ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 507 by gezelter, Fri Apr 15 22:04:00 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1550 by gezelter, Wed Apr 27 21:49:59 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 < #include "UseTheForce/doForces_interface.h"
56 < #include "UseTheForce/notifyCutoffs_interface.h"
56 > #include "primitives/StuntDouble.hpp"
57   #include "utils/MemoryUtils.hpp"
58   #include "utils/simError.h"
59   #include "selection/SelectionManager.hpp"
60 + #include "io/ForceFieldOptions.hpp"
61 + #include "UseTheForce/ForceField.hpp"
62 + #include "nonbonded/SwitchingFunction.hpp"
63  
64 < #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
67 < #endif
68 <
69 < namespace oopse {
67 <
68 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
69 <                   ForceField* ff, Globals* simParams) :
70 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
71 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
64 > using namespace std;
65 > namespace OpenMD {
66 >  
67 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
68 >    forceField_(ff), simParams_(simParams),
69 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
70      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
71      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
72 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
73 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
74 <    sman_(NULL), fortranInitialized_(false) {
75 <
78 <            
79 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
80 <      MoleculeStamp* molStamp;
81 <      int nMolWithSameStamp;
82 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
83 <      int nGroups = 0;          //total cutoff groups defined in meta-data file
84 <      CutoffGroupStamp* cgStamp;    
85 <      RigidBodyStamp* rbStamp;
86 <      int nRigidAtoms = 0;
72 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
73 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
74 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
75 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
76      
77 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
78 <        molStamp = i->first;
79 <        nMolWithSameStamp = i->second;
80 <        
81 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
82 <
83 <        //calculate atoms in molecules
84 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
85 <
86 <
87 <        //calculate atoms in cutoff groups
88 <        int nAtomsInGroups = 0;
89 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
90 <        
91 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
92 <          cgStamp = molStamp->getCutoffGroup(j);
93 <          nAtomsInGroups += cgStamp->getNMembers();
94 <        }
95 <
96 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
97 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
98 <
99 <        //calculate atoms in rigid bodies
100 <        int nAtomsInRigidBodies = 0;
101 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
102 <        
114 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
115 <          rbStamp = molStamp->getRigidBody(j);
116 <          nAtomsInRigidBodies += rbStamp->getNMembers();
117 <        }
118 <
119 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
120 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
121 <        
77 >    MoleculeStamp* molStamp;
78 >    int nMolWithSameStamp;
79 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
80 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
81 >    CutoffGroupStamp* cgStamp;    
82 >    RigidBodyStamp* rbStamp;
83 >    int nRigidAtoms = 0;
84 >    
85 >    vector<Component*> components = simParams->getComponents();
86 >    
87 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
88 >      molStamp = (*i)->getMoleculeStamp();
89 >      nMolWithSameStamp = (*i)->getNMol();
90 >      
91 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
92 >      
93 >      //calculate atoms in molecules
94 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
95 >      
96 >      //calculate atoms in cutoff groups
97 >      int nAtomsInGroups = 0;
98 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
99 >      
100 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
101 >        cgStamp = molStamp->getCutoffGroupStamp(j);
102 >        nAtomsInGroups += cgStamp->getNMembers();
103        }
104 <
105 <      //every free atom (atom does not belong to cutoff groups) is a cutoff group
106 <      //therefore the total number of cutoff groups in the system is equal to
107 <      //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
108 <      //file plus the number of cutoff groups defined in meta-data file
109 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
110 <
111 <      //every free atom (atom does not belong to rigid bodies) is an integrable object
112 <      //therefore the total number of  integrable objects in the system is equal to
113 <      //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
114 <      //file plus the number of  rigid bodies defined in meta-data file
115 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
116 <
117 <      nGlobalMols_ = molStampIds_.size();
118 <
119 < #ifdef IS_MPI    
120 <      molToProcMap_.resize(nGlobalMols_);
140 < #endif
141 <
104 >      
105 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
106 >      
107 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
108 >      
109 >      //calculate atoms in rigid bodies
110 >      int nAtomsInRigidBodies = 0;
111 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
112 >      
113 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
114 >        rbStamp = molStamp->getRigidBodyStamp(j);
115 >        nAtomsInRigidBodies += rbStamp->getNMembers();
116 >      }
117 >      
118 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
119 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
120 >      
121      }
122 +    
123 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
124 +    //group therefore the total number of cutoff groups in the system is
125 +    //equal to the total number of atoms minus number of atoms belong to
126 +    //cutoff group defined in meta-data file plus the number of cutoff
127 +    //groups defined in meta-data file
128 +    std::cerr << "nGA = " << nGlobalAtoms_ << "\n";
129 +    std::cerr << "nCA = " << nCutoffAtoms << "\n";
130 +    std::cerr << "nG = " << nGroups << "\n";
131  
132 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
133 +
134 +    std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n";
135 +    
136 +    //every free atom (atom does not belong to rigid bodies) is an
137 +    //integrable object therefore the total number of integrable objects
138 +    //in the system is equal to the total number of atoms minus number of
139 +    //atoms belong to rigid body defined in meta-data file plus the number
140 +    //of rigid bodies defined in meta-data file
141 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
142 +      + nGlobalRigidBodies_;
143 +    
144 +    nGlobalMols_ = molStampIds_.size();
145 +    molToProcMap_.resize(nGlobalMols_);
146 +  }
147 +  
148    SimInfo::~SimInfo() {
149 <    std::map<int, Molecule*>::iterator i;
149 >    map<int, Molecule*>::iterator i;
150      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
151        delete i->second;
152      }
153      molecules_.clear();
154        
151    delete stamps_;
155      delete sman_;
156      delete simParams_;
157      delete forceField_;
158    }
159  
157  int SimInfo::getNGlobalConstraints() {
158    int nGlobalConstraints;
159 #ifdef IS_MPI
160    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
161                  MPI_COMM_WORLD);    
162 #else
163    nGlobalConstraints =  nConstraints_;
164 #endif
165    return nGlobalConstraints;
166  }
160  
161    bool SimInfo::addMolecule(Molecule* mol) {
162      MoleculeIterator i;
163 <
163 >    
164      i = molecules_.find(mol->getGlobalIndex());
165      if (i == molecules_.end() ) {
166 <
167 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
168 <        
166 >      
167 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
168 >      
169        nAtoms_ += mol->getNAtoms();
170        nBonds_ += mol->getNBonds();
171        nBends_ += mol->getNBends();
172        nTorsions_ += mol->getNTorsions();
173 +      nInversions_ += mol->getNInversions();
174        nRigidBodies_ += mol->getNRigidBodies();
175        nIntegrableObjects_ += mol->getNIntegrableObjects();
176        nCutoffGroups_ += mol->getNCutoffGroups();
177        nConstraints_ += mol->getNConstraintPairs();
178 <
179 <      addExcludePairs(mol);
180 <        
178 >      
179 >      addInteractionPairs(mol);
180 >      
181        return true;
182      } else {
183        return false;
184      }
185    }
186 <
186 >  
187    bool SimInfo::removeMolecule(Molecule* mol) {
188      MoleculeIterator i;
189      i = molecules_.find(mol->getGlobalIndex());
# Line 202 | Line 196 | namespace oopse {
196        nBonds_ -= mol->getNBonds();
197        nBends_ -= mol->getNBends();
198        nTorsions_ -= mol->getNTorsions();
199 +      nInversions_ -= mol->getNInversions();
200        nRigidBodies_ -= mol->getNRigidBodies();
201        nIntegrableObjects_ -= mol->getNIntegrableObjects();
202        nCutoffGroups_ -= mol->getNCutoffGroups();
203        nConstraints_ -= mol->getNConstraintPairs();
204  
205 <      removeExcludePairs(mol);
205 >      removeInteractionPairs(mol);
206        molecules_.erase(mol->getGlobalIndex());
207  
208        delete mol;
# Line 216 | Line 211 | namespace oopse {
211      } else {
212        return false;
213      }
219
220
214    }    
215  
216          
# Line 235 | Line 228 | namespace oopse {
228    void SimInfo::calcNdf() {
229      int ndf_local;
230      MoleculeIterator i;
231 <    std::vector<StuntDouble*>::iterator j;
231 >    vector<StuntDouble*>::iterator j;
232      Molecule* mol;
233      StuntDouble* integrableObject;
234  
# Line 255 | Line 248 | namespace oopse {
248            }
249          }
250              
251 <      }//end for (integrableObject)
252 <    }// end for (mol)
251 >      }
252 >    }
253      
254      // n_constraints is local, so subtract them on each processor
255      ndf_local -= nConstraints_;
# Line 273 | Line 266 | namespace oopse {
266  
267    }
268  
269 +  int SimInfo::getFdf() {
270 + #ifdef IS_MPI
271 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
272 + #else
273 +    fdf_ = fdf_local;
274 + #endif
275 +    return fdf_;
276 +  }
277 +    
278    void SimInfo::calcNdfRaw() {
279      int ndfRaw_local;
280  
281      MoleculeIterator i;
282 <    std::vector<StuntDouble*>::iterator j;
282 >    vector<StuntDouble*>::iterator j;
283      Molecule* mol;
284      StuntDouble* integrableObject;
285  
# Line 324 | Line 326 | namespace oopse {
326  
327    }
328  
329 <  void SimInfo::addExcludePairs(Molecule* mol) {
330 <    std::vector<Bond*>::iterator bondIter;
331 <    std::vector<Bend*>::iterator bendIter;
332 <    std::vector<Torsion*>::iterator torsionIter;
329 >  void SimInfo::addInteractionPairs(Molecule* mol) {
330 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
331 >    vector<Bond*>::iterator bondIter;
332 >    vector<Bend*>::iterator bendIter;
333 >    vector<Torsion*>::iterator torsionIter;
334 >    vector<Inversion*>::iterator inversionIter;
335      Bond* bond;
336      Bend* bend;
337      Torsion* torsion;
338 +    Inversion* inversion;
339      int a;
340      int b;
341      int c;
342      int d;
343 +
344 +    // atomGroups can be used to add special interaction maps between
345 +    // groups of atoms that are in two separate rigid bodies.
346 +    // However, most site-site interactions between two rigid bodies
347 +    // are probably not special, just the ones between the physically
348 +    // bonded atoms.  Interactions *within* a single rigid body should
349 +    // always be excluded.  These are done at the bottom of this
350 +    // function.
351 +
352 +    map<int, set<int> > atomGroups;
353 +    Molecule::RigidBodyIterator rbIter;
354 +    RigidBody* rb;
355 +    Molecule::IntegrableObjectIterator ii;
356 +    StuntDouble* integrableObject;
357      
358 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
359 <      a = bond->getAtomA()->getGlobalIndex();
360 <      b = bond->getAtomB()->getGlobalIndex();        
361 <      exclude_.addPair(a, b);
358 >    for (integrableObject = mol->beginIntegrableObject(ii);
359 >         integrableObject != NULL;
360 >         integrableObject = mol->nextIntegrableObject(ii)) {
361 >      
362 >      if (integrableObject->isRigidBody()) {
363 >        rb = static_cast<RigidBody*>(integrableObject);
364 >        vector<Atom*> atoms = rb->getAtoms();
365 >        set<int> rigidAtoms;
366 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
367 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
368 >        }
369 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
370 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
371 >        }      
372 >      } else {
373 >        set<int> oneAtomSet;
374 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
375 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
376 >      }
377 >    }  
378 >          
379 >    for (bond= mol->beginBond(bondIter); bond != NULL;
380 >         bond = mol->nextBond(bondIter)) {
381 >
382 >      a = bond->getAtomA()->getGlobalIndex();
383 >      b = bond->getAtomB()->getGlobalIndex();  
384 >    
385 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
386 >        oneTwoInteractions_.addPair(a, b);
387 >      } else {
388 >        excludedInteractions_.addPair(a, b);
389 >      }
390      }
391  
392 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
392 >    for (bend= mol->beginBend(bendIter); bend != NULL;
393 >         bend = mol->nextBend(bendIter)) {
394 >
395        a = bend->getAtomA()->getGlobalIndex();
396        b = bend->getAtomB()->getGlobalIndex();        
397        c = bend->getAtomC()->getGlobalIndex();
398 +      
399 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
400 +        oneTwoInteractions_.addPair(a, b);      
401 +        oneTwoInteractions_.addPair(b, c);
402 +      } else {
403 +        excludedInteractions_.addPair(a, b);
404 +        excludedInteractions_.addPair(b, c);
405 +      }
406  
407 <      exclude_.addPair(a, b);
408 <      exclude_.addPair(a, c);
409 <      exclude_.addPair(b, c);        
407 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
408 >        oneThreeInteractions_.addPair(a, c);      
409 >      } else {
410 >        excludedInteractions_.addPair(a, c);
411 >      }
412      }
413  
414 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
414 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
415 >         torsion = mol->nextTorsion(torsionIter)) {
416 >
417        a = torsion->getAtomA()->getGlobalIndex();
418        b = torsion->getAtomB()->getGlobalIndex();        
419        c = torsion->getAtomC()->getGlobalIndex();        
420 <      d = torsion->getAtomD()->getGlobalIndex();        
420 >      d = torsion->getAtomD()->getGlobalIndex();      
421  
422 <      exclude_.addPair(a, b);
423 <      exclude_.addPair(a, c);
424 <      exclude_.addPair(a, d);
425 <      exclude_.addPair(b, c);
426 <      exclude_.addPair(b, d);
427 <      exclude_.addPair(c, d);        
422 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
423 >        oneTwoInteractions_.addPair(a, b);      
424 >        oneTwoInteractions_.addPair(b, c);
425 >        oneTwoInteractions_.addPair(c, d);
426 >      } else {
427 >        excludedInteractions_.addPair(a, b);
428 >        excludedInteractions_.addPair(b, c);
429 >        excludedInteractions_.addPair(c, d);
430 >      }
431 >
432 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
433 >        oneThreeInteractions_.addPair(a, c);      
434 >        oneThreeInteractions_.addPair(b, d);      
435 >      } else {
436 >        excludedInteractions_.addPair(a, c);
437 >        excludedInteractions_.addPair(b, d);
438 >      }
439 >
440 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
441 >        oneFourInteractions_.addPair(a, d);      
442 >      } else {
443 >        excludedInteractions_.addPair(a, d);
444 >      }
445      }
446  
447 <    Molecule::RigidBodyIterator rbIter;
448 <    RigidBody* rb;
449 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
450 <      std::vector<Atom*> atoms = rb->getAtoms();
451 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
452 <        for (int j = i + 1; j < atoms.size(); ++j) {
447 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
448 >         inversion = mol->nextInversion(inversionIter)) {
449 >
450 >      a = inversion->getAtomA()->getGlobalIndex();
451 >      b = inversion->getAtomB()->getGlobalIndex();        
452 >      c = inversion->getAtomC()->getGlobalIndex();        
453 >      d = inversion->getAtomD()->getGlobalIndex();        
454 >
455 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
456 >        oneTwoInteractions_.addPair(a, b);      
457 >        oneTwoInteractions_.addPair(a, c);
458 >        oneTwoInteractions_.addPair(a, d);
459 >      } else {
460 >        excludedInteractions_.addPair(a, b);
461 >        excludedInteractions_.addPair(a, c);
462 >        excludedInteractions_.addPair(a, d);
463 >      }
464 >
465 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
466 >        oneThreeInteractions_.addPair(b, c);    
467 >        oneThreeInteractions_.addPair(b, d);    
468 >        oneThreeInteractions_.addPair(c, d);      
469 >      } else {
470 >        excludedInteractions_.addPair(b, c);
471 >        excludedInteractions_.addPair(b, d);
472 >        excludedInteractions_.addPair(c, d);
473 >      }
474 >    }
475 >
476 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
477 >         rb = mol->nextRigidBody(rbIter)) {
478 >      vector<Atom*> atoms = rb->getAtoms();
479 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
480 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
481            a = atoms[i]->getGlobalIndex();
482            b = atoms[j]->getGlobalIndex();
483 <          exclude_.addPair(a, b);
483 >          excludedInteractions_.addPair(a, b);
484          }
485        }
486      }        
487  
488    }
489  
490 <  void SimInfo::removeExcludePairs(Molecule* mol) {
491 <    std::vector<Bond*>::iterator bondIter;
492 <    std::vector<Bend*>::iterator bendIter;
493 <    std::vector<Torsion*>::iterator torsionIter;
490 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
491 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
492 >    vector<Bond*>::iterator bondIter;
493 >    vector<Bend*>::iterator bendIter;
494 >    vector<Torsion*>::iterator torsionIter;
495 >    vector<Inversion*>::iterator inversionIter;
496      Bond* bond;
497      Bend* bend;
498      Torsion* torsion;
499 +    Inversion* inversion;
500      int a;
501      int b;
502      int c;
503      int d;
504 +
505 +    map<int, set<int> > atomGroups;
506 +    Molecule::RigidBodyIterator rbIter;
507 +    RigidBody* rb;
508 +    Molecule::IntegrableObjectIterator ii;
509 +    StuntDouble* integrableObject;
510      
511 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
511 >    for (integrableObject = mol->beginIntegrableObject(ii);
512 >         integrableObject != NULL;
513 >         integrableObject = mol->nextIntegrableObject(ii)) {
514 >      
515 >      if (integrableObject->isRigidBody()) {
516 >        rb = static_cast<RigidBody*>(integrableObject);
517 >        vector<Atom*> atoms = rb->getAtoms();
518 >        set<int> rigidAtoms;
519 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
520 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
521 >        }
522 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
523 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
524 >        }      
525 >      } else {
526 >        set<int> oneAtomSet;
527 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
528 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
529 >      }
530 >    }  
531 >
532 >    for (bond= mol->beginBond(bondIter); bond != NULL;
533 >         bond = mol->nextBond(bondIter)) {
534 >      
535        a = bond->getAtomA()->getGlobalIndex();
536 <      b = bond->getAtomB()->getGlobalIndex();        
537 <      exclude_.removePair(a, b);
536 >      b = bond->getAtomB()->getGlobalIndex();  
537 >    
538 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
539 >        oneTwoInteractions_.removePair(a, b);
540 >      } else {
541 >        excludedInteractions_.removePair(a, b);
542 >      }
543      }
544  
545 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
545 >    for (bend= mol->beginBend(bendIter); bend != NULL;
546 >         bend = mol->nextBend(bendIter)) {
547 >
548        a = bend->getAtomA()->getGlobalIndex();
549        b = bend->getAtomB()->getGlobalIndex();        
550        c = bend->getAtomC()->getGlobalIndex();
551 +      
552 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
553 +        oneTwoInteractions_.removePair(a, b);      
554 +        oneTwoInteractions_.removePair(b, c);
555 +      } else {
556 +        excludedInteractions_.removePair(a, b);
557 +        excludedInteractions_.removePair(b, c);
558 +      }
559  
560 <      exclude_.removePair(a, b);
561 <      exclude_.removePair(a, c);
562 <      exclude_.removePair(b, c);        
560 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
561 >        oneThreeInteractions_.removePair(a, c);      
562 >      } else {
563 >        excludedInteractions_.removePair(a, c);
564 >      }
565      }
566  
567 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
567 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
568 >         torsion = mol->nextTorsion(torsionIter)) {
569 >
570        a = torsion->getAtomA()->getGlobalIndex();
571        b = torsion->getAtomB()->getGlobalIndex();        
572        c = torsion->getAtomC()->getGlobalIndex();        
573 <      d = torsion->getAtomD()->getGlobalIndex();        
573 >      d = torsion->getAtomD()->getGlobalIndex();      
574 >  
575 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
576 >        oneTwoInteractions_.removePair(a, b);      
577 >        oneTwoInteractions_.removePair(b, c);
578 >        oneTwoInteractions_.removePair(c, d);
579 >      } else {
580 >        excludedInteractions_.removePair(a, b);
581 >        excludedInteractions_.removePair(b, c);
582 >        excludedInteractions_.removePair(c, d);
583 >      }
584  
585 <      exclude_.removePair(a, b);
586 <      exclude_.removePair(a, c);
587 <      exclude_.removePair(a, d);
588 <      exclude_.removePair(b, c);
589 <      exclude_.removePair(b, d);
590 <      exclude_.removePair(c, d);        
585 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
586 >        oneThreeInteractions_.removePair(a, c);      
587 >        oneThreeInteractions_.removePair(b, d);      
588 >      } else {
589 >        excludedInteractions_.removePair(a, c);
590 >        excludedInteractions_.removePair(b, d);
591 >      }
592 >
593 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
594 >        oneFourInteractions_.removePair(a, d);      
595 >      } else {
596 >        excludedInteractions_.removePair(a, d);
597 >      }
598      }
599  
600 <    Molecule::RigidBodyIterator rbIter;
601 <    RigidBody* rb;
602 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
603 <      std::vector<Atom*> atoms = rb->getAtoms();
604 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
605 <        for (int j = i + 1; j < atoms.size(); ++j) {
600 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
601 >         inversion = mol->nextInversion(inversionIter)) {
602 >
603 >      a = inversion->getAtomA()->getGlobalIndex();
604 >      b = inversion->getAtomB()->getGlobalIndex();        
605 >      c = inversion->getAtomC()->getGlobalIndex();        
606 >      d = inversion->getAtomD()->getGlobalIndex();        
607 >
608 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
609 >        oneTwoInteractions_.removePair(a, b);      
610 >        oneTwoInteractions_.removePair(a, c);
611 >        oneTwoInteractions_.removePair(a, d);
612 >      } else {
613 >        excludedInteractions_.removePair(a, b);
614 >        excludedInteractions_.removePair(a, c);
615 >        excludedInteractions_.removePair(a, d);
616 >      }
617 >
618 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
619 >        oneThreeInteractions_.removePair(b, c);    
620 >        oneThreeInteractions_.removePair(b, d);    
621 >        oneThreeInteractions_.removePair(c, d);      
622 >      } else {
623 >        excludedInteractions_.removePair(b, c);
624 >        excludedInteractions_.removePair(b, d);
625 >        excludedInteractions_.removePair(c, d);
626 >      }
627 >    }
628 >
629 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
630 >         rb = mol->nextRigidBody(rbIter)) {
631 >      vector<Atom*> atoms = rb->getAtoms();
632 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
633 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
634            a = atoms[i]->getGlobalIndex();
635            b = atoms[j]->getGlobalIndex();
636 <          exclude_.removePair(a, b);
636 >          excludedInteractions_.removePair(a, b);
637          }
638        }
639      }        
640 <
640 >    
641    }
642 <
643 <
642 >  
643 >  
644    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
645      int curStampId;
646 <
646 >    
647      //index from 0
648      curStampId = moleculeStamps_.size();
649  
# Line 449 | Line 651 | namespace oopse {
651      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
652    }
653  
452  void SimInfo::update() {
654  
655 <    setupSimType();
656 <
657 < #ifdef IS_MPI
658 <    setupFortranParallel();
659 < #endif
660 <
661 <    setupFortranSim();
662 <
663 <    //setup fortran force field
463 <    /** @deprecate */    
464 <    int isError = 0;
465 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
466 <    if(isError){
467 <      sprintf( painCave.errMsg,
468 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
469 <      painCave.isFatal = 1;
470 <      simError();
471 <    }
472 <  
473 <    
474 <    setupCutoff();
475 <
655 >  /**
656 >   * update
657 >   *
658 >   *  Performs the global checks and variable settings after the
659 >   *  objects have been created.
660 >   *
661 >   */
662 >  void SimInfo::update() {  
663 >    setupSimVariables();
664      calcNdf();
665      calcNdfRaw();
666      calcNdfTrans();
479
480    fortranInitialized_ = true;
667    }
668 <
669 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
668 >  
669 >  /**
670 >   * getSimulatedAtomTypes
671 >   *
672 >   * Returns an STL set of AtomType* that are actually present in this
673 >   * simulation.  Must query all processors to assemble this information.
674 >   *
675 >   */
676 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
677      SimInfo::MoleculeIterator mi;
678      Molecule* mol;
679      Molecule::AtomIterator ai;
680      Atom* atom;
681 <    std::set<AtomType*> atomTypes;
682 <
683 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
491 <
681 >    set<AtomType*> atomTypes;
682 >    
683 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
684        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
685          atomTypes.insert(atom->getAtomType());
686 <      }
687 <        
496 <    }
686 >      }      
687 >    }    
688  
689 + #ifdef IS_MPI
690 +
691 +    // loop over the found atom types on this processor, and add their
692 +    // numerical idents to a vector:
693 +
694 +    vector<int> foundTypes;
695 +    set<AtomType*>::iterator i;
696 +    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
697 +      foundTypes.push_back( (*i)->getIdent() );
698 +
699 +    // count_local holds the number of found types on this processor
700 +    int count_local = foundTypes.size();
701 +
702 +    // count holds the total number of found types on all processors
703 +    // (some will be redundant with the ones found locally):
704 +    int count;
705 +    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
706 +
707 +    // create a vector to hold the globally found types, and resize it:
708 +    vector<int> ftGlobal;
709 +    ftGlobal.resize(count);
710 +    vector<int> counts;
711 +
712 +    int nproc = MPI::COMM_WORLD.Get_size();
713 +    counts.resize(nproc);
714 +    vector<int> disps;
715 +    disps.resize(nproc);
716 +
717 +    // now spray out the foundTypes to all the other processors:
718 +    
719 +    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
720 +                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
721 +
722 +    // foundIdents is a stl set, so inserting an already found ident
723 +    // will have no effect.
724 +    set<int> foundIdents;
725 +    vector<int>::iterator j;
726 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
727 +      foundIdents.insert((*j));
728 +    
729 +    // now iterate over the foundIdents and get the actual atom types
730 +    // that correspond to these:
731 +    set<int>::iterator it;
732 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
733 +      atomTypes.insert( forceField_->getAtomType((*it)) );
734 +
735 + #endif
736 +    
737      return atomTypes;        
738    }
739  
740 <  void SimInfo::setupSimType() {
741 <    std::set<AtomType*>::iterator i;
742 <    std::set<AtomType*> atomTypes;
743 <    atomTypes = getUniqueAtomTypes();
744 <    
745 <    int useLennardJones = 0;
746 <    int useElectrostatic = 0;
747 <    int useEAM = 0;
509 <    int useCharge = 0;
510 <    int useDirectional = 0;
511 <    int useDipole = 0;
512 <    int useGayBerne = 0;
513 <    int useSticky = 0;
514 <    int useShape = 0;
515 <    int useFLARB = 0; //it is not in AtomType yet
516 <    int useDirectionalAtom = 0;    
517 <    int useElectrostatics = 0;
518 <    //usePBC and useRF are from simParams
519 <    int usePBC = simParams_->getPBC();
520 <    int useRF = simParams_->getUseRF();
740 >  void SimInfo::setupSimVariables() {
741 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
742 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
743 >    calcBoxDipole_ = false;
744 >    if ( simParams_->haveAccumulateBoxDipole() )
745 >      if ( simParams_->getAccumulateBoxDipole() ) {
746 >        calcBoxDipole_ = true;      
747 >      }
748  
749 +    set<AtomType*>::iterator i;
750 +    set<AtomType*> atomTypes;
751 +    atomTypes = getSimulatedAtomTypes();    
752 +    int usesElectrostatic = 0;
753 +    int usesMetallic = 0;
754 +    int usesDirectional = 0;
755      //loop over all of the atom types
756      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
757 <      useLennardJones |= (*i)->isLennardJones();
758 <      useElectrostatic |= (*i)->isElectrostatic();
759 <      useEAM |= (*i)->isEAM();
527 <      useCharge |= (*i)->isCharge();
528 <      useDirectional |= (*i)->isDirectional();
529 <      useDipole |= (*i)->isDipole();
530 <      useGayBerne |= (*i)->isGayBerne();
531 <      useSticky |= (*i)->isSticky();
532 <      useShape |= (*i)->isShape();
757 >      usesElectrostatic |= (*i)->isElectrostatic();
758 >      usesMetallic |= (*i)->isMetal();
759 >      usesDirectional |= (*i)->isDirectional();
760      }
761  
535    if (useSticky || useDipole || useGayBerne || useShape) {
536      useDirectionalAtom = 1;
537    }
538
539    if (useCharge || useDipole) {
540      useElectrostatics = 1;
541    }
542
762   #ifdef IS_MPI    
763      int temp;
764 +    temp = usesDirectional;
765 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
766  
767 <    temp = usePBC;
768 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
767 >    temp = usesMetallic;
768 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
769  
770 <    temp = useDirectionalAtom;
771 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
770 >    temp = usesElectrostatic;
771 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
772 > #endif
773 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
774 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
775 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
776 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
777 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
778 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
779 >  }
780  
552    temp = useLennardJones;
553    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
781  
782 <    temp = useElectrostatics;
783 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
782 >  vector<int> SimInfo::getGlobalAtomIndices() {
783 >    SimInfo::MoleculeIterator mi;
784 >    Molecule* mol;
785 >    Molecule::AtomIterator ai;
786 >    Atom* atom;
787  
788 <    temp = useCharge;
559 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
560 <
561 <    temp = useDipole;
562 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
563 <
564 <    temp = useSticky;
565 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
566 <
567 <    temp = useGayBerne;
568 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
569 <
570 <    temp = useEAM;
571 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
572 <
573 <    temp = useShape;
574 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
575 <
576 <    temp = useFLARB;
577 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
578 <
579 <    temp = useRF;
580 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
788 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
789      
790 < #endif
790 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
791 >      
792 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
793 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
794 >      }
795 >    }
796 >    return GlobalAtomIndices;
797 >  }
798  
584    fInfo_.SIM_uses_PBC = usePBC;    
585    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
586    fInfo_.SIM_uses_LennardJones = useLennardJones;
587    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
588    fInfo_.SIM_uses_Charges = useCharge;
589    fInfo_.SIM_uses_Dipoles = useDipole;
590    fInfo_.SIM_uses_Sticky = useSticky;
591    fInfo_.SIM_uses_GayBerne = useGayBerne;
592    fInfo_.SIM_uses_EAM = useEAM;
593    fInfo_.SIM_uses_Shapes = useShape;
594    fInfo_.SIM_uses_FLARB = useFLARB;
595    fInfo_.SIM_uses_RF = useRF;
799  
800 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
800 >  vector<int> SimInfo::getGlobalGroupIndices() {
801 >    SimInfo::MoleculeIterator mi;
802 >    Molecule* mol;
803 >    Molecule::CutoffGroupIterator ci;
804 >    CutoffGroup* cg;
805  
806 <      if (simParams_->haveDielectric()) {
807 <        fInfo_.dielect = simParams_->getDielectric();
808 <      } else {
809 <        sprintf(painCave.errMsg,
810 <                "SimSetup Error: No Dielectric constant was set.\n"
811 <                "\tYou are trying to use Reaction Field without"
812 <                "\tsetting a dielectric constant!\n");
813 <        painCave.isFatal = 1;
814 <        simError();
815 <      }
609 <        
610 <    } else {
611 <      fInfo_.dielect = 0.0;
806 >    vector<int> GlobalGroupIndices;
807 >    
808 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
809 >      
810 >      //local index of cutoff group is trivial, it only depends on the
811 >      //order of travesing
812 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
813 >           cg = mol->nextCutoffGroup(ci)) {
814 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
815 >      }        
816      }
817 <
817 >    return GlobalGroupIndices;
818    }
819  
820 <  void SimInfo::setupFortranSim() {
820 >
821 >  void SimInfo::setupFortran() {
822      int isError;
823 <    int nExclude;
824 <    std::vector<int> fortranGlobalGroupMembership;
823 >    int nExclude, nOneTwo, nOneThree, nOneFour;
824 >    vector<int> fortranGlobalGroupMembership;
825      
621    nExclude = exclude_.getSize();
826      isError = 0;
827  
828      //globalGroupMembership_ is filled by SimCreator    
# Line 627 | Line 831 | namespace oopse {
831      }
832  
833      //calculate mass ratio of cutoff group
834 <    std::vector<double> mfact;
834 >    vector<RealType> mfact;
835      SimInfo::MoleculeIterator mi;
836      Molecule* mol;
837      Molecule::CutoffGroupIterator ci;
838      CutoffGroup* cg;
839      Molecule::AtomIterator ai;
840      Atom* atom;
841 <    double totalMass;
841 >    RealType totalMass;
842  
843      //to avoid memory reallocation, reserve enough space for mfact
844      mfact.reserve(getNCutoffGroups());
# Line 644 | Line 848 | namespace oopse {
848  
849          totalMass = cg->getMass();
850          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
851 <          mfact.push_back(atom->getMass()/totalMass);
851 >          // Check for massless groups - set mfact to 1 if true
852 >          if (totalMass != 0)
853 >            mfact.push_back(atom->getMass()/totalMass);
854 >          else
855 >            mfact.push_back( 1.0 );
856          }
649
857        }      
858      }
859  
860 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
654 <    std::vector<int> identArray;
860 >    // Build the identArray_
861  
862 <    //to avoid memory reallocation, reserve enough space identArray
863 <    identArray.reserve(getNAtoms());
658 <    
862 >    identArray_.clear();
863 >    identArray_.reserve(getNAtoms());    
864      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
865        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
866 <        identArray.push_back(atom->getIdent());
866 >        identArray_.push_back(atom->getIdent());
867        }
868      }    
869  
870      //fill molMembershipArray
871      //molMembershipArray is filled by SimCreator    
872 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
872 >    vector<int> molMembershipArray(nGlobalAtoms_);
873      for (int i = 0; i < nGlobalAtoms_; i++) {
874        molMembershipArray[i] = globalMolMembership_[i] + 1;
875      }
876      
877      //setup fortran simulation
673    int nGlobalExcludes = 0;
674    int* globalExcludes = NULL;
675    int* excludeList = exclude_.getExcludeList();
676    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
677                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
678                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
878  
879 <    if( isError ){
879 >    nExclude = excludedInteractions_.getSize();
880 >    nOneTwo = oneTwoInteractions_.getSize();
881 >    nOneThree = oneThreeInteractions_.getSize();
882 >    nOneFour = oneFourInteractions_.getSize();
883  
884 <      sprintf( painCave.errMsg,
885 <               "There was an error setting the simulation information in fortran.\n" );
886 <      painCave.isFatal = 1;
887 <      painCave.severity = OOPSE_ERROR;
686 <      simError();
687 <    }
884 >    int* excludeList = excludedInteractions_.getPairList();
885 >    int* oneTwoList = oneTwoInteractions_.getPairList();
886 >    int* oneThreeList = oneThreeInteractions_.getPairList();
887 >    int* oneFourList = oneFourInteractions_.getPairList();
888  
889 < #ifdef IS_MPI
890 <    sprintf( checkPointMsg,
891 <             "succesfully sent the simulation information to fortran.\n");
892 <    MPIcheckPoint();
893 < #endif // is_mpi
894 <  }
895 <
696 <
697 < #ifdef IS_MPI
698 <  void SimInfo::setupFortranParallel() {
889 >    //setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0],
890 >    //               &nExclude, excludeList,
891 >    //               &nOneTwo, oneTwoList,
892 >    //               &nOneThree, oneThreeList,
893 >    //               &nOneFour, oneFourList,
894 >    //               &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
895 >    //               &fortranGlobalGroupMembership[0], &isError);
896      
897 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
898 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
899 <    std::vector<int> localToGlobalCutoffGroupIndex;
900 <    SimInfo::MoleculeIterator mi;
901 <    Molecule::AtomIterator ai;
902 <    Molecule::CutoffGroupIterator ci;
903 <    Molecule* mol;
904 <    Atom* atom;
905 <    CutoffGroup* cg;
906 <    mpiSimData parallelData;
907 <    int isError;
897 >    // if( isError ){
898 >    //  
899 >    //  sprintf( painCave.errMsg,
900 >    //         "There was an error setting the simulation information in fortran.\n" );
901 >    //  painCave.isFatal = 1;
902 >    //  painCave.severity = OPENMD_ERROR;
903 >    //  simError();
904 >    //}
905 >    
906 >    
907 >    // sprintf( checkPointMsg,
908 >    //          "succesfully sent the simulation information to fortran.\n");
909 >    
910 >    // errorCheckPoint();
911 >    
912 >    // Setup number of neighbors in neighbor list if present
913 >    //if (simParams_->haveNeighborListNeighbors()) {
914 >    //  int nlistNeighbors = simParams_->getNeighborListNeighbors();
915 >    //  setNeighbors(&nlistNeighbors);
916 >    //}
917 >  
918 > #ifdef IS_MPI    
919 >    // mpiSimData parallelData;
920  
712    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
713
714      //local index(index in DataStorge) of atom is important
715      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
716        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
717      }
718
719      //local index of cutoff group is trivial, it only depends on the order of travesing
720      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
721        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
722      }        
723        
724    }
725
921      //fill up mpiSimData struct
922 <    parallelData.nMolGlobal = getNGlobalMolecules();
923 <    parallelData.nMolLocal = getNMolecules();
924 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
925 <    parallelData.nAtomsLocal = getNAtoms();
926 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
927 <    parallelData.nGroupsLocal = getNCutoffGroups();
928 <    parallelData.myNode = worldRank;
929 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
922 >    // parallelData.nMolGlobal = getNGlobalMolecules();
923 >    // parallelData.nMolLocal = getNMolecules();
924 >    // parallelData.nAtomsGlobal = getNGlobalAtoms();
925 >    // parallelData.nAtomsLocal = getNAtoms();
926 >    // parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
927 >    // parallelData.nGroupsLocal = getNCutoffGroups();
928 >    // parallelData.myNode = worldRank;
929 >    // MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
930  
931      //pass mpiSimData struct and index arrays to fortran
932 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
933 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
934 <                    &localToGlobalCutoffGroupIndex[0], &isError);
932 >    //setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
933 >    //                &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
934 >    //                &localToGlobalCutoffGroupIndex[0], &isError);
935  
936 <    if (isError) {
937 <      sprintf(painCave.errMsg,
938 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
939 <      painCave.isFatal = 1;
940 <      simError();
941 <    }
936 >    // if (isError) {
937 >    //   sprintf(painCave.errMsg,
938 >    //           "mpiRefresh errror: fortran didn't like something we gave it.\n");
939 >    //   painCave.isFatal = 1;
940 >    //   simError();
941 >    // }
942  
943 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
944 <    MPIcheckPoint();
750 <
751 <
752 <  }
753 <
943 >    // sprintf(checkPointMsg, " mpiRefresh successful.\n");
944 >    // errorCheckPoint();
945   #endif
946  
947 <  double SimInfo::calcMaxCutoffRadius() {
948 <
949 <
950 <    std::set<AtomType*> atomTypes;
951 <    std::set<AtomType*>::iterator i;
952 <    std::vector<double> cutoffRadius;
953 <
954 <    //get the unique atom types
764 <    atomTypes = getUniqueAtomTypes();
765 <
766 <    //query the max cutoff radius among these atom types
767 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
768 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
769 <    }
770 <
771 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
772 < #ifdef IS_MPI
773 <    //pick the max cutoff radius among the processors
774 < #endif
775 <
776 <    return maxCutoffRadius;
777 <  }
778 <
779 <  void SimInfo::getCutoff(double& rcut, double& rsw) {
780 <    
781 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
782 <        
783 <      if (!simParams_->haveRcut()){
784 <        sprintf(painCave.errMsg,
785 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
786 <                "\tOOPSE will use a default value of 15.0 angstroms"
787 <                "\tfor the cutoffRadius.\n");
788 <        painCave.isFatal = 0;
789 <        simError();
790 <        rcut = 15.0;
791 <      } else{
792 <        rcut = simParams_->getRcut();
793 <      }
794 <
795 <      if (!simParams_->haveRsw()){
796 <        sprintf(painCave.errMsg,
797 <                "SimCreator Warning: No value was set for switchingRadius.\n"
798 <                "\tOOPSE will use a default value of\n"
799 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
800 <        painCave.isFatal = 0;
801 <        simError();
802 <        rsw = 0.95 * rcut;
803 <      } else{
804 <        rsw = simParams_->getRsw();
805 <      }
806 <
807 <    } else {
808 <      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
809 <      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
810 <        
811 <      if (simParams_->haveRcut()) {
812 <        rcut = simParams_->getRcut();
813 <      } else {
814 <        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
815 <        rcut = calcMaxCutoffRadius();
816 <      }
817 <
818 <      if (simParams_->haveRsw()) {
819 <        rsw  = simParams_->getRsw();
820 <      } else {
821 <        rsw = rcut;
822 <      }
823 <    
824 <    }
947 >    // initFortranFF(&isError);
948 >    // if (isError) {
949 >    //   sprintf(painCave.errMsg,
950 >    //           "initFortranFF errror: fortran didn't like something we gave it.\n");
951 >    //   painCave.isFatal = 1;
952 >    //   simError();
953 >    // }
954 >    // fortranInitialized_ = true;
955    }
956  
827  void SimInfo::setupCutoff() {
828    getCutoff(rcut_, rsw_);    
829    double rnblist = rcut_ + 1; // skin of neighbor list
830
831    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
832    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
833  }
834
957    void SimInfo::addProperty(GenericData* genData) {
958      properties_.addProperty(genData);  
959    }
960  
961 <  void SimInfo::removeProperty(const std::string& propName) {
961 >  void SimInfo::removeProperty(const string& propName) {
962      properties_.removeProperty(propName);  
963    }
964  
# Line 844 | Line 966 | namespace oopse {
966      properties_.clearProperties();
967    }
968  
969 <  std::vector<std::string> SimInfo::getPropertyNames() {
969 >  vector<string> SimInfo::getPropertyNames() {
970      return properties_.getPropertyNames();  
971    }
972        
973 <  std::vector<GenericData*> SimInfo::getProperties() {
973 >  vector<GenericData*> SimInfo::getProperties() {
974      return properties_.getProperties();
975    }
976  
977 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
977 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
978      return properties_.getPropertyByName(propName);
979    }
980  
# Line 866 | Line 988 | namespace oopse {
988      Molecule* mol;
989      RigidBody* rb;
990      Atom* atom;
991 +    CutoffGroup* cg;
992      SimInfo::MoleculeIterator mi;
993      Molecule::RigidBodyIterator rbIter;
994 <    Molecule::AtomIterator atomIter;;
994 >    Molecule::AtomIterator atomIter;
995 >    Molecule::CutoffGroupIterator cgIter;
996  
997      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
998          
# Line 879 | Line 1003 | namespace oopse {
1003        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1004          rb->setSnapshotManager(sman_);
1005        }
1006 +
1007 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
1008 +        cg->setSnapshotManager(sman_);
1009 +      }
1010      }    
1011      
1012    }
# Line 888 | Line 1016 | namespace oopse {
1016      Molecule* mol;
1017  
1018      Vector3d comVel(0.0);
1019 <    double totalMass = 0.0;
1019 >    RealType totalMass = 0.0;
1020      
1021  
1022      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1023 <      double mass = mol->getMass();
1023 >      RealType mass = mol->getMass();
1024        totalMass += mass;
1025        comVel += mass * mol->getComVel();
1026      }  
1027  
1028   #ifdef IS_MPI
1029 <    double tmpMass = totalMass;
1029 >    RealType tmpMass = totalMass;
1030      Vector3d tmpComVel(comVel);    
1031 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1032 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1031 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1032 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1033   #endif
1034  
1035      comVel /= totalMass;
# Line 914 | Line 1042 | namespace oopse {
1042      Molecule* mol;
1043  
1044      Vector3d com(0.0);
1045 <    double totalMass = 0.0;
1045 >    RealType totalMass = 0.0;
1046      
1047      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1048 <      double mass = mol->getMass();
1048 >      RealType mass = mol->getMass();
1049        totalMass += mass;
1050        com += mass * mol->getCom();
1051      }  
1052  
1053   #ifdef IS_MPI
1054 <    double tmpMass = totalMass;
1054 >    RealType tmpMass = totalMass;
1055      Vector3d tmpCom(com);    
1056 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1057 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1056 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1057 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1058   #endif
1059  
1060      com /= totalMass;
# Line 935 | Line 1063 | namespace oopse {
1063  
1064    }        
1065  
1066 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1066 >  ostream& operator <<(ostream& o, SimInfo& info) {
1067  
1068      return o;
1069    }
1070 +  
1071 +  
1072 +   /*
1073 +   Returns center of mass and center of mass velocity in one function call.
1074 +   */
1075 +  
1076 +   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1077 +      SimInfo::MoleculeIterator i;
1078 +      Molecule* mol;
1079 +      
1080 +    
1081 +      RealType totalMass = 0.0;
1082 +    
1083  
1084 < }//end namespace oopse
1084 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1085 >         RealType mass = mol->getMass();
1086 >         totalMass += mass;
1087 >         com += mass * mol->getCom();
1088 >         comVel += mass * mol->getComVel();          
1089 >      }  
1090 >      
1091 > #ifdef IS_MPI
1092 >      RealType tmpMass = totalMass;
1093 >      Vector3d tmpCom(com);  
1094 >      Vector3d tmpComVel(comVel);
1095 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1096 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1097 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1098 > #endif
1099 >      
1100 >      com /= totalMass;
1101 >      comVel /= totalMass;
1102 >   }        
1103 >  
1104 >   /*
1105 >   Return intertia tensor for entire system and angular momentum Vector.
1106  
1107 +
1108 +       [  Ixx -Ixy  -Ixz ]
1109 +    J =| -Iyx  Iyy  -Iyz |
1110 +       [ -Izx -Iyz   Izz ]
1111 +    */
1112 +
1113 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1114 +      
1115 +
1116 +      RealType xx = 0.0;
1117 +      RealType yy = 0.0;
1118 +      RealType zz = 0.0;
1119 +      RealType xy = 0.0;
1120 +      RealType xz = 0.0;
1121 +      RealType yz = 0.0;
1122 +      Vector3d com(0.0);
1123 +      Vector3d comVel(0.0);
1124 +      
1125 +      getComAll(com, comVel);
1126 +      
1127 +      SimInfo::MoleculeIterator i;
1128 +      Molecule* mol;
1129 +      
1130 +      Vector3d thisq(0.0);
1131 +      Vector3d thisv(0.0);
1132 +
1133 +      RealType thisMass = 0.0;
1134 +    
1135 +      
1136 +      
1137 +  
1138 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1139 +        
1140 +         thisq = mol->getCom()-com;
1141 +         thisv = mol->getComVel()-comVel;
1142 +         thisMass = mol->getMass();
1143 +         // Compute moment of intertia coefficients.
1144 +         xx += thisq[0]*thisq[0]*thisMass;
1145 +         yy += thisq[1]*thisq[1]*thisMass;
1146 +         zz += thisq[2]*thisq[2]*thisMass;
1147 +        
1148 +         // compute products of intertia
1149 +         xy += thisq[0]*thisq[1]*thisMass;
1150 +         xz += thisq[0]*thisq[2]*thisMass;
1151 +         yz += thisq[1]*thisq[2]*thisMass;
1152 +            
1153 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1154 +            
1155 +      }  
1156 +      
1157 +      
1158 +      inertiaTensor(0,0) = yy + zz;
1159 +      inertiaTensor(0,1) = -xy;
1160 +      inertiaTensor(0,2) = -xz;
1161 +      inertiaTensor(1,0) = -xy;
1162 +      inertiaTensor(1,1) = xx + zz;
1163 +      inertiaTensor(1,2) = -yz;
1164 +      inertiaTensor(2,0) = -xz;
1165 +      inertiaTensor(2,1) = -yz;
1166 +      inertiaTensor(2,2) = xx + yy;
1167 +      
1168 + #ifdef IS_MPI
1169 +      Mat3x3d tmpI(inertiaTensor);
1170 +      Vector3d tmpAngMom;
1171 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1172 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1173 + #endif
1174 +              
1175 +      return;
1176 +   }
1177 +
1178 +   //Returns the angular momentum of the system
1179 +   Vector3d SimInfo::getAngularMomentum(){
1180 +      
1181 +      Vector3d com(0.0);
1182 +      Vector3d comVel(0.0);
1183 +      Vector3d angularMomentum(0.0);
1184 +      
1185 +      getComAll(com,comVel);
1186 +      
1187 +      SimInfo::MoleculeIterator i;
1188 +      Molecule* mol;
1189 +      
1190 +      Vector3d thisr(0.0);
1191 +      Vector3d thisp(0.0);
1192 +      
1193 +      RealType thisMass;
1194 +      
1195 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1196 +        thisMass = mol->getMass();
1197 +        thisr = mol->getCom()-com;
1198 +        thisp = (mol->getComVel()-comVel)*thisMass;
1199 +        
1200 +        angularMomentum += cross( thisr, thisp );
1201 +        
1202 +      }  
1203 +      
1204 + #ifdef IS_MPI
1205 +      Vector3d tmpAngMom;
1206 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1207 + #endif
1208 +      
1209 +      return angularMomentum;
1210 +   }
1211 +  
1212 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1213 +    return IOIndexToIntegrableObject.at(index);
1214 +  }
1215 +  
1216 +  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1217 +    IOIndexToIntegrableObject= v;
1218 +  }
1219 +
1220 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1221 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1222 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1223 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1224 +  */
1225 +  void SimInfo::getGyrationalVolume(RealType &volume){
1226 +    Mat3x3d intTensor;
1227 +    RealType det;
1228 +    Vector3d dummyAngMom;
1229 +    RealType sysconstants;
1230 +    RealType geomCnst;
1231 +
1232 +    geomCnst = 3.0/2.0;
1233 +    /* Get the inertial tensor and angular momentum for free*/
1234 +    getInertiaTensor(intTensor,dummyAngMom);
1235 +    
1236 +    det = intTensor.determinant();
1237 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1238 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1239 +    return;
1240 +  }
1241 +
1242 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1243 +    Mat3x3d intTensor;
1244 +    Vector3d dummyAngMom;
1245 +    RealType sysconstants;
1246 +    RealType geomCnst;
1247 +
1248 +    geomCnst = 3.0/2.0;
1249 +    /* Get the inertial tensor and angular momentum for free*/
1250 +    getInertiaTensor(intTensor,dummyAngMom);
1251 +    
1252 +    detI = intTensor.determinant();
1253 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1254 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1255 +    return;
1256 +  }
1257 + /*
1258 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1259 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1260 +      sdByGlobalIndex_ = v;
1261 +    }
1262 +
1263 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1264 +      //assert(index < nAtoms_ + nRigidBodies_);
1265 +      return sdByGlobalIndex_.at(index);
1266 +    }  
1267 + */  
1268 +  int SimInfo::getNGlobalConstraints() {
1269 +    int nGlobalConstraints;
1270 + #ifdef IS_MPI
1271 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1272 +                  MPI_COMM_WORLD);    
1273 + #else
1274 +    nGlobalConstraints =  nConstraints_;
1275 + #endif
1276 +    return nGlobalConstraints;
1277 +  }
1278 +
1279 + }//end namespace OpenMD
1280 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 507 by gezelter, Fri Apr 15 22:04:00 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1550 by gezelter, Wed Apr 27 21:49:59 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines