
201 <        nCutoffGroups_ += mol->getNCutoffGroups();
202 <        nConstraints_ += mol->getNConstraintPairs();
195 >      nAtoms_ += mol->getNAtoms();
196 >      nBonds_ += mol->getNBonds();
197 >      nBends_ += mol->getNBends();
198 >      nTorsions_ += mol->getNTorsions();
199 >      nInversions_ += mol->getNInversions();
200 >      nRigidBodies_ += mol->getNRigidBodies();
201 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
202 >      nCutoffGroups_ += mol->getNCutoffGroups();
203 >      nConstraints_ += mol->getNConstraintPairs();
204  
205 <        addExcludePairs(mol);
206 <        
207 <        return true;
205 >      addInteractionPairs(mol);
206 >  
207 >      return true;
208      } else {
209 <        return false;
209 >      return false;
210      }
211 < }
211 >  }
212  
213 < bool SimInfo::removeMolecule(Molecule* mol) {
213 >  bool SimInfo::removeMolecule(Molecule* mol) {
214      MoleculeIterator i;
215      i = molecules_.find(mol->getGlobalIndex());
216  
217      if (i != molecules_.end() ) {
218  
219 <        assert(mol == i->second);
219 >      assert(mol == i->second);
220          
221 <        nAtoms_ -= mol->getNAtoms();
222 <        nBonds_ -= mol->getNBonds();
223 <        nBends_ -= mol->getNBends();
224 <        nTorsions_ -= mol->getNTorsions();
225 <        nRigidBodies_ -= mol->getNRigidBodies();
226 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
227 <        nCutoffGroups_ -= mol->getNCutoffGroups();
228 <        nConstraints_ -= mol->getNConstraintPairs();
221 >      nAtoms_ -= mol->getNAtoms();
222 >      nBonds_ -= mol->getNBonds();
223 >      nBends_ -= mol->getNBends();
224 >      nTorsions_ -= mol->getNTorsions();
225 >      nInversions_ -= mol->getNInversions();
226 >      nRigidBodies_ -= mol->getNRigidBodies();
227 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
228 >      nCutoffGroups_ -= mol->getNCutoffGroups();
229 >      nConstraints_ -= mol->getNConstraintPairs();
230  
231 <        removeExcludePairs(mol);
232 <        molecules_.erase(mol->getGlobalIndex());
231 >      removeInteractionPairs(mol);
232 >      molecules_.erase(mol->getGlobalIndex());
233  
234 <        delete mol;
234 >      delete mol;
235          
236 <        return true;
236 >      return true;
237      } else {
238 <        return false;
238 >      return false;
239      }
240  
241  
242 < }    
242 >  }    
243  
244          
245 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
245 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
246      i = molecules_.begin();
247      return i == molecules_.end() ? NULL : i->second;
248 < }    
248 >  }    
249  
250 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
250 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
251      ++i;
252      return i == molecules_.end() ? NULL : i->second;    
253 < }
253 >  }
254  
255  
256 < void SimInfo::calcNdf() {
256 >  void SimInfo::calcNdf() {
257      int ndf_local;
258      MoleculeIterator i;
259      std::vector<StuntDouble*>::iterator j;
# Line 241 | Line 263 | void SimInfo::calcNdf() {
263      ndf_local = 0;
264      
265      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
266 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
267 <               integrableObject = mol->nextIntegrableObject(j)) {
266 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
267 >           integrableObject = mol->nextIntegrableObject(j)) {
268  
269 <            ndf_local += 3;
269 >        ndf_local += 3;
270  
271 <            if (integrableObject->isDirectional()) {
272 <                if (integrableObject->isLinear()) {
273 <                    ndf_local += 2;
274 <                } else {
275 <                    ndf_local += 3;
276 <                }
277 <            }
271 >        if (integrableObject->isDirectional()) {
272 >          if (integrableObject->isLinear()) {
273 >            ndf_local += 2;
274 >          } else {
275 >            ndf_local += 3;
276 >          }
277 >        }
278              
279 <        }//end for (integrableObject)
280 <    }// end for (mol)
279 >      }
280 >    }
281      
282      // n_constraints is local, so subtract them on each processor
283      ndf_local -= nConstraints_;
# Line 270 | Line 292 | void SimInfo::calcNdf() {
292      // entire system:
293      ndf_ = ndf_ - 3 - nZconstraint_;
294  
295 < }
295 >  }
296  
297 < void SimInfo::calcNdfRaw() {
297 >  int SimInfo::getFdf() {
298 > #ifdef IS_MPI
299 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
300 > #else
301 >    fdf_ = fdf_local;
302 > #endif
303 >    return fdf_;
304 >  }
305 >    
306 >  void SimInfo::calcNdfRaw() {
307      int ndfRaw_local;
308  
309      MoleculeIterator i;
# Line 284 | Line 315 | void SimInfo::calcNdfRaw() {
315      ndfRaw_local = 0;
316      
317      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
318 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
319 <               integrableObject = mol->nextIntegrableObject(j)) {
318 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
319 >           integrableObject = mol->nextIntegrableObject(j)) {
320  
321 <            ndfRaw_local += 3;
321 >        ndfRaw_local += 3;
322  
323 <            if (integrableObject->isDirectional()) {
324 <                if (integrableObject->isLinear()) {
325 <                    ndfRaw_local += 2;
326 <                } else {
327 <                    ndfRaw_local += 3;
328 <                }
329 <            }
323 >        if (integrableObject->isDirectional()) {
324 >          if (integrableObject->isLinear()) {
325 >            ndfRaw_local += 2;
326 >          } else {
327 >            ndfRaw_local += 3;
328 >          }
329 >        }
330              
331 <        }
331 >      }
332      }
333      
334   #ifdef IS_MPI
# Line 305 | Line 336 | void SimInfo::calcNdfRaw() {
336   #else
337      ndfRaw_ = ndfRaw_local;
338   #endif
339 < }
339 >  }
340  
341 < void SimInfo::calcNdfTrans() {
341 >  void SimInfo::calcNdfTrans() {
342      int ndfTrans_local;
343  
344      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 321 | Line 352 | void SimInfo::calcNdfTrans() {
352  
353      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
354  
355 < }
355 >  }
356  
357 < void SimInfo::addExcludePairs(Molecule* mol) {
357 >  void SimInfo::addInteractionPairs(Molecule* mol) {
358 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
359      std::vector<Bond*>::iterator bondIter;
360      std::vector<Bend*>::iterator bendIter;
361      std::vector<Torsion*>::iterator torsionIter;
362 +    std::vector<Inversion*>::iterator inversionIter;
363      Bond* bond;
364      Bend* bend;
365      Torsion* torsion;
366 +    Inversion* inversion;
367      int a;
368      int b;
369      int c;
370      int d;
371 +
372 +    // atomGroups can be used to add special interaction maps between
373 +    // groups of atoms that are in two separate rigid bodies.
374 +    // However, most site-site interactions between two rigid bodies
375 +    // are probably not special, just the ones between the physically
376 +    // bonded atoms.  Interactions *within* a single rigid body should
377 +    // always be excluded.  These are done at the bottom of this
378 +    // function.
379 +
380 +    std::map<int, std::set<int> > atomGroups;
381 +    Molecule::RigidBodyIterator rbIter;
382 +    RigidBody* rb;
383 +    Molecule::IntegrableObjectIterator ii;
384 +    StuntDouble* integrableObject;
385      
386 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
387 <        a = bond->getAtomA()->getGlobalIndex();
388 <        b = bond->getAtomB()->getGlobalIndex();        
389 <        exclude_.addPair(a, b);
386 >    for (integrableObject = mol->beginIntegrableObject(ii);
387 >         integrableObject != NULL;
388 >         integrableObject = mol->nextIntegrableObject(ii)) {
389 >      
390 >      if (integrableObject->isRigidBody()) {
391 >        rb = static_cast<RigidBody*>(integrableObject);
392 >        std::vector<Atom*> atoms = rb->getAtoms();
393 >        std::set<int> rigidAtoms;
394 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
395 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
396 >        }
397 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
398 >          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
399 >        }      
400 >      } else {
401 >        std::set<int> oneAtomSet;
402 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
403 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
404 >      }
405 >    }  
406 >          
407 >    for (bond= mol->beginBond(bondIter); bond != NULL;
408 >         bond = mol->nextBond(bondIter)) {
409 >
410 >      a = bond->getAtomA()->getGlobalIndex();
411 >      b = bond->getAtomB()->getGlobalIndex();  
412 >    
413 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
414 >        oneTwoInteractions_.addPair(a, b);
415 >      } else {
416 >        excludedInteractions_.addPair(a, b);
417 >      }
418      }
419  
420 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
421 <        a = bend->getAtomA()->getGlobalIndex();
346 <        b = bend->getAtomB()->getGlobalIndex();        
347 <        c = bend->getAtomC()->getGlobalIndex();
420 >    for (bend= mol->beginBend(bendIter); bend != NULL;
421 >         bend = mol->nextBend(bendIter)) {
422  
423 <        exclude_.addPair(a, b);
424 <        exclude_.addPair(a, c);
425 <        exclude_.addPair(b, c);        
423 >      a = bend->getAtomA()->getGlobalIndex();
424 >      b = bend->getAtomB()->getGlobalIndex();        
425 >      c = bend->getAtomC()->getGlobalIndex();
426 >      
427 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
428 >        oneTwoInteractions_.addPair(a, b);      
429 >        oneTwoInteractions_.addPair(b, c);
430 >      } else {
431 >        excludedInteractions_.addPair(a, b);
432 >        excludedInteractions_.addPair(b, c);
433 >      }
434 >
435 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
436 >        oneThreeInteractions_.addPair(a, c);      
437 >      } else {
438 >        excludedInteractions_.addPair(a, c);
439 >      }
440      }
441  
442 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
443 <        a = torsion->getAtomA()->getGlobalIndex();
356 <        b = torsion->getAtomB()->getGlobalIndex();        
357 <        c = torsion->getAtomC()->getGlobalIndex();        
358 <        d = torsion->getAtomD()->getGlobalIndex();        
442 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
443 >         torsion = mol->nextTorsion(torsionIter)) {
444  
445 <        exclude_.addPair(a, b);
446 <        exclude_.addPair(a, c);
447 <        exclude_.addPair(a, d);
448 <        exclude_.addPair(b, c);
449 <        exclude_.addPair(b, d);
450 <        exclude_.addPair(c, d);        
445 >      a = torsion->getAtomA()->getGlobalIndex();
446 >      b = torsion->getAtomB()->getGlobalIndex();        
447 >      c = torsion->getAtomC()->getGlobalIndex();        
448 >      d = torsion->getAtomD()->getGlobalIndex();      
449 >
450 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
451 >        oneTwoInteractions_.addPair(a, b);      
452 >        oneTwoInteractions_.addPair(b, c);
453 >        oneTwoInteractions_.addPair(c, d);
454 >      } else {
455 >        excludedInteractions_.addPair(a, b);
456 >        excludedInteractions_.addPair(b, c);
457 >        excludedInteractions_.addPair(c, d);
458 >      }
459 >
460 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
461 >        oneThreeInteractions_.addPair(a, c);      
462 >        oneThreeInteractions_.addPair(b, d);      
463 >      } else {
464 >        excludedInteractions_.addPair(a, c);
465 >        excludedInteractions_.addPair(b, d);
466 >      }
467 >
468 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
469 >        oneFourInteractions_.addPair(a, d);      
470 >      } else {
471 >        excludedInteractions_.addPair(a, d);
472 >      }
473      }
474  
475 <    
476 < }
475 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
476 >         inversion = mol->nextInversion(inversionIter)) {
477 >
478 >      a = inversion->getAtomA()->getGlobalIndex();
479 >      b = inversion->getAtomB()->getGlobalIndex();        
480 >      c = inversion->getAtomC()->getGlobalIndex();        
481 >      d = inversion->getAtomD()->getGlobalIndex();        
482  
483 < void SimInfo::removeExcludePairs(Molecule* mol) {
483 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
484 >        oneTwoInteractions_.addPair(a, b);      
485 >        oneTwoInteractions_.addPair(a, c);
486 >        oneTwoInteractions_.addPair(a, d);
487 >      } else {
488 >        excludedInteractions_.addPair(a, b);
489 >        excludedInteractions_.addPair(a, c);
490 >        excludedInteractions_.addPair(a, d);
491 >      }
492 >
493 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
494 >        oneThreeInteractions_.addPair(b, c);    
495 >        oneThreeInteractions_.addPair(b, d);    
496 >        oneThreeInteractions_.addPair(c, d);      
497 >      } else {
498 >        excludedInteractions_.addPair(b, c);
499 >        excludedInteractions_.addPair(b, d);
500 >        excludedInteractions_.addPair(c, d);
501 >      }
502 >    }
503 >
504 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
505 >         rb = mol->nextRigidBody(rbIter)) {
506 >      std::vector<Atom*> atoms = rb->getAtoms();
507 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
508 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
509 >          a = atoms[i]->getGlobalIndex();
510 >          b = atoms[j]->getGlobalIndex();
511 >          excludedInteractions_.addPair(a, b);
512 >        }
513 >      }
514 >    }        
515 >
516 >  }
517 >
518 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
519 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
520      std::vector<Bond*>::iterator bondIter;
521      std::vector<Bend*>::iterator bendIter;
522      std::vector<Torsion*>::iterator torsionIter;
523 +    std::vector<Inversion*>::iterator inversionIter;
524      Bond* bond;
525      Bend* bend;
526      Torsion* torsion;
527 +    Inversion* inversion;
528      int a;
529      int b;
530      int c;
531      int d;
532 +
533 +    std::map<int, std::set<int> > atomGroups;
534 +    Molecule::RigidBodyIterator rbIter;
535 +    RigidBody* rb;
536 +    Molecule::IntegrableObjectIterator ii;
537 +    StuntDouble* integrableObject;
538      
539 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
540 <        a = bond->getAtomA()->getGlobalIndex();
541 <        b = bond->getAtomB()->getGlobalIndex();        
542 <        exclude_.removePair(a, b);
539 >    for (integrableObject = mol->beginIntegrableObject(ii);
540 >         integrableObject != NULL;
541 >         integrableObject = mol->nextIntegrableObject(ii)) {
542 >      
543 >      if (integrableObject->isRigidBody()) {
544 >        rb = static_cast<RigidBody*>(integrableObject);
545 >        std::vector<Atom*> atoms = rb->getAtoms();
546 >        std::set<int> rigidAtoms;
547 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
548 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
549 >        }
550 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
551 >          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
552 >        }      
553 >      } else {
554 >        std::set<int> oneAtomSet;
555 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
556 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
557 >      }
558 >    }  
559 >
560 >    for (bond= mol->beginBond(bondIter); bond != NULL;
561 >         bond = mol->nextBond(bondIter)) {
562 >      
563 >      a = bond->getAtomA()->getGlobalIndex();
564 >      b = bond->getAtomB()->getGlobalIndex();  
565 >    
566 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
567 >        oneTwoInteractions_.removePair(a, b);
568 >      } else {
569 >        excludedInteractions_.removePair(a, b);
570 >      }
571      }
572  
573 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
574 <        a = bend->getAtomA()->getGlobalIndex();
391 <        b = bend->getAtomB()->getGlobalIndex();        
392 <        c = bend->getAtomC()->getGlobalIndex();
573 >    for (bend= mol->beginBend(bendIter); bend != NULL;
574 >         bend = mol->nextBend(bendIter)) {
575  
576 <        exclude_.removePair(a, b);
577 <        exclude_.removePair(a, c);
578 <        exclude_.removePair(b, c);        
576 >      a = bend->getAtomA()->getGlobalIndex();
577 >      b = bend->getAtomB()->getGlobalIndex();        
578 >      c = bend->getAtomC()->getGlobalIndex();
579 >      
580 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
581 >        oneTwoInteractions_.removePair(a, b);      
582 >        oneTwoInteractions_.removePair(b, c);
583 >      } else {
584 >        excludedInteractions_.removePair(a, b);
585 >        excludedInteractions_.removePair(b, c);
586 >      }
587 >
588 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
589 >        oneThreeInteractions_.removePair(a, c);      
590 >      } else {
591 >        excludedInteractions_.removePair(a, c);
592 >      }
593      }
594  
595 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
596 <        a = torsion->getAtomA()->getGlobalIndex();
401 <        b = torsion->getAtomB()->getGlobalIndex();        
402 <        c = torsion->getAtomC()->getGlobalIndex();        
403 <        d = torsion->getAtomD()->getGlobalIndex();        
595 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
596 >         torsion = mol->nextTorsion(torsionIter)) {
597  
598 <        exclude_.removePair(a, b);
599 <        exclude_.removePair(a, c);
600 <        exclude_.removePair(a, d);
601 <        exclude_.removePair(b, c);
602 <        exclude_.removePair(b, d);
603 <        exclude_.removePair(c, d);        
598 >      a = torsion->getAtomA()->getGlobalIndex();
599 >      b = torsion->getAtomB()->getGlobalIndex();        
600 >      c = torsion->getAtomC()->getGlobalIndex();        
601 >      d = torsion->getAtomD()->getGlobalIndex();      
602 >  
603 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
604 >        oneTwoInteractions_.removePair(a, b);      
605 >        oneTwoInteractions_.removePair(b, c);
606 >        oneTwoInteractions_.removePair(c, d);
607 >      } else {
608 >        excludedInteractions_.removePair(a, b);
609 >        excludedInteractions_.removePair(b, c);
610 >        excludedInteractions_.removePair(c, d);
611 >      }
612 >
613 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
614 >        oneThreeInteractions_.removePair(a, c);      
615 >        oneThreeInteractions_.removePair(b, d);      
616 >      } else {
617 >        excludedInteractions_.removePair(a, c);
618 >        excludedInteractions_.removePair(b, d);
619 >      }
620 >
621 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
622 >        oneFourInteractions_.removePair(a, d);      
623 >      } else {
624 >        excludedInteractions_.removePair(a, d);
625 >      }
626      }
627  
628 < }
628 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
629 >         inversion = mol->nextInversion(inversionIter)) {
630  
631 +      a = inversion->getAtomA()->getGlobalIndex();
632 +      b = inversion->getAtomB()->getGlobalIndex();        
633 +      c = inversion->getAtomC()->getGlobalIndex();        
634 +      d = inversion->getAtomD()->getGlobalIndex();        
635  
636 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
637 <    int curStampId;
636 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
637 >        oneTwoInteractions_.removePair(a, b);      
638 >        oneTwoInteractions_.removePair(a, c);
639 >        oneTwoInteractions_.removePair(a, d);
640 >      } else {
641 >        excludedInteractions_.removePair(a, b);
642 >        excludedInteractions_.removePair(a, c);
643 >        excludedInteractions_.removePair(a, d);
644 >      }
645  
646 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
647 +        oneThreeInteractions_.removePair(b, c);    
648 +        oneThreeInteractions_.removePair(b, d);    
649 +        oneThreeInteractions_.removePair(c, d);      
650 +      } else {
651 +        excludedInteractions_.removePair(b, c);
652 +        excludedInteractions_.removePair(b, d);
653 +        excludedInteractions_.removePair(c, d);
654 +      }
655 +    }
656 +
657 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
658 +         rb = mol->nextRigidBody(rbIter)) {
659 +      std::vector<Atom*> atoms = rb->getAtoms();
660 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
661 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
662 +          a = atoms[i]->getGlobalIndex();
663 +          b = atoms[j]->getGlobalIndex();
664 +          excludedInteractions_.removePair(a, b);
665 +        }
666 +      }
667 +    }        
668 +    
669 +  }
670 +  
671 +  
672 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
673 +    int curStampId;
674 +    
675      //index from 0
676      curStampId = moleculeStamps_.size();
677  
678      moleculeStamps_.push_back(molStamp);
679      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
680 < }
680 >  }
681  
682 < void SimInfo::update() {
682 >  void SimInfo::update() {
683  
684      setupSimType();
685  
# Line 436 | Line 692 | void SimInfo::update() {
692      //setup fortran force field
693      /** @deprecate */    
694      int isError = 0;
439    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
440    if(isError){
441        sprintf( painCave.errMsg,
442         "ForceField error: There was an error initializing the forceField in fortran.\n" );
443        painCave.isFatal = 1;
444        simError();
445    }
446  
695      
696      setupCutoff();
697 +    
698 +    setupElectrostaticSummationMethod( isError );
699 +    setupSwitchingFunction();
700 +    setupAccumulateBoxDipole();
701  
702 +    if(isError){
703 +      sprintf( painCave.errMsg,
704 +               "ForceField error: There was an error initializing the forceField in fortran.\n" );
705 +      painCave.isFatal = 1;
706 +      simError();
707 +    }
708 +
709      calcNdf();
710      calcNdfRaw();
711      calcNdfTrans();
712  
713      fortranInitialized_ = true;
714 < }
714 >  }
715  
716 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
716 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
717      SimInfo::MoleculeIterator mi;
718      Molecule* mol;
719      Molecule::AtomIterator ai;
# Line 463 | Line 722 | std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
722  
723      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
724  
725 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
726 <            atomTypes.insert(atom->getAtomType());
727 <        }
725 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
726 >        atomTypes.insert(atom->getAtomType());
727 >      }
728          
729      }
730  
731      return atomTypes;        
732 < }
732 >  }
733  
734 < void SimInfo::setupSimType() {
734 >  void SimInfo::setupSimType() {
735      std::set<AtomType*>::iterator i;
736      std::set<AtomType*> atomTypes;
737      atomTypes = getUniqueAtomTypes();
# Line 480 | Line 739 | void SimInfo::setupSimType() {
739      int useLennardJones = 0;
740      int useElectrostatic = 0;
741      int useEAM = 0;
742 +    int useSC = 0;
743      int useCharge = 0;
744      int useDirectional = 0;
745      int useDipole = 0;
746      int useGayBerne = 0;
747      int useSticky = 0;
748 +    int useStickyPower = 0;
749      int useShape = 0;
750      int useFLARB = 0; //it is not in AtomType yet
751      int useDirectionalAtom = 0;    
752      int useElectrostatics = 0;
753      //usePBC and useRF are from simParams
754 <    int usePBC = simParams_->getPBC();
755 <    int useRF = simParams_->getUseRF();
754 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
755 >    int useRF;
756 >    int useSF;
757 >    int useSP;
758 >    int useBoxDipole;
759  
760 +    std::string myMethod;
761 +
762 +    // set the useRF logical
763 +    useRF = 0;
764 +    useSF = 0;
765 +    useSP = 0;
766 +    useBoxDipole = 0;
767 +
768 +
769 +    if (simParams_->haveElectrostaticSummationMethod()) {
770 +      std::string myMethod = simParams_->getElectrostaticSummationMethod();
771 +      toUpper(myMethod);
772 +      if (myMethod == "REACTION_FIELD"){
773 +        useRF = 1;
774 +      } else if (myMethod == "SHIFTED_FORCE"){
775 +        useSF = 1;
776 +      } else if (myMethod == "SHIFTED_POTENTIAL"){
777 +        useSP = 1;
778 +      }
779 +    }
780 +    
781 +    if (simParams_->haveAccumulateBoxDipole())
782 +      if (simParams_->getAccumulateBoxDipole())
783 +        useBoxDipole = 1;
784 +
785 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
786 +
787      //loop over all of the atom types
788      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
789 <        useLennardJones |= (*i)->isLennardJones();
790 <        useElectrostatic |= (*i)->isElectrostatic();
791 <        useEAM |= (*i)->isEAM();
792 <        useCharge |= (*i)->isCharge();
793 <        useDirectional |= (*i)->isDirectional();
794 <        useDipole |= (*i)->isDipole();
795 <        useGayBerne |= (*i)->isGayBerne();
796 <        useSticky |= (*i)->isSticky();
797 <        useShape |= (*i)->isShape();
789 >      useLennardJones |= (*i)->isLennardJones();
790 >      useElectrostatic |= (*i)->isElectrostatic();
791 >      useEAM |= (*i)->isEAM();
792 >      useSC |= (*i)->isSC();
793 >      useCharge |= (*i)->isCharge();
794 >      useDirectional |= (*i)->isDirectional();
795 >      useDipole |= (*i)->isDipole();
796 >      useGayBerne |= (*i)->isGayBerne();
797 >      useSticky |= (*i)->isSticky();
798 >      useStickyPower |= (*i)->isStickyPower();
799 >      useShape |= (*i)->isShape();
800      }
801  
802 <    if (useSticky || useDipole || useGayBerne || useShape) {
803 <        useDirectionalAtom = 1;
802 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
803 >      useDirectionalAtom = 1;
804      }
805  
806      if (useCharge || useDipole) {
807 <        useElectrostatics = 1;
807 >      useElectrostatics = 1;
808      }
809  
810   #ifdef IS_MPI    
# Line 538 | Line 831 | void SimInfo::setupSimType() {
831      temp = useSticky;
832      MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
833  
834 +    temp = useStickyPower;
835 +    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
836 +    
837      temp = useGayBerne;
838      MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
839  
840      temp = useEAM;
841      MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
842  
843 +    temp = useSC;
844 +    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
845 +    
846      temp = useShape;
847      MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
848  
# Line 552 | Line 851 | void SimInfo::setupSimType() {
851  
852      temp = useRF;
853      MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
854 <    
854 >
855 >    temp = useSF;
856 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
857 >
858 >    temp = useSP;
859 >    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
860 >
861 >    temp = useBoxDipole;
862 >    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
863 >
864 >    temp = useAtomicVirial_;
865 >    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
866 >
867   #endif
868  
869      fInfo_.SIM_uses_PBC = usePBC;    
# Line 562 | Line 873 | void SimInfo::setupSimType() {
873      fInfo_.SIM_uses_Charges = useCharge;
874      fInfo_.SIM_uses_Dipoles = useDipole;
875      fInfo_.SIM_uses_Sticky = useSticky;
876 +    fInfo_.SIM_uses_StickyPower = useStickyPower;
877      fInfo_.SIM_uses_GayBerne = useGayBerne;
878      fInfo_.SIM_uses_EAM = useEAM;
879 +    fInfo_.SIM_uses_SC = useSC;
880      fInfo_.SIM_uses_Shapes = useShape;
881      fInfo_.SIM_uses_FLARB = useFLARB;
882      fInfo_.SIM_uses_RF = useRF;
883 +    fInfo_.SIM_uses_SF = useSF;
884 +    fInfo_.SIM_uses_SP = useSP;
885 +    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
886 +    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
887 +  }
888  
889 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
572 <
573 <        if (simParams_->haveDielectric()) {
574 <            fInfo_.dielect = simParams_->getDielectric();
575 <        } else {
576 <            sprintf(painCave.errMsg,
577 <                    "SimSetup Error: No Dielectric constant was set.\n"
578 <                    "\tYou are trying to use Reaction Field without"
579 <                    "\tsetting a dielectric constant!\n");
580 <            painCave.isFatal = 1;
581 <            simError();
582 <        }
583 <        
584 <    } else {
585 <        fInfo_.dielect = 0.0;
586 <    }
587 <
588 < }
589 <
590 < void SimInfo::setupFortranSim() {
889 >  void SimInfo::setupFortranSim() {
890      int isError;
891 <    int nExclude;
891 >    int nExclude, nOneTwo, nOneThree, nOneFour;
892      std::vector<int> fortranGlobalGroupMembership;
893      
595    nExclude = exclude_.getSize();
894      isError = 0;
895  
896      //globalGroupMembership_ is filled by SimCreator    
897      for (int i = 0; i < nGlobalAtoms_; i++) {
898 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
898 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
899      }
900  
901      //calculate mass ratio of cutoff group
902 <    std::vector<double> mfact;
902 >    std::vector<RealType> mfact;
903      SimInfo::MoleculeIterator mi;
904      Molecule* mol;
905      Molecule::CutoffGroupIterator ci;
906      CutoffGroup* cg;
907      Molecule::AtomIterator ai;
908      Atom* atom;
909 <    double totalMass;
909 >    RealType totalMass;
910  
911      //to avoid memory reallocation, reserve enough space for mfact
912      mfact.reserve(getNCutoffGroups());
913      
914      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
915 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
915 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
916  
917 <            totalMass = cg->getMass();
918 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
919 <                        mfact.push_back(atom->getMass()/totalMass);
920 <            }
921 <
922 <        }      
917 >        totalMass = cg->getMass();
918 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
919 >          // Check for massless groups - set mfact to 1 if true
920 >          if (totalMass != 0)
921 >            mfact.push_back(atom->getMass()/totalMass);
922 >          else
923 >            mfact.push_back( 1.0 );
924 >        }
925 >      }      
926      }
927  
928      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
# Line 631 | Line 932 | void SimInfo::setupFortranSim() {
932      identArray.reserve(getNAtoms());
933      
934      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
935 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
936 <            identArray.push_back(atom->getIdent());
937 <        }
935 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
936 >        identArray.push_back(atom->getIdent());
937 >      }
938      }    
939  
940      //fill molMembershipArray
941      //molMembershipArray is filled by SimCreator    
942      std::vector<int> molMembershipArray(nGlobalAtoms_);
943      for (int i = 0; i < nGlobalAtoms_; i++) {
944 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
944 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
945      }
946      
947      //setup fortran simulation
647    //gloalExcludes and molMembershipArray should go away (They are never used)
648    //why the hell fortran need to know molecule?
649    //OOPSE = Object-Obfuscated Parallel Simulation Engine
650    int nGlobalExcludes = 0;
651    int* globalExcludes = NULL;
652    int* excludeList = exclude_.getExcludeList();
653    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
654                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
655                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
948  
949 <    if( isError ){
949 >    nExclude = excludedInteractions_.getSize();
950 >    nOneTwo = oneTwoInteractions_.getSize();
951 >    nOneThree = oneThreeInteractions_.getSize();
952 >    nOneFour = oneFourInteractions_.getSize();
953  
954 <        sprintf( painCave.errMsg,
955 <                 "There was an error setting the simulation information in fortran.\n" );
956 <        painCave.isFatal = 1;
957 <        painCave.severity = OOPSE_ERROR;
663 <        simError();
664 <    }
954 >    int* excludeList = excludedInteractions_.getPairList();
955 >    int* oneTwoList = oneTwoInteractions_.getPairList();
956 >    int* oneThreeList = oneThreeInteractions_.getPairList();
957 >    int* oneFourList = oneFourInteractions_.getPairList();
958  
959 < #ifdef IS_MPI
959 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
960 >                   &nExclude, excludeList,
961 >                   &nOneTwo, oneTwoList,
962 >                   &nOneThree, oneThreeList,
963 >                   &nOneFour, oneFourList,
964 >                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
965 >                   &fortranGlobalGroupMembership[0], &isError);
966 >    
967 >    if( isError ){
968 >      
969 >      sprintf( painCave.errMsg,
970 >               "There was an error setting the simulation information in fortran.\n" );
971 >      painCave.isFatal = 1;
972 >      painCave.severity = OOPSE_ERROR;
973 >      simError();
974 >    }
975 >    
976 >    
977      sprintf( checkPointMsg,
978 <       "succesfully sent the simulation information to fortran.\n");
979 <    MPIcheckPoint();
980 < #endif // is_mpi
981 < }
978 >             "succesfully sent the simulation information to fortran.\n");
979 >    
980 >    errorCheckPoint();
981 >    
982 >    // Setup number of neighbors in neighbor list if present
983 >    if (simParams_->haveNeighborListNeighbors()) {
984 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
985 >      setNeighbors(&nlistNeighbors);
986 >    }
987 >  
988  
989 +  }
990  
991 < #ifdef IS_MPI
992 < void SimInfo::setupFortranParallel() {
993 <    
991 >
992 >  void SimInfo::setupFortranParallel() {
993 > #ifdef IS_MPI    
994      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
995      std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
996      std::vector<int> localToGlobalCutoffGroupIndex;
# Line 688 | Line 1005 | void SimInfo::setupFortranParallel() {
1005  
1006      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
1007  
1008 <        //local index(index in DataStorge) of atom is important
1009 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1010 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1011 <        }
1008 >      //local index(index in DataStorge) of atom is important
1009 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1010 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1011 >      }
1012  
1013 <        //local index of cutoff group is trivial, it only depends on the order of travesing
1014 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1015 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1016 <        }        
1013 >      //local index of cutoff group is trivial, it only depends on the order of travesing
1014 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1015 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1016 >      }        
1017          
1018      }
1019  
# Line 716 | Line 1033 | void SimInfo::setupFortranParallel() {
1033                      &localToGlobalCutoffGroupIndex[0], &isError);
1034  
1035      if (isError) {
1036 <        sprintf(painCave.errMsg,
1037 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
1038 <        painCave.isFatal = 1;
1039 <        simError();
1036 >      sprintf(painCave.errMsg,
1037 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
1038 >      painCave.isFatal = 1;
1039 >      simError();
1040      }
1041  
1042      sprintf(checkPointMsg, " mpiRefresh successful.\n");
1043 <    MPIcheckPoint();
1043 >    errorCheckPoint();
1044  
728
729 }
730
1045   #endif
1046 +  }
1047  
1048 < double SimInfo::calcMaxCutoffRadius() {
1048 >  void SimInfo::setupCutoff() {          
1049 >    
1050 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
1051  
1052 +    // Check the cutoff policy
1053 +    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1054  
1055 <    std::set<AtomType*> atomTypes;
1056 <    std::set<AtomType*>::iterator i;
1057 <    std::vector<double> cutoffRadius;
1055 >    // Set LJ shifting bools to false
1056 >    ljsp_ = false;
1057 >    ljsf_ = false;
1058  
1059 <    //get the unique atom types
1060 <    atomTypes = getUniqueAtomTypes();
1061 <
1062 <    //query the max cutoff radius among these atom types
1063 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
745 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
1059 >    std::string myPolicy;
1060 >    if (forceFieldOptions_.haveCutoffPolicy()){
1061 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
1062 >    }else if (simParams_->haveCutoffPolicy()) {
1063 >      myPolicy = simParams_->getCutoffPolicy();
1064      }
1065  
1066 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
1067 < #ifdef IS_MPI
1068 <    //pick the max cutoff radius among the processors
1069 < #endif
1066 >    if (!myPolicy.empty()){
1067 >      toUpper(myPolicy);
1068 >      if (myPolicy == "MIX") {
1069 >        cp = MIX_CUTOFF_POLICY;
1070 >      } else {
1071 >        if (myPolicy == "MAX") {
1072 >          cp = MAX_CUTOFF_POLICY;
1073 >        } else {
1074 >          if (myPolicy == "TRADITIONAL") {            
1075 >            cp = TRADITIONAL_CUTOFF_POLICY;
1076 >          } else {
1077 >            // throw error        
1078 >            sprintf( painCave.errMsg,
1079 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1080 >            painCave.isFatal = 1;
1081 >            simError();
1082 >          }    
1083 >        }          
1084 >      }
1085 >    }          
1086 >    notifyFortranCutoffPolicy(&cp);
1087  
1088 <    return maxCutoffRadius;
1089 < }
1088 >    // Check the Skin Thickness for neighborlists
1089 >    RealType skin;
1090 >    if (simParams_->haveSkinThickness()) {
1091 >      skin = simParams_->getSkinThickness();
1092 >      notifyFortranSkinThickness(&skin);
1093 >    }            
1094 >        
1095 >    // Check if the cutoff was set explicitly:
1096 >    if (simParams_->haveCutoffRadius()) {
1097 >      rcut_ = simParams_->getCutoffRadius();
1098 >      if (simParams_->haveSwitchingRadius()) {
1099 >        rsw_  = simParams_->getSwitchingRadius();
1100 >      } else {
1101 >        if (fInfo_.SIM_uses_Charges |
1102 >            fInfo_.SIM_uses_Dipoles |
1103 >            fInfo_.SIM_uses_RF) {
1104 >          
1105 >          rsw_ = 0.85 * rcut_;
1106 >          sprintf(painCave.errMsg,
1107 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1108 >                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1109 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1110 >        painCave.isFatal = 0;
1111 >        simError();
1112 >        } else {
1113 >          rsw_ = rcut_;
1114 >          sprintf(painCave.errMsg,
1115 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1116 >                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1117 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1118 >          painCave.isFatal = 0;
1119 >          simError();
1120 >        }
1121 >      }
1122  
1123 < void SimInfo::setupCutoff() {
1124 <    double rcut_;  //cutoff radius
1125 <    double rsw_; //switching radius
759 <    
760 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1123 >      if (simParams_->haveElectrostaticSummationMethod()) {
1124 >        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1125 >        toUpper(myMethod);
1126          
1127 <        if (!simParams_->haveRcut()){
1128 <            sprintf(painCave.errMsg,
1127 >        if (myMethod == "SHIFTED_POTENTIAL") {
1128 >          ljsp_ = true;
1129 >        } else if (myMethod == "SHIFTED_FORCE") {
1130 >          ljsf_ = true;
1131 >        }
1132 >      }
1133 >      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1134 >      
1135 >    } else {
1136 >      
1137 >      // For electrostatic atoms, we'll assume a large safe value:
1138 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1139 >        sprintf(painCave.errMsg,
1140                  "SimCreator Warning: No value was set for the cutoffRadius.\n"
1141                  "\tOOPSE will use a default value of 15.0 angstroms"
1142                  "\tfor the cutoffRadius.\n");
1143 <            painCave.isFatal = 0;
1144 <            simError();
1145 <            rcut_ = 15.0;
1146 <        } else{
1147 <            rcut_ = simParams_->getRcut();
1143 >        painCave.isFatal = 0;
1144 >        simError();
1145 >        rcut_ = 15.0;
1146 >      
1147 >        if (simParams_->haveElectrostaticSummationMethod()) {
1148 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1149 >          toUpper(myMethod);
1150 >      
1151 >      // For the time being, we're tethering the LJ shifted behavior to the
1152 >      // electrostaticSummationMethod keyword options
1153 >          if (myMethod == "SHIFTED_POTENTIAL") {
1154 >            ljsp_ = true;
1155 >          } else if (myMethod == "SHIFTED_FORCE") {
1156 >            ljsf_ = true;
1157 >          }
1158 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1159 >            if (simParams_->haveSwitchingRadius()){
1160 >              sprintf(painCave.errMsg,
1161 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
1162 >                      "\teven though the electrostaticSummationMethod was\n"
1163 >                      "\tset to %s\n", myMethod.c_str());
1164 >              painCave.isFatal = 1;
1165 >              simError();            
1166 >            }
1167 >          }
1168          }
1169 <
1170 <        if (!simParams_->haveRsw()){
1171 <            sprintf(painCave.errMsg,
1172 <                "SimCreator Warning: No value was set for switchingRadius.\n"
1173 <                "\tOOPSE will use a default value of\n"
1174 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
1175 <            painCave.isFatal = 0;
1176 <            simError();
1177 <            rsw_ = 0.95 * rcut_;
1178 <        } else{
1179 <            rsw_ = simParams_->getRsw();
1169 >      
1170 >        if (simParams_->haveSwitchingRadius()){
1171 >          rsw_ = simParams_->getSwitchingRadius();
1172 >        } else {        
1173 >          sprintf(painCave.errMsg,
1174 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1175 >                  "\tOOPSE will use a default value of\n"
1176 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1177 >          painCave.isFatal = 0;
1178 >          simError();
1179 >          rsw_ = 0.85 * rcut_;
1180          }
1181  
1182 <    } else {
1183 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
1184 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
1182 >        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1183 >
1184 >      } else {
1185 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1186 >        // We'll punt and let fortran figure out the cutoffs later.
1187          
1188 <        if (simParams_->haveRcut()) {
791 <            rcut_ = simParams_->getRcut();
792 <        } else {
793 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
794 <            rcut_ = calcMaxCutoffRadius();
795 <        }
1188 >        notifyFortranYouAreOnYourOwn();
1189  
1190 <        if (simParams_->haveRsw()) {
798 <            rsw_  = simParams_->getRsw();
799 <        } else {
800 <            rsw_ = rcut_;
801 <        }
802 <    
1190 >      }
1191      }
1192 <        
805 <    double rnblist = rcut_ + 1; // skin of neighbor list
1192 >  }
1193  
1194 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
1195 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
1196 < }
1194 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1195 >    
1196 >    int errorOut;
1197 >    int esm =  NONE;
1198 >    int sm = UNDAMPED;
1199 >    RealType alphaVal;
1200 >    RealType dielectric;
1201 >    
1202 >    errorOut = isError;
1203  
1204 < void SimInfo::addProperty(GenericData* genData) {
1205 <    properties_.addProperty(genData);  
1206 < }
1204 >    if (simParams_->haveElectrostaticSummationMethod()) {
1205 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1206 >      toUpper(myMethod);
1207 >      if (myMethod == "NONE") {
1208 >        esm = NONE;
1209 >      } else {
1210 >        if (myMethod == "SWITCHING_FUNCTION") {
1211 >          esm = SWITCHING_FUNCTION;
1212 >        } else {
1213 >          if (myMethod == "SHIFTED_POTENTIAL") {
1214 >            esm = SHIFTED_POTENTIAL;
1215 >          } else {
1216 >            if (myMethod == "SHIFTED_FORCE") {            
1217 >              esm = SHIFTED_FORCE;
1218 >            } else {
1219 >              if (myMethod == "REACTION_FIELD") {
1220 >                esm = REACTION_FIELD;
1221 >                dielectric = simParams_->getDielectric();
1222 >                if (!simParams_->haveDielectric()) {
1223 >                  // throw warning
1224 >                  sprintf( painCave.errMsg,
1225 >                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1226 >                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1227 >                  painCave.isFatal = 0;
1228 >                  simError();
1229 >                }
1230 >              } else {
1231 >                // throw error        
1232 >                sprintf( painCave.errMsg,
1233 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1234 >                         "\t(Input file specified %s .)\n"
1235 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1236 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1237 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1238 >                painCave.isFatal = 1;
1239 >                simError();
1240 >              }    
1241 >            }          
1242 >          }
1243 >        }
1244 >      }
1245 >    }
1246 >    
1247 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1248 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1249 >      toUpper(myScreen);
1250 >      if (myScreen == "UNDAMPED") {
1251 >        sm = UNDAMPED;
1252 >      } else {
1253 >        if (myScreen == "DAMPED") {
1254 >          sm = DAMPED;
1255 >          if (!simParams_->haveDampingAlpha()) {
1256 >            // first set a cutoff dependent alpha value
1257 >            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1258 >            alphaVal = 0.5125 - rcut_* 0.025;
1259 >            // for values rcut > 20.5, alpha is zero
1260 >            if (alphaVal < 0) alphaVal = 0;
1261  
1262 < void SimInfo::removeProperty(const std::string& propName) {
1263 <    properties_.removeProperty(propName);  
1264 < }
1265 <
1266 < void SimInfo::clearProperties() {
1267 <    properties_.clearProperties();
1268 < }
1269 <
1270 < std::vector<std::string> SimInfo::getPropertyNames() {
1271 <    return properties_.getPropertyNames();  
1272 < }
1273 <      
1274 < std::vector<GenericData*> SimInfo::getProperties() {
1275 <    return properties_.getProperties();
1276 < }
1262 >            // throw warning
1263 >            sprintf( painCave.errMsg,
1264 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1265 >                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1266 >            painCave.isFatal = 0;
1267 >            simError();
1268 >          } else {
1269 >            alphaVal = simParams_->getDampingAlpha();
1270 >          }
1271 >          
1272 >        } else {
1273 >          // throw error        
1274 >          sprintf( painCave.errMsg,
1275 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1276 >                   "\t(Input file specified %s .)\n"
1277 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1278 >                   "or \"damped\".\n", myScreen.c_str() );
1279 >          painCave.isFatal = 1;
1280 >          simError();
1281 >        }
1282 >      }
1283 >    }
1284 >    
1285 >    // let's pass some summation method variables to fortran
1286 >    setElectrostaticSummationMethod( &esm );
1287 >    setFortranElectrostaticMethod( &esm );
1288 >    setScreeningMethod( &sm );
1289 >    setDampingAlpha( &alphaVal );
1290 >    setReactionFieldDielectric( &dielectric );
1291 >    initFortranFF( &errorOut );
1292 >  }
1293  
1294 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1294 >  void SimInfo::setupSwitchingFunction() {    
1295 >    int ft = CUBIC;
1296 >
1297 >    if (simParams_->haveSwitchingFunctionType()) {
1298 >      std::string funcType = simParams_->getSwitchingFunctionType();
1299 >      toUpper(funcType);
1300 >      if (funcType == "CUBIC") {
1301 >        ft = CUBIC;
1302 >      } else {
1303 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1304 >          ft = FIFTH_ORDER_POLY;
1305 >        } else {
1306 >          // throw error        
1307 >          sprintf( painCave.errMsg,
1308 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1309 >          painCave.isFatal = 1;
1310 >          simError();
1311 >        }          
1312 >      }
1313 >    }
1314 >
1315 >    // send switching function notification to switcheroo
1316 >    setFunctionType(&ft);
1317 >
1318 >  }
1319 >
1320 >  void SimInfo::setupAccumulateBoxDipole() {    
1321 >
1322 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1323 >    if ( simParams_->haveAccumulateBoxDipole() )
1324 >      if ( simParams_->getAccumulateBoxDipole() ) {
1325 >        setAccumulateBoxDipole();
1326 >        calcBoxDipole_ = true;
1327 >      }
1328 >
1329 >  }
1330 >
1331 >  void SimInfo::addProperty(GenericData* genData) {
1332 >    properties_.addProperty(genData);  
1333 >  }
1334 >
1335 >  void SimInfo::removeProperty(const std::string& propName) {
1336 >    properties_.removeProperty(propName);  
1337 >  }
1338 >
1339 >  void SimInfo::clearProperties() {
1340 >    properties_.clearProperties();
1341 >  }
1342 >
1343 >  std::vector<std::string> SimInfo::getPropertyNames() {
1344 >    return properties_.getPropertyNames();  
1345 >  }
1346 >      
1347 >  std::vector<GenericData*> SimInfo::getProperties() {
1348 >    return properties_.getProperties();
1349 >  }
1350 >
1351 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1352      return properties_.getPropertyByName(propName);
1353 < }
1353 >  }
1354  
1355 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1355 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1356 >    if (sman_ == sman) {
1357 >      return;
1358 >    }    
1359 >    delete sman_;
1360      sman_ = sman;
1361  
1362      Molecule* mol;
# Line 844 | Line 1368 | void SimInfo::setSnapshotManager(SnapshotManager* sman
1368  
1369      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1370          
1371 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1372 <            atom->setSnapshotManager(sman_);
1373 <        }
1371 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1372 >        atom->setSnapshotManager(sman_);
1373 >      }
1374          
1375 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1376 <            rb->setSnapshotManager(sman_);
1377 <        }
1375 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1376 >        rb->setSnapshotManager(sman_);
1377 >      }
1378      }    
1379      
1380 < }
1380 >  }
1381  
1382 < Vector3d SimInfo::getComVel(){
1382 >  Vector3d SimInfo::getComVel(){
1383      SimInfo::MoleculeIterator i;
1384      Molecule* mol;
1385  
1386      Vector3d comVel(0.0);
1387 <    double totalMass = 0.0;
1387 >    RealType totalMass = 0.0;
1388      
1389  
1390      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1391 <        double mass = mol->getMass();
1392 <        totalMass += mass;
1393 <        comVel += mass * mol->getComVel();
1391 >      RealType mass = mol->getMass();
1392 >      totalMass += mass;
1393 >      comVel += mass * mol->getComVel();
1394      }  
1395  
1396   #ifdef IS_MPI
1397 <    double tmpMass = totalMass;
1397 >    RealType tmpMass = totalMass;
1398      Vector3d tmpComVel(comVel);    
1399 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1400 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1399 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1400 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1401   #endif
1402  
1403      comVel /= totalMass;
1404  
1405      return comVel;
1406 < }
1406 >  }
1407  
1408 < Vector3d SimInfo::getCom(){
1408 >  Vector3d SimInfo::getCom(){
1409      SimInfo::MoleculeIterator i;
1410      Molecule* mol;
1411  
1412      Vector3d com(0.0);
1413 <    double totalMass = 0.0;
1413 >    RealType totalMass = 0.0;
1414      
1415      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1416 <        double mass = mol->getMass();
1417 <        totalMass += mass;
1418 <        com += mass * mol->getCom();
1416 >      RealType mass = mol->getMass();
1417 >      totalMass += mass;
1418 >      com += mass * mol->getCom();
1419      }  
1420  
1421   #ifdef IS_MPI
1422 <    double tmpMass = totalMass;
1422 >    RealType tmpMass = totalMass;
1423      Vector3d tmpCom(com);    
1424 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1425 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1424 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1425 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1426   #endif
1427  
1428      com /= totalMass;
1429  
1430      return com;
1431  
1432 < }        
1432 >  }        
1433  
1434 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1434 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1435  
1436      return o;
1437 < }
1437 >  }
1438 >  
1439 >  
1440 >   /*
1441 >   Returns center of mass and center of mass velocity in one function call.
1442 >   */
1443 >  
1444 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1445 >      SimInfo::MoleculeIterator i;
1446 >      Molecule* mol;
1447 >      
1448 >    
1449 >      RealType totalMass = 0.0;
1450 >    
1451  
1452 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1453 +         RealType mass = mol->getMass();
1454 +         totalMass += mass;
1455 +         com += mass * mol->getCom();
1456 +         comVel += mass * mol->getComVel();          
1457 +      }  
1458 +      
1459 + #ifdef IS_MPI
1460 +      RealType tmpMass = totalMass;
1461 +      Vector3d tmpCom(com);  
1462 +      Vector3d tmpComVel(comVel);
1463 +      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1464 +      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1465 +      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1466 + #endif
1467 +      
1468 +      com /= totalMass;
1469 +      comVel /= totalMass;
1470 +   }        
1471 +  
1472 +   /*
1473 +   Return intertia tensor for entire system and angular momentum Vector.
1474 +
1475 +
1476 +       [  Ixx -Ixy  -Ixz ]
1477 +  J =| -Iyx  Iyy  -Iyz |
1478 +       [ -Izx -Iyz   Izz ]
1479 +    */
1480 +
1481 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1482 +      
1483 +
1484 +      RealType xx = 0.0;
1485 +      RealType yy = 0.0;
1486 +      RealType zz = 0.0;
1487 +      RealType xy = 0.0;
1488 +      RealType xz = 0.0;
1489 +      RealType yz = 0.0;
1490 +      Vector3d com(0.0);
1491 +      Vector3d comVel(0.0);
1492 +      
1493 +      getComAll(com, comVel);
1494 +      
1495 +      SimInfo::MoleculeIterator i;
1496 +      Molecule* mol;
1497 +      
1498 +      Vector3d thisq(0.0);
1499 +      Vector3d thisv(0.0);
1500 +
1501 +      RealType thisMass = 0.0;
1502 +    
1503 +      
1504 +      
1505 +  
1506 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1507 +        
1508 +         thisq = mol->getCom()-com;
1509 +         thisv = mol->getComVel()-comVel;
1510 +         thisMass = mol->getMass();
1511 +         // Compute moment of intertia coefficients.
1512 +         xx += thisq[0]*thisq[0]*thisMass;
1513 +         yy += thisq[1]*thisq[1]*thisMass;
1514 +         zz += thisq[2]*thisq[2]*thisMass;
1515 +        
1516 +         // compute products of intertia
1517 +         xy += thisq[0]*thisq[1]*thisMass;
1518 +         xz += thisq[0]*thisq[2]*thisMass;
1519 +         yz += thisq[1]*thisq[2]*thisMass;
1520 +            
1521 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1522 +            
1523 +      }  
1524 +      
1525 +      
1526 +      inertiaTensor(0,0) = yy + zz;
1527 +      inertiaTensor(0,1) = -xy;
1528 +      inertiaTensor(0,2) = -xz;
1529 +      inertiaTensor(1,0) = -xy;
1530 +      inertiaTensor(1,1) = xx + zz;
1531 +      inertiaTensor(1,2) = -yz;
1532 +      inertiaTensor(2,0) = -xz;
1533 +      inertiaTensor(2,1) = -yz;
1534 +      inertiaTensor(2,2) = xx + yy;
1535 +      
1536 + #ifdef IS_MPI
1537 +      Mat3x3d tmpI(inertiaTensor);
1538 +      Vector3d tmpAngMom;
1539 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1540 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1541 + #endif
1542 +              
1543 +      return;
1544 +   }
1545 +
1546 +   //Returns the angular momentum of the system
1547 +   Vector3d SimInfo::getAngularMomentum(){
1548 +      
1549 +      Vector3d com(0.0);
1550 +      Vector3d comVel(0.0);
1551 +      Vector3d angularMomentum(0.0);
1552 +      
1553 +      getComAll(com,comVel);
1554 +      
1555 +      SimInfo::MoleculeIterator i;
1556 +      Molecule* mol;
1557 +      
1558 +      Vector3d thisr(0.0);
1559 +      Vector3d thisp(0.0);
1560 +      
1561 +      RealType thisMass;
1562 +      
1563 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1564 +        thisMass = mol->getMass();
1565 +        thisr = mol->getCom()-com;
1566 +        thisp = (mol->getComVel()-comVel)*thisMass;
1567 +        
1568 +        angularMomentum += cross( thisr, thisp );
1569 +        
1570 +      }  
1571 +      
1572 + #ifdef IS_MPI
1573 +      Vector3d tmpAngMom;
1574 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1575 + #endif
1576 +      
1577 +      return angularMomentum;
1578 +   }
1579 +  
1580 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1581 +    return IOIndexToIntegrableObject.at(index);
1582 +  }
1583 +  
1584 +  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1585 +    IOIndexToIntegrableObject= v;
1586 +  }
1587 +
1588 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1589 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1590 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1591 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1592 +  */
1593 +  void SimInfo::getGyrationalVolume(RealType &volume){
1594 +    Mat3x3d intTensor;
1595 +    RealType det;
1596 +    Vector3d dummyAngMom;
1597 +    RealType sysconstants;
1598 +    RealType geomCnst;
1599 +
1600 +    geomCnst = 3.0/2.0;
1601 +    /* Get the inertial tensor and angular momentum for free*/
1602 +    getInertiaTensor(intTensor,dummyAngMom);
1603 +    
1604 +    det = intTensor.determinant();
1605 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1606 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1607 +    return;
1608 +  }
1609 +
1610 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1611 +    Mat3x3d intTensor;
1612 +    Vector3d dummyAngMom;
1613 +    RealType sysconstants;
1614 +    RealType geomCnst;
1615 +
1616 +    geomCnst = 3.0/2.0;
1617 +    /* Get the inertial tensor and angular momentum for free*/
1618 +    getInertiaTensor(intTensor,dummyAngMom);
1619 +    
1620 +    detI = intTensor.determinant();
1621 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1622 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1623 +    return;
1624 +  }
1625 + /*
1626 +   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1627 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1628 +      sdByGlobalIndex_ = v;
1629 +    }
1630 +
1631 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1632 +      //assert(index < nAtoms_ + nRigidBodies_);
1633 +      return sdByGlobalIndex_.at(index);
1634 +    }  
1635 + */  
1636   }//end namespace oopse
1637  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines