ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 834 by chuckv, Fri Dec 30 23:15:59 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1549 by gezelter, Wed Apr 27 18:38:15 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 53 | Line 53
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 < #include "UseTheForce/fCutoffPolicy.h"
57 < #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 < #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 < #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
56 > #include "primitives/StuntDouble.hpp"
57 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
58   #include "UseTheForce/doForces_interface.h"
61 #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 #include "UseTheForce/DarkSide/switcheroo_interface.h"
59   #include "utils/MemoryUtils.hpp"
60   #include "utils/simError.h"
61   #include "selection/SelectionManager.hpp"
62   #include "io/ForceFieldOptions.hpp"
63   #include "UseTheForce/ForceField.hpp"
64 + #include "nonbonded/SwitchingFunction.hpp"
65  
66   #ifdef IS_MPI
67   #include "UseTheForce/mpiComponentPlan.h"
68   #include "UseTheForce/DarkSide/simParallel_interface.h"
69   #endif
70  
71 < namespace oopse {
72 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
76 <    std::map<int, std::set<int> >::iterator i = container.find(index);
77 <    std::set<int> result;
78 <    if (i != container.end()) {
79 <        result = i->second;
80 <    }
81 <
82 <    return result;
83 <  }
71 > using namespace std;
72 > namespace OpenMD {
73    
74    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
75      forceField_(ff), simParams_(simParams),
76 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
76 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
77      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
78      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
79 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
80 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
81 <    sman_(NULL), fortranInitialized_(false) {
82 <
83 <      MoleculeStamp* molStamp;
84 <      int nMolWithSameStamp;
85 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
87 <      CutoffGroupStamp* cgStamp;    
88 <      RigidBodyStamp* rbStamp;
89 <      int nRigidAtoms = 0;
90 <      std::vector<Component*> components = simParams->getComponents();
79 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
80 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
81 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
82 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
83 >    
84 >    MoleculeStamp* molStamp;
85 >    int nMolWithSameStamp;
86 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
88 >    CutoffGroupStamp* cgStamp;    
89 >    RigidBodyStamp* rbStamp;
90 >    int nRigidAtoms = 0;
91 >    
92 >    vector<Component*> components = simParams->getComponents();
93 >    
94 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
95 >      molStamp = (*i)->getMoleculeStamp();
96 >      nMolWithSameStamp = (*i)->getNMol();
97        
98 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
99 <        molStamp = (*i)->getMoleculeStamp();
100 <        nMolWithSameStamp = (*i)->getNMol();
101 <        
102 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
103 <
104 <        //calculate atoms in molecules
105 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
106 <
107 <        //calculate atoms in cutoff groups
108 <        int nAtomsInGroups = 0;
109 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
115 <        
116 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
117 <          cgStamp = molStamp->getCutoffGroupStamp(j);
118 <          nAtomsInGroups += cgStamp->getNMembers();
119 <        }
120 <
121 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
122 <
123 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
124 <
125 <        //calculate atoms in rigid bodies
126 <        int nAtomsInRigidBodies = 0;
127 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
128 <        
129 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
130 <          rbStamp = molStamp->getRigidBodyStamp(j);
131 <          nAtomsInRigidBodies += rbStamp->getNMembers();
132 <        }
133 <
134 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
135 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
136 <        
98 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
99 >      
100 >      //calculate atoms in molecules
101 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
102 >      
103 >      //calculate atoms in cutoff groups
104 >      int nAtomsInGroups = 0;
105 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
106 >      
107 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
108 >        cgStamp = molStamp->getCutoffGroupStamp(j);
109 >        nAtomsInGroups += cgStamp->getNMembers();
110        }
111 +      
112 +      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
113 +      
114 +      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
115 +      
116 +      //calculate atoms in rigid bodies
117 +      int nAtomsInRigidBodies = 0;
118 +      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
119 +      
120 +      for (int j=0; j < nRigidBodiesInStamp; j++) {
121 +        rbStamp = molStamp->getRigidBodyStamp(j);
122 +        nAtomsInRigidBodies += rbStamp->getNMembers();
123 +      }
124 +      
125 +      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
126 +      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
127 +      
128 +    }
129 +    
130 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
131 +    //group therefore the total number of cutoff groups in the system is
132 +    //equal to the total number of atoms minus number of atoms belong to
133 +    //cutoff group defined in meta-data file plus the number of cutoff
134 +    //groups defined in meta-data file
135 +    std::cerr << "nGA = " << nGlobalAtoms_ << "\n";
136 +    std::cerr << "nCA = " << nCutoffAtoms << "\n";
137 +    std::cerr << "nG = " << nGroups << "\n";
138  
139 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
140 <      //group therefore the total number of cutoff groups in the system is
141 <      //equal to the total number of atoms minus number of atoms belong to
142 <      //cutoff group defined in meta-data file plus the number of cutoff
143 <      //groups defined in meta-data file
144 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
139 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
140  
141 <      //every free atom (atom does not belong to rigid bodies) is an
142 <      //integrable object therefore the total number of integrable objects
143 <      //in the system is equal to the total number of atoms minus number of
144 <      //atoms belong to rigid body defined in meta-data file plus the number
145 <      //of rigid bodies defined in meta-data file
146 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
147 <                                                + nGlobalRigidBodies_;
141 >    std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n";
142 >    
143 >    //every free atom (atom does not belong to rigid bodies) is an
144 >    //integrable object therefore the total number of integrable objects
145 >    //in the system is equal to the total number of atoms minus number of
146 >    //atoms belong to rigid body defined in meta-data file plus the number
147 >    //of rigid bodies defined in meta-data file
148 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
149 >      + nGlobalRigidBodies_;
150 >    
151 >    nGlobalMols_ = molStampIds_.size();
152 >    molToProcMap_.resize(nGlobalMols_);
153 >  }
154    
154      nGlobalMols_ = molStampIds_.size();
155
156 #ifdef IS_MPI    
157      molToProcMap_.resize(nGlobalMols_);
158 #endif
159
160    }
161
155    SimInfo::~SimInfo() {
156 <    std::map<int, Molecule*>::iterator i;
156 >    map<int, Molecule*>::iterator i;
157      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
158        delete i->second;
159      }
# Line 171 | Line 164 | namespace oopse {
164      delete forceField_;
165    }
166  
174  int SimInfo::getNGlobalConstraints() {
175    int nGlobalConstraints;
176 #ifdef IS_MPI
177    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
178                  MPI_COMM_WORLD);    
179 #else
180    nGlobalConstraints =  nConstraints_;
181 #endif
182    return nGlobalConstraints;
183  }
167  
168    bool SimInfo::addMolecule(Molecule* mol) {
169      MoleculeIterator i;
170 <
170 >    
171      i = molecules_.find(mol->getGlobalIndex());
172      if (i == molecules_.end() ) {
173 <
174 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
175 <        
173 >      
174 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
175 >      
176        nAtoms_ += mol->getNAtoms();
177        nBonds_ += mol->getNBonds();
178        nBends_ += mol->getNBends();
179        nTorsions_ += mol->getNTorsions();
180 +      nInversions_ += mol->getNInversions();
181        nRigidBodies_ += mol->getNRigidBodies();
182        nIntegrableObjects_ += mol->getNIntegrableObjects();
183        nCutoffGroups_ += mol->getNCutoffGroups();
184        nConstraints_ += mol->getNConstraintPairs();
185 <
186 <      addExcludePairs(mol);
187 <        
185 >      
186 >      addInteractionPairs(mol);
187 >      
188        return true;
189      } else {
190        return false;
191      }
192    }
193 <
193 >  
194    bool SimInfo::removeMolecule(Molecule* mol) {
195      MoleculeIterator i;
196      i = molecules_.find(mol->getGlobalIndex());
# Line 219 | Line 203 | namespace oopse {
203        nBonds_ -= mol->getNBonds();
204        nBends_ -= mol->getNBends();
205        nTorsions_ -= mol->getNTorsions();
206 +      nInversions_ -= mol->getNInversions();
207        nRigidBodies_ -= mol->getNRigidBodies();
208        nIntegrableObjects_ -= mol->getNIntegrableObjects();
209        nCutoffGroups_ -= mol->getNCutoffGroups();
210        nConstraints_ -= mol->getNConstraintPairs();
211  
212 <      removeExcludePairs(mol);
212 >      removeInteractionPairs(mol);
213        molecules_.erase(mol->getGlobalIndex());
214  
215        delete mol;
# Line 233 | Line 218 | namespace oopse {
218      } else {
219        return false;
220      }
236
237
221    }    
222  
223          
# Line 252 | Line 235 | namespace oopse {
235    void SimInfo::calcNdf() {
236      int ndf_local;
237      MoleculeIterator i;
238 <    std::vector<StuntDouble*>::iterator j;
238 >    vector<StuntDouble*>::iterator j;
239      Molecule* mol;
240      StuntDouble* integrableObject;
241  
# Line 290 | Line 273 | namespace oopse {
273  
274    }
275  
276 +  int SimInfo::getFdf() {
277 + #ifdef IS_MPI
278 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
279 + #else
280 +    fdf_ = fdf_local;
281 + #endif
282 +    return fdf_;
283 +  }
284 +    
285    void SimInfo::calcNdfRaw() {
286      int ndfRaw_local;
287  
288      MoleculeIterator i;
289 <    std::vector<StuntDouble*>::iterator j;
289 >    vector<StuntDouble*>::iterator j;
290      Molecule* mol;
291      StuntDouble* integrableObject;
292  
# Line 341 | Line 333 | namespace oopse {
333  
334    }
335  
336 <  void SimInfo::addExcludePairs(Molecule* mol) {
337 <    std::vector<Bond*>::iterator bondIter;
338 <    std::vector<Bend*>::iterator bendIter;
339 <    std::vector<Torsion*>::iterator torsionIter;
336 >  void SimInfo::addInteractionPairs(Molecule* mol) {
337 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
338 >    vector<Bond*>::iterator bondIter;
339 >    vector<Bend*>::iterator bendIter;
340 >    vector<Torsion*>::iterator torsionIter;
341 >    vector<Inversion*>::iterator inversionIter;
342      Bond* bond;
343      Bend* bend;
344      Torsion* torsion;
345 +    Inversion* inversion;
346      int a;
347      int b;
348      int c;
349      int d;
350  
351 <    std::map<int, std::set<int> > atomGroups;
351 >    // atomGroups can be used to add special interaction maps between
352 >    // groups of atoms that are in two separate rigid bodies.
353 >    // However, most site-site interactions between two rigid bodies
354 >    // are probably not special, just the ones between the physically
355 >    // bonded atoms.  Interactions *within* a single rigid body should
356 >    // always be excluded.  These are done at the bottom of this
357 >    // function.
358  
359 +    map<int, set<int> > atomGroups;
360      Molecule::RigidBodyIterator rbIter;
361      RigidBody* rb;
362      Molecule::IntegrableObjectIterator ii;
363      StuntDouble* integrableObject;
364      
365 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
366 <           integrableObject = mol->nextIntegrableObject(ii)) {
367 <
365 >    for (integrableObject = mol->beginIntegrableObject(ii);
366 >         integrableObject != NULL;
367 >         integrableObject = mol->nextIntegrableObject(ii)) {
368 >      
369        if (integrableObject->isRigidBody()) {
370 <          rb = static_cast<RigidBody*>(integrableObject);
371 <          std::vector<Atom*> atoms = rb->getAtoms();
372 <          std::set<int> rigidAtoms;
373 <          for (int i = 0; i < atoms.size(); ++i) {
374 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
375 <          }
376 <          for (int i = 0; i < atoms.size(); ++i) {
377 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
378 <          }      
370 >        rb = static_cast<RigidBody*>(integrableObject);
371 >        vector<Atom*> atoms = rb->getAtoms();
372 >        set<int> rigidAtoms;
373 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
374 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
375 >        }
376 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
377 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
378 >        }      
379        } else {
380 <        std::set<int> oneAtomSet;
380 >        set<int> oneAtomSet;
381          oneAtomSet.insert(integrableObject->getGlobalIndex());
382 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
382 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
383        }
384      }  
385 +          
386 +    for (bond= mol->beginBond(bondIter); bond != NULL;
387 +         bond = mol->nextBond(bondIter)) {
388  
383    
384    
385    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
389        a = bond->getAtomA()->getGlobalIndex();
390 <      b = bond->getAtomB()->getGlobalIndex();        
391 <      exclude_.addPair(a, b);
390 >      b = bond->getAtomB()->getGlobalIndex();  
391 >    
392 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
393 >        oneTwoInteractions_.addPair(a, b);
394 >      } else {
395 >        excludedInteractions_.addPair(a, b);
396 >      }
397      }
398  
399 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
399 >    for (bend= mol->beginBend(bendIter); bend != NULL;
400 >         bend = mol->nextBend(bendIter)) {
401 >
402        a = bend->getAtomA()->getGlobalIndex();
403        b = bend->getAtomB()->getGlobalIndex();        
404        c = bend->getAtomC()->getGlobalIndex();
395      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
396      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
397      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
398
399      exclude_.addPairs(rigidSetA, rigidSetB);
400      exclude_.addPairs(rigidSetA, rigidSetC);
401      exclude_.addPairs(rigidSetB, rigidSetC);
405        
406 <      //exclude_.addPair(a, b);
407 <      //exclude_.addPair(a, c);
408 <      //exclude_.addPair(b, c);        
406 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
407 >        oneTwoInteractions_.addPair(a, b);      
408 >        oneTwoInteractions_.addPair(b, c);
409 >      } else {
410 >        excludedInteractions_.addPair(a, b);
411 >        excludedInteractions_.addPair(b, c);
412 >      }
413 >
414 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
415 >        oneThreeInteractions_.addPair(a, c);      
416 >      } else {
417 >        excludedInteractions_.addPair(a, c);
418 >      }
419      }
420  
421 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
421 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
422 >         torsion = mol->nextTorsion(torsionIter)) {
423 >
424        a = torsion->getAtomA()->getGlobalIndex();
425        b = torsion->getAtomB()->getGlobalIndex();        
426        c = torsion->getAtomC()->getGlobalIndex();        
427 <      d = torsion->getAtomD()->getGlobalIndex();        
413 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
414 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
415 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
416 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
427 >      d = torsion->getAtomD()->getGlobalIndex();      
428  
429 <      exclude_.addPairs(rigidSetA, rigidSetB);
430 <      exclude_.addPairs(rigidSetA, rigidSetC);
431 <      exclude_.addPairs(rigidSetA, rigidSetD);
432 <      exclude_.addPairs(rigidSetB, rigidSetC);
433 <      exclude_.addPairs(rigidSetB, rigidSetD);
434 <      exclude_.addPairs(rigidSetC, rigidSetD);
429 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
430 >        oneTwoInteractions_.addPair(a, b);      
431 >        oneTwoInteractions_.addPair(b, c);
432 >        oneTwoInteractions_.addPair(c, d);
433 >      } else {
434 >        excludedInteractions_.addPair(a, b);
435 >        excludedInteractions_.addPair(b, c);
436 >        excludedInteractions_.addPair(c, d);
437 >      }
438  
439 <      /*
440 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
441 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
442 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
443 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
444 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
445 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
446 <        
447 <      
448 <      exclude_.addPair(a, b);
449 <      exclude_.addPair(a, c);
450 <      exclude_.addPair(a, d);
451 <      exclude_.addPair(b, c);
438 <      exclude_.addPair(b, d);
439 <      exclude_.addPair(c, d);        
440 <      */
439 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
440 >        oneThreeInteractions_.addPair(a, c);      
441 >        oneThreeInteractions_.addPair(b, d);      
442 >      } else {
443 >        excludedInteractions_.addPair(a, c);
444 >        excludedInteractions_.addPair(b, d);
445 >      }
446 >
447 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
448 >        oneFourInteractions_.addPair(a, d);      
449 >      } else {
450 >        excludedInteractions_.addPair(a, d);
451 >      }
452      }
453  
454 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
455 <      std::vector<Atom*> atoms = rb->getAtoms();
456 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
457 <        for (int j = i + 1; j < atoms.size(); ++j) {
454 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
455 >         inversion = mol->nextInversion(inversionIter)) {
456 >
457 >      a = inversion->getAtomA()->getGlobalIndex();
458 >      b = inversion->getAtomB()->getGlobalIndex();        
459 >      c = inversion->getAtomC()->getGlobalIndex();        
460 >      d = inversion->getAtomD()->getGlobalIndex();        
461 >
462 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
463 >        oneTwoInteractions_.addPair(a, b);      
464 >        oneTwoInteractions_.addPair(a, c);
465 >        oneTwoInteractions_.addPair(a, d);
466 >      } else {
467 >        excludedInteractions_.addPair(a, b);
468 >        excludedInteractions_.addPair(a, c);
469 >        excludedInteractions_.addPair(a, d);
470 >      }
471 >
472 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
473 >        oneThreeInteractions_.addPair(b, c);    
474 >        oneThreeInteractions_.addPair(b, d);    
475 >        oneThreeInteractions_.addPair(c, d);      
476 >      } else {
477 >        excludedInteractions_.addPair(b, c);
478 >        excludedInteractions_.addPair(b, d);
479 >        excludedInteractions_.addPair(c, d);
480 >      }
481 >    }
482 >
483 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
484 >         rb = mol->nextRigidBody(rbIter)) {
485 >      vector<Atom*> atoms = rb->getAtoms();
486 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
487 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
488            a = atoms[i]->getGlobalIndex();
489            b = atoms[j]->getGlobalIndex();
490 <          exclude_.addPair(a, b);
490 >          excludedInteractions_.addPair(a, b);
491          }
492        }
493      }        
494  
495    }
496  
497 <  void SimInfo::removeExcludePairs(Molecule* mol) {
498 <    std::vector<Bond*>::iterator bondIter;
499 <    std::vector<Bend*>::iterator bendIter;
500 <    std::vector<Torsion*>::iterator torsionIter;
497 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
498 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
499 >    vector<Bond*>::iterator bondIter;
500 >    vector<Bend*>::iterator bendIter;
501 >    vector<Torsion*>::iterator torsionIter;
502 >    vector<Inversion*>::iterator inversionIter;
503      Bond* bond;
504      Bend* bend;
505      Torsion* torsion;
506 +    Inversion* inversion;
507      int a;
508      int b;
509      int c;
510      int d;
511  
512 <    std::map<int, std::set<int> > atomGroups;
469 <
512 >    map<int, set<int> > atomGroups;
513      Molecule::RigidBodyIterator rbIter;
514      RigidBody* rb;
515      Molecule::IntegrableObjectIterator ii;
516      StuntDouble* integrableObject;
517      
518 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
519 <           integrableObject = mol->nextIntegrableObject(ii)) {
520 <
518 >    for (integrableObject = mol->beginIntegrableObject(ii);
519 >         integrableObject != NULL;
520 >         integrableObject = mol->nextIntegrableObject(ii)) {
521 >      
522        if (integrableObject->isRigidBody()) {
523 <          rb = static_cast<RigidBody*>(integrableObject);
524 <          std::vector<Atom*> atoms = rb->getAtoms();
525 <          std::set<int> rigidAtoms;
526 <          for (int i = 0; i < atoms.size(); ++i) {
527 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
528 <          }
529 <          for (int i = 0; i < atoms.size(); ++i) {
530 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
531 <          }      
523 >        rb = static_cast<RigidBody*>(integrableObject);
524 >        vector<Atom*> atoms = rb->getAtoms();
525 >        set<int> rigidAtoms;
526 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
527 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
528 >        }
529 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
530 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
531 >        }      
532        } else {
533 <        std::set<int> oneAtomSet;
533 >        set<int> oneAtomSet;
534          oneAtomSet.insert(integrableObject->getGlobalIndex());
535 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
535 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
536        }
537      }  
538  
539 <    
540 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
539 >    for (bond= mol->beginBond(bondIter); bond != NULL;
540 >         bond = mol->nextBond(bondIter)) {
541 >      
542        a = bond->getAtomA()->getGlobalIndex();
543 <      b = bond->getAtomB()->getGlobalIndex();        
544 <      exclude_.removePair(a, b);
543 >      b = bond->getAtomB()->getGlobalIndex();  
544 >    
545 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
546 >        oneTwoInteractions_.removePair(a, b);
547 >      } else {
548 >        excludedInteractions_.removePair(a, b);
549 >      }
550      }
551  
552 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
552 >    for (bend= mol->beginBend(bendIter); bend != NULL;
553 >         bend = mol->nextBend(bendIter)) {
554 >
555        a = bend->getAtomA()->getGlobalIndex();
556        b = bend->getAtomB()->getGlobalIndex();        
557        c = bend->getAtomC()->getGlobalIndex();
506
507      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
508      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
509      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
510
511      exclude_.removePairs(rigidSetA, rigidSetB);
512      exclude_.removePairs(rigidSetA, rigidSetC);
513      exclude_.removePairs(rigidSetB, rigidSetC);
558        
559 <      //exclude_.removePair(a, b);
560 <      //exclude_.removePair(a, c);
561 <      //exclude_.removePair(b, c);        
559 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
560 >        oneTwoInteractions_.removePair(a, b);      
561 >        oneTwoInteractions_.removePair(b, c);
562 >      } else {
563 >        excludedInteractions_.removePair(a, b);
564 >        excludedInteractions_.removePair(b, c);
565 >      }
566 >
567 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
568 >        oneThreeInteractions_.removePair(a, c);      
569 >      } else {
570 >        excludedInteractions_.removePair(a, c);
571 >      }
572      }
573  
574 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
574 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
575 >         torsion = mol->nextTorsion(torsionIter)) {
576 >
577        a = torsion->getAtomA()->getGlobalIndex();
578        b = torsion->getAtomB()->getGlobalIndex();        
579        c = torsion->getAtomC()->getGlobalIndex();        
580 <      d = torsion->getAtomD()->getGlobalIndex();        
580 >      d = torsion->getAtomD()->getGlobalIndex();      
581 >  
582 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
583 >        oneTwoInteractions_.removePair(a, b);      
584 >        oneTwoInteractions_.removePair(b, c);
585 >        oneTwoInteractions_.removePair(c, d);
586 >      } else {
587 >        excludedInteractions_.removePair(a, b);
588 >        excludedInteractions_.removePair(b, c);
589 >        excludedInteractions_.removePair(c, d);
590 >      }
591  
592 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
593 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
594 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
595 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
592 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
593 >        oneThreeInteractions_.removePair(a, c);      
594 >        oneThreeInteractions_.removePair(b, d);      
595 >      } else {
596 >        excludedInteractions_.removePair(a, c);
597 >        excludedInteractions_.removePair(b, d);
598 >      }
599  
600 <      exclude_.removePairs(rigidSetA, rigidSetB);
601 <      exclude_.removePairs(rigidSetA, rigidSetC);
602 <      exclude_.removePairs(rigidSetA, rigidSetD);
603 <      exclude_.removePairs(rigidSetB, rigidSetC);
604 <      exclude_.removePairs(rigidSetB, rigidSetD);
605 <      exclude_.removePairs(rigidSetC, rigidSetD);
600 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
601 >        oneFourInteractions_.removePair(a, d);      
602 >      } else {
603 >        excludedInteractions_.removePair(a, d);
604 >      }
605 >    }
606  
607 <      /*
608 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
540 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
541 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
542 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
543 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
544 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
607 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
608 >         inversion = mol->nextInversion(inversionIter)) {
609  
610 <      
611 <      exclude_.removePair(a, b);
612 <      exclude_.removePair(a, c);
613 <      exclude_.removePair(a, d);
614 <      exclude_.removePair(b, c);
615 <      exclude_.removePair(b, d);
616 <      exclude_.removePair(c, d);        
617 <      */
610 >      a = inversion->getAtomA()->getGlobalIndex();
611 >      b = inversion->getAtomB()->getGlobalIndex();        
612 >      c = inversion->getAtomC()->getGlobalIndex();        
613 >      d = inversion->getAtomD()->getGlobalIndex();        
614 >
615 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
616 >        oneTwoInteractions_.removePair(a, b);      
617 >        oneTwoInteractions_.removePair(a, c);
618 >        oneTwoInteractions_.removePair(a, d);
619 >      } else {
620 >        excludedInteractions_.removePair(a, b);
621 >        excludedInteractions_.removePair(a, c);
622 >        excludedInteractions_.removePair(a, d);
623 >      }
624 >
625 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
626 >        oneThreeInteractions_.removePair(b, c);    
627 >        oneThreeInteractions_.removePair(b, d);    
628 >        oneThreeInteractions_.removePair(c, d);      
629 >      } else {
630 >        excludedInteractions_.removePair(b, c);
631 >        excludedInteractions_.removePair(b, d);
632 >        excludedInteractions_.removePair(c, d);
633 >      }
634      }
635  
636 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
637 <      std::vector<Atom*> atoms = rb->getAtoms();
638 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
639 <        for (int j = i + 1; j < atoms.size(); ++j) {
636 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
637 >         rb = mol->nextRigidBody(rbIter)) {
638 >      vector<Atom*> atoms = rb->getAtoms();
639 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
640 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
641            a = atoms[i]->getGlobalIndex();
642            b = atoms[j]->getGlobalIndex();
643 <          exclude_.removePair(a, b);
643 >          excludedInteractions_.removePair(a, b);
644          }
645        }
646      }        
647 <
647 >    
648    }
649 <
650 <
649 >  
650 >  
651    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
652      int curStampId;
653 <
653 >    
654      //index from 0
655      curStampId = moleculeStamps_.size();
656  
# Line 577 | Line 658 | namespace oopse {
658      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
659    }
660  
580  void SimInfo::update() {
661  
662 <    setupSimType();
663 <
664 < #ifdef IS_MPI
665 <    setupFortranParallel();
666 < #endif
667 <
668 <    setupFortranSim();
669 <
670 <    //setup fortran force field
591 <    /** @deprecate */    
592 <    int isError = 0;
593 <    
594 <    setupElectrostaticSummationMethod( isError );
595 <    setupSwitchingFunction();
596 <
597 <    if(isError){
598 <      sprintf( painCave.errMsg,
599 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
600 <      painCave.isFatal = 1;
601 <      simError();
602 <    }
603 <  
604 <    
605 <    setupCutoff();
606 <
662 >  /**
663 >   * update
664 >   *
665 >   *  Performs the global checks and variable settings after the
666 >   *  objects have been created.
667 >   *
668 >   */
669 >  void SimInfo::update() {  
670 >    setupSimVariables();
671      calcNdf();
672      calcNdfRaw();
673      calcNdfTrans();
610
611    fortranInitialized_ = true;
674    }
675 <
676 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
675 >  
676 >  /**
677 >   * getSimulatedAtomTypes
678 >   *
679 >   * Returns an STL set of AtomType* that are actually present in this
680 >   * simulation.  Must query all processors to assemble this information.
681 >   *
682 >   */
683 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
684      SimInfo::MoleculeIterator mi;
685      Molecule* mol;
686      Molecule::AtomIterator ai;
687      Atom* atom;
688 <    std::set<AtomType*> atomTypes;
689 <
690 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
622 <
688 >    set<AtomType*> atomTypes;
689 >    
690 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
691        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
692          atomTypes.insert(atom->getAtomType());
693 <      }
694 <        
627 <    }
693 >      }      
694 >    }    
695  
696 <    return atomTypes;        
630 <  }
696 > #ifdef IS_MPI
697  
698 <  void SimInfo::setupSimType() {
699 <    std::set<AtomType*>::iterator i;
634 <    std::set<AtomType*> atomTypes;
635 <    atomTypes = getUniqueAtomTypes();
636 <    
637 <    int useLennardJones = 0;
638 <    int useElectrostatic = 0;
639 <    int useEAM = 0;
640 <    int useSC = 0;
641 <    int useCharge = 0;
642 <    int useDirectional = 0;
643 <    int useDipole = 0;
644 <    int useGayBerne = 0;
645 <    int useSticky = 0;
646 <    int useStickyPower = 0;
647 <    int useShape = 0;
648 <    int useFLARB = 0; //it is not in AtomType yet
649 <    int useDirectionalAtom = 0;    
650 <    int useElectrostatics = 0;
651 <    //usePBC and useRF are from simParams
652 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
653 <    int useRF;
654 <    int useSF;
655 <    std::string myMethod;
698 >    // loop over the found atom types on this processor, and add their
699 >    // numerical idents to a vector:
700  
701 <    // set the useRF logical
702 <    useRF = 0;
703 <    useSF = 0;
701 >    vector<int> foundTypes;
702 >    set<AtomType*>::iterator i;
703 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
704 >      foundTypes.push_back( (*i)->getIdent() );
705  
706 +    // count_local holds the number of found types on this processor
707 +    int count_local = foundTypes.size();
708  
709 <    if (simParams_->haveElectrostaticSummationMethod()) {
710 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
711 <      toUpper(myMethod);
712 <      if (myMethod == "REACTION_FIELD") {
713 <        useRF=1;
714 <      } else {
715 <        if (myMethod == "SHIFTED_FORCE") {
716 <          useSF = 1;
717 <        }
709 >    // count holds the total number of found types on all processors
710 >    // (some will be redundant with the ones found locally):
711 >    int count;
712 >    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
713 >
714 >    // create a vector to hold the globally found types, and resize it:
715 >    vector<int> ftGlobal;
716 >    ftGlobal.resize(count);
717 >    vector<int> counts;
718 >
719 >    int nproc = MPI::COMM_WORLD.Get_size();
720 >    counts.resize(nproc);
721 >    vector<int> disps;
722 >    disps.resize(nproc);
723 >
724 >    // now spray out the foundTypes to all the other processors:
725 >    
726 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
727 >                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
728 >
729 >    // foundIdents is a stl set, so inserting an already found ident
730 >    // will have no effect.
731 >    set<int> foundIdents;
732 >    vector<int>::iterator j;
733 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
734 >      foundIdents.insert((*j));
735 >    
736 >    // now iterate over the foundIdents and get the actual atom types
737 >    // that correspond to these:
738 >    set<int>::iterator it;
739 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
740 >      atomTypes.insert( forceField_->getAtomType((*it)) );
741 >
742 > #endif
743 >    
744 >    return atomTypes;        
745 >  }
746 >
747 >  void SimInfo::setupSimVariables() {
748 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
749 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
750 >    calcBoxDipole_ = false;
751 >    if ( simParams_->haveAccumulateBoxDipole() )
752 >      if ( simParams_->getAccumulateBoxDipole() ) {
753 >        calcBoxDipole_ = true;      
754        }
672    }
755  
756 +    set<AtomType*>::iterator i;
757 +    set<AtomType*> atomTypes;
758 +    atomTypes = getSimulatedAtomTypes();    
759 +    int usesElectrostatic = 0;
760 +    int usesMetallic = 0;
761 +    int usesDirectional = 0;
762      //loop over all of the atom types
763      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
764 <      useLennardJones |= (*i)->isLennardJones();
765 <      useElectrostatic |= (*i)->isElectrostatic();
766 <      useEAM |= (*i)->isEAM();
679 <      useSC |= (*i)->isSC();
680 <      useCharge |= (*i)->isCharge();
681 <      useDirectional |= (*i)->isDirectional();
682 <      useDipole |= (*i)->isDipole();
683 <      useGayBerne |= (*i)->isGayBerne();
684 <      useSticky |= (*i)->isSticky();
685 <      useStickyPower |= (*i)->isStickyPower();
686 <      useShape |= (*i)->isShape();
764 >      usesElectrostatic |= (*i)->isElectrostatic();
765 >      usesMetallic |= (*i)->isMetal();
766 >      usesDirectional |= (*i)->isDirectional();
767      }
768  
689    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
690      useDirectionalAtom = 1;
691    }
692
693    if (useCharge || useDipole) {
694      useElectrostatics = 1;
695    }
696
769   #ifdef IS_MPI    
770      int temp;
771 +    temp = usesDirectional;
772 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
773  
774 <    temp = usePBC;
775 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
774 >    temp = usesMetallic;
775 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
776  
777 <    temp = useDirectionalAtom;
778 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
777 >    temp = usesElectrostatic;
778 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
779 > #endif
780 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
781 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
782 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
783 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
784 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
785 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
786 >  }
787  
706    temp = useLennardJones;
707    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
788  
789 <    temp = useElectrostatics;
790 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
789 >  vector<int> SimInfo::getGlobalAtomIndices() {
790 >    SimInfo::MoleculeIterator mi;
791 >    Molecule* mol;
792 >    Molecule::AtomIterator ai;
793 >    Atom* atom;
794  
795 <    temp = useCharge;
713 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
714 <
715 <    temp = useDipole;
716 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
717 <
718 <    temp = useSticky;
719 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
720 <
721 <    temp = useStickyPower;
722 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
795 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
796      
797 <    temp = useGayBerne;
798 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
797 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
798 >      
799 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
800 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
801 >      }
802 >    }
803 >    return GlobalAtomIndices;
804 >  }
805  
727    temp = useEAM;
728    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
806  
807 <    temp = useSC;
808 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
809 <    
810 <    temp = useShape;
811 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
812 <
813 <    temp = useFLARB;
814 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
815 <
739 <    temp = useRF;
740 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
741 <
742 <    temp = useSF;
743 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
744 <
745 < #endif
746 <
747 <    fInfo_.SIM_uses_PBC = usePBC;    
748 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
749 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
750 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
751 <    fInfo_.SIM_uses_Charges = useCharge;
752 <    fInfo_.SIM_uses_Dipoles = useDipole;
753 <    fInfo_.SIM_uses_Sticky = useSticky;
754 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
755 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
756 <    fInfo_.SIM_uses_EAM = useEAM;
757 <    fInfo_.SIM_uses_SC = useSC;
758 <    fInfo_.SIM_uses_Shapes = useShape;
759 <    fInfo_.SIM_uses_FLARB = useFLARB;
760 <    fInfo_.SIM_uses_RF = useRF;
761 <    fInfo_.SIM_uses_SF = useSF;
762 <
763 <    if( myMethod == "REACTION_FIELD") {
807 >  vector<int> SimInfo::getGlobalGroupIndices() {
808 >    SimInfo::MoleculeIterator mi;
809 >    Molecule* mol;
810 >    Molecule::CutoffGroupIterator ci;
811 >    CutoffGroup* cg;
812 >
813 >    vector<int> GlobalGroupIndices;
814 >    
815 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
816        
817 <      if (simParams_->haveDielectric()) {
818 <        fInfo_.dielect = simParams_->getDielectric();
819 <      } else {
820 <        sprintf(painCave.errMsg,
821 <                "SimSetup Error: No Dielectric constant was set.\n"
822 <                "\tYou are trying to use Reaction Field without"
771 <                "\tsetting a dielectric constant!\n");
772 <        painCave.isFatal = 1;
773 <        simError();
774 <      }      
817 >      //local index of cutoff group is trivial, it only depends on the
818 >      //order of travesing
819 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
820 >           cg = mol->nextCutoffGroup(ci)) {
821 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
822 >      }        
823      }
824 <
824 >    return GlobalGroupIndices;
825    }
826  
827 <  void SimInfo::setupFortranSim() {
827 >
828 >  void SimInfo::setupFortran() {
829      int isError;
830 <    int nExclude;
831 <    std::vector<int> fortranGlobalGroupMembership;
830 >    int nExclude, nOneTwo, nOneThree, nOneFour;
831 >    vector<int> fortranGlobalGroupMembership;
832      
784    nExclude = exclude_.getSize();
833      isError = 0;
834  
835      //globalGroupMembership_ is filled by SimCreator    
# Line 790 | Line 838 | namespace oopse {
838      }
839  
840      //calculate mass ratio of cutoff group
841 <    std::vector<double> mfact;
841 >    vector<RealType> mfact;
842      SimInfo::MoleculeIterator mi;
843      Molecule* mol;
844      Molecule::CutoffGroupIterator ci;
845      CutoffGroup* cg;
846      Molecule::AtomIterator ai;
847      Atom* atom;
848 <    double totalMass;
848 >    RealType totalMass;
849  
850      //to avoid memory reallocation, reserve enough space for mfact
851      mfact.reserve(getNCutoffGroups());
# Line 813 | Line 861 | namespace oopse {
861            else
862              mfact.push_back( 1.0 );
863          }
816
864        }      
865      }
866  
867 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
821 <    std::vector<int> identArray;
867 >    // Build the identArray_
868  
869 <    //to avoid memory reallocation, reserve enough space identArray
870 <    identArray.reserve(getNAtoms());
825 <    
869 >    identArray_.clear();
870 >    identArray_.reserve(getNAtoms());    
871      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
872        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
873 <        identArray.push_back(atom->getIdent());
873 >        identArray_.push_back(atom->getIdent());
874        }
875      }    
876  
877      //fill molMembershipArray
878      //molMembershipArray is filled by SimCreator    
879 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
879 >    vector<int> molMembershipArray(nGlobalAtoms_);
880      for (int i = 0; i < nGlobalAtoms_; i++) {
881        molMembershipArray[i] = globalMolMembership_[i] + 1;
882      }
883      
884      //setup fortran simulation
840    int nGlobalExcludes = 0;
841    int* globalExcludes = NULL;
842    int* excludeList = exclude_.getExcludeList();
843    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
844                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
845                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
885  
886 <    if( isError ){
886 >    nExclude = excludedInteractions_.getSize();
887 >    nOneTwo = oneTwoInteractions_.getSize();
888 >    nOneThree = oneThreeInteractions_.getSize();
889 >    nOneFour = oneFourInteractions_.getSize();
890  
891 +    int* excludeList = excludedInteractions_.getPairList();
892 +    int* oneTwoList = oneTwoInteractions_.getPairList();
893 +    int* oneThreeList = oneThreeInteractions_.getPairList();
894 +    int* oneFourList = oneFourInteractions_.getPairList();
895 +
896 +    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0],
897 +                   &nExclude, excludeList,
898 +                   &nOneTwo, oneTwoList,
899 +                   &nOneThree, oneThreeList,
900 +                   &nOneFour, oneFourList,
901 +                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
902 +                   &fortranGlobalGroupMembership[0], &isError);
903 +    
904 +    if( isError ){
905 +      
906        sprintf( painCave.errMsg,
907                 "There was an error setting the simulation information in fortran.\n" );
908        painCave.isFatal = 1;
909 <      painCave.severity = OOPSE_ERROR;
909 >      painCave.severity = OPENMD_ERROR;
910        simError();
911      }
912 <
913 < #ifdef IS_MPI
912 >    
913 >    
914      sprintf( checkPointMsg,
915               "succesfully sent the simulation information to fortran.\n");
859    MPIcheckPoint();
860 #endif // is_mpi
861  }
862
863
864 #ifdef IS_MPI
865  void SimInfo::setupFortranParallel() {
916      
917 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
918 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
919 <    std::vector<int> localToGlobalCutoffGroupIndex;
920 <    SimInfo::MoleculeIterator mi;
921 <    Molecule::AtomIterator ai;
922 <    Molecule::CutoffGroupIterator ci;
923 <    Molecule* mol;
924 <    Atom* atom;
925 <    CutoffGroup* cg;
917 >    errorCheckPoint();
918 >    
919 >    // Setup number of neighbors in neighbor list if present
920 >    if (simParams_->haveNeighborListNeighbors()) {
921 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
922 >      setNeighbors(&nlistNeighbors);
923 >    }
924 >  
925 > #ifdef IS_MPI    
926      mpiSimData parallelData;
877    int isError;
927  
879    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
880
881      //local index(index in DataStorge) of atom is important
882      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
883        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
884      }
885
886      //local index of cutoff group is trivial, it only depends on the order of travesing
887      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
888        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
889      }        
890        
891    }
892
928      //fill up mpiSimData struct
929      parallelData.nMolGlobal = getNGlobalMolecules();
930      parallelData.nMolLocal = getNMolecules();
# Line 901 | Line 936 | namespace oopse {
936      MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
937  
938      //pass mpiSimData struct and index arrays to fortran
939 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
940 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
941 <                    &localToGlobalCutoffGroupIndex[0], &isError);
939 >    //setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
940 >    //                &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
941 >    //                &localToGlobalCutoffGroupIndex[0], &isError);
942  
943      if (isError) {
944        sprintf(painCave.errMsg,
# Line 913 | Line 948 | namespace oopse {
948      }
949  
950      sprintf(checkPointMsg, " mpiRefresh successful.\n");
951 <    MPIcheckPoint();
917 <
918 <
919 <  }
920 <
951 >    errorCheckPoint();
952   #endif
953  
954 <  void SimInfo::setupCutoff() {          
955 <    
956 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
957 <
958 <    // Check the cutoff policy
959 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
929 <
930 <    std::string myPolicy;
931 <    if (forceFieldOptions_.haveCutoffPolicy()){
932 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
933 <    }else if (simParams_->haveCutoffPolicy()) {
934 <      myPolicy = simParams_->getCutoffPolicy();
954 >    initFortranFF(&isError);
955 >    if (isError) {
956 >      sprintf(painCave.errMsg,
957 >              "initFortranFF errror: fortran didn't like something we gave it.\n");
958 >      painCave.isFatal = 1;
959 >      simError();
960      }
961 <
937 <    if (!myPolicy.empty()){
938 <      toUpper(myPolicy);
939 <      if (myPolicy == "MIX") {
940 <        cp = MIX_CUTOFF_POLICY;
941 <      } else {
942 <        if (myPolicy == "MAX") {
943 <          cp = MAX_CUTOFF_POLICY;
944 <        } else {
945 <          if (myPolicy == "TRADITIONAL") {            
946 <            cp = TRADITIONAL_CUTOFF_POLICY;
947 <          } else {
948 <            // throw error        
949 <            sprintf( painCave.errMsg,
950 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
951 <            painCave.isFatal = 1;
952 <            simError();
953 <          }    
954 <        }          
955 <      }
956 <    }          
957 <    notifyFortranCutoffPolicy(&cp);
958 <
959 <    // Check the Skin Thickness for neighborlists
960 <    double skin;
961 <    if (simParams_->haveSkinThickness()) {
962 <      skin = simParams_->getSkinThickness();
963 <      notifyFortranSkinThickness(&skin);
964 <    }            
965 <        
966 <    // Check if the cutoff was set explicitly:
967 <    if (simParams_->haveCutoffRadius()) {
968 <      rcut_ = simParams_->getCutoffRadius();
969 <      if (simParams_->haveSwitchingRadius()) {
970 <        rsw_  = simParams_->getSwitchingRadius();
971 <      } else {
972 <        rsw_ = rcut_;
973 <      }
974 <      notifyFortranCutoffs(&rcut_, &rsw_);
975 <      
976 <    } else {
977 <      
978 <      // For electrostatic atoms, we'll assume a large safe value:
979 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
980 <        sprintf(painCave.errMsg,
981 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
982 <                "\tOOPSE will use a default value of 15.0 angstroms"
983 <                "\tfor the cutoffRadius.\n");
984 <        painCave.isFatal = 0;
985 <        simError();
986 <        rcut_ = 15.0;
987 <      
988 <        if (simParams_->haveElectrostaticSummationMethod()) {
989 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
990 <          toUpper(myMethod);
991 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
992 <            if (simParams_->haveSwitchingRadius()){
993 <              sprintf(painCave.errMsg,
994 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
995 <                      "\teven though the electrostaticSummationMethod was\n"
996 <                      "\tset to %s\n", myMethod.c_str());
997 <              painCave.isFatal = 1;
998 <              simError();            
999 <            }
1000 <          }
1001 <        }
1002 <      
1003 <        if (simParams_->haveSwitchingRadius()){
1004 <          rsw_ = simParams_->getSwitchingRadius();
1005 <        } else {        
1006 <          sprintf(painCave.errMsg,
1007 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1008 <                  "\tOOPSE will use a default value of\n"
1009 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1010 <          painCave.isFatal = 0;
1011 <          simError();
1012 <          rsw_ = 0.85 * rcut_;
1013 <        }
1014 <        notifyFortranCutoffs(&rcut_, &rsw_);
1015 <      } else {
1016 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1017 <        // We'll punt and let fortran figure out the cutoffs later.
1018 <        
1019 <        notifyFortranYouAreOnYourOwn();
1020 <
1021 <      }
1022 <    }
1023 <  }
1024 <
1025 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1026 <    
1027 <    int errorOut;
1028 <    int esm =  NONE;
1029 <    int sm = UNDAMPED;
1030 <    double alphaVal;
1031 <    double dielectric;
1032 <
1033 <    errorOut = isError;
1034 <    alphaVal = simParams_->getDampingAlpha();
1035 <    dielectric = simParams_->getDielectric();
1036 <
1037 <    if (simParams_->haveElectrostaticSummationMethod()) {
1038 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1039 <      toUpper(myMethod);
1040 <      if (myMethod == "NONE") {
1041 <        esm = NONE;
1042 <      } else {
1043 <        if (myMethod == "SWITCHING_FUNCTION") {
1044 <          esm = SWITCHING_FUNCTION;
1045 <        } else {
1046 <          if (myMethod == "SHIFTED_POTENTIAL") {
1047 <            esm = SHIFTED_POTENTIAL;
1048 <          } else {
1049 <            if (myMethod == "SHIFTED_FORCE") {            
1050 <              esm = SHIFTED_FORCE;
1051 <            } else {
1052 <              if (myMethod == "REACTION_FIELD") {            
1053 <                esm = REACTION_FIELD;
1054 <              } else {
1055 <                // throw error        
1056 <                sprintf( painCave.errMsg,
1057 <                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1058 <                         "\t(Input file specified %s .)\n"
1059 <                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1060 <                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1061 <                         "\t\"reaction_field\".\n", myMethod.c_str() );
1062 <                painCave.isFatal = 1;
1063 <                simError();
1064 <              }    
1065 <            }          
1066 <          }
1067 <        }
1068 <      }
1069 <    }
1070 <    
1071 <    if (simParams_->haveElectrostaticScreeningMethod()) {
1072 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1073 <      toUpper(myScreen);
1074 <      if (myScreen == "UNDAMPED") {
1075 <        sm = UNDAMPED;
1076 <      } else {
1077 <        if (myScreen == "DAMPED") {
1078 <          sm = DAMPED;
1079 <          if (!simParams_->haveDampingAlpha()) {
1080 <            //throw error
1081 <            sprintf( painCave.errMsg,
1082 <                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1083 <                     "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1084 <            painCave.isFatal = 0;
1085 <            simError();
1086 <          }
1087 <        } else {
1088 <          // throw error        
1089 <          sprintf( painCave.errMsg,
1090 <                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1091 <                   "\t(Input file specified %s .)\n"
1092 <                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1093 <                   "or \"damped\".\n", myScreen.c_str() );
1094 <          painCave.isFatal = 1;
1095 <          simError();
1096 <        }
1097 <      }
1098 <    }
1099 <    
1100 <    // let's pass some summation method variables to fortran
1101 <    setElectrostaticSumMethod( &esm );
1102 <    setFortranElectrostaticMethod( &esm );
1103 <    setScreeningMethod( &sm );
1104 <    setDampingAlpha( &alphaVal );
1105 <    setReactionFieldDielectric( &dielectric );
1106 <    initFortranFF( &errorOut );
1107 <  }
1108 <
1109 <  void SimInfo::setupSwitchingFunction() {    
1110 <    int ft = CUBIC;
1111 <
1112 <    if (simParams_->haveSwitchingFunctionType()) {
1113 <      std::string funcType = simParams_->getSwitchingFunctionType();
1114 <      toUpper(funcType);
1115 <      if (funcType == "CUBIC") {
1116 <        ft = CUBIC;
1117 <      } else {
1118 <        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1119 <          ft = FIFTH_ORDER_POLY;
1120 <        } else {
1121 <          // throw error        
1122 <          sprintf( painCave.errMsg,
1123 <                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1124 <          painCave.isFatal = 1;
1125 <          simError();
1126 <        }          
1127 <      }
1128 <    }
1129 <
1130 <    // send switching function notification to switcheroo
1131 <    setFunctionType(&ft);
1132 <
961 >    fortranInitialized_ = true;
962    }
963  
964    void SimInfo::addProperty(GenericData* genData) {
965      properties_.addProperty(genData);  
966    }
967  
968 <  void SimInfo::removeProperty(const std::string& propName) {
968 >  void SimInfo::removeProperty(const string& propName) {
969      properties_.removeProperty(propName);  
970    }
971  
# Line 1144 | Line 973 | namespace oopse {
973      properties_.clearProperties();
974    }
975  
976 <  std::vector<std::string> SimInfo::getPropertyNames() {
976 >  vector<string> SimInfo::getPropertyNames() {
977      return properties_.getPropertyNames();  
978    }
979        
980 <  std::vector<GenericData*> SimInfo::getProperties() {
980 >  vector<GenericData*> SimInfo::getProperties() {
981      return properties_.getProperties();
982    }
983  
984 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
984 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
985      return properties_.getPropertyByName(propName);
986    }
987  
# Line 1166 | Line 995 | namespace oopse {
995      Molecule* mol;
996      RigidBody* rb;
997      Atom* atom;
998 +    CutoffGroup* cg;
999      SimInfo::MoleculeIterator mi;
1000      Molecule::RigidBodyIterator rbIter;
1001 <    Molecule::AtomIterator atomIter;;
1001 >    Molecule::AtomIterator atomIter;
1002 >    Molecule::CutoffGroupIterator cgIter;
1003  
1004      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1005          
# Line 1179 | Line 1010 | namespace oopse {
1010        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1011          rb->setSnapshotManager(sman_);
1012        }
1013 +
1014 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
1015 +        cg->setSnapshotManager(sman_);
1016 +      }
1017      }    
1018      
1019    }
# Line 1188 | Line 1023 | namespace oopse {
1023      Molecule* mol;
1024  
1025      Vector3d comVel(0.0);
1026 <    double totalMass = 0.0;
1026 >    RealType totalMass = 0.0;
1027      
1028  
1029      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1030 <      double mass = mol->getMass();
1030 >      RealType mass = mol->getMass();
1031        totalMass += mass;
1032        comVel += mass * mol->getComVel();
1033      }  
1034  
1035   #ifdef IS_MPI
1036 <    double tmpMass = totalMass;
1036 >    RealType tmpMass = totalMass;
1037      Vector3d tmpComVel(comVel);    
1038 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1039 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1038 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1039 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1040   #endif
1041  
1042      comVel /= totalMass;
# Line 1214 | Line 1049 | namespace oopse {
1049      Molecule* mol;
1050  
1051      Vector3d com(0.0);
1052 <    double totalMass = 0.0;
1052 >    RealType totalMass = 0.0;
1053      
1054      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1055 <      double mass = mol->getMass();
1055 >      RealType mass = mol->getMass();
1056        totalMass += mass;
1057        com += mass * mol->getCom();
1058      }  
1059  
1060   #ifdef IS_MPI
1061 <    double tmpMass = totalMass;
1061 >    RealType tmpMass = totalMass;
1062      Vector3d tmpCom(com);    
1063 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1064 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1063 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1064 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1065   #endif
1066  
1067      com /= totalMass;
# Line 1235 | Line 1070 | namespace oopse {
1070  
1071    }        
1072  
1073 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1073 >  ostream& operator <<(ostream& o, SimInfo& info) {
1074  
1075      return o;
1076    }
# Line 1250 | Line 1085 | namespace oopse {
1085        Molecule* mol;
1086        
1087      
1088 <      double totalMass = 0.0;
1088 >      RealType totalMass = 0.0;
1089      
1090  
1091        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1092 <         double mass = mol->getMass();
1092 >         RealType mass = mol->getMass();
1093           totalMass += mass;
1094           com += mass * mol->getCom();
1095           comVel += mass * mol->getComVel();          
1096        }  
1097        
1098   #ifdef IS_MPI
1099 <      double tmpMass = totalMass;
1099 >      RealType tmpMass = totalMass;
1100        Vector3d tmpCom(com);  
1101        Vector3d tmpComVel(comVel);
1102 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1103 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1104 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1102 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1103 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1104 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1105   #endif
1106        
1107        com /= totalMass;
# Line 1278 | Line 1113 | namespace oopse {
1113  
1114  
1115         [  Ixx -Ixy  -Ixz ]
1116 <  J =| -Iyx  Iyy  -Iyz |
1116 >    J =| -Iyx  Iyy  -Iyz |
1117         [ -Izx -Iyz   Izz ]
1118      */
1119  
1120     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1121        
1122  
1123 <      double xx = 0.0;
1124 <      double yy = 0.0;
1125 <      double zz = 0.0;
1126 <      double xy = 0.0;
1127 <      double xz = 0.0;
1128 <      double yz = 0.0;
1123 >      RealType xx = 0.0;
1124 >      RealType yy = 0.0;
1125 >      RealType zz = 0.0;
1126 >      RealType xy = 0.0;
1127 >      RealType xz = 0.0;
1128 >      RealType yz = 0.0;
1129        Vector3d com(0.0);
1130        Vector3d comVel(0.0);
1131        
# Line 1302 | Line 1137 | namespace oopse {
1137        Vector3d thisq(0.0);
1138        Vector3d thisv(0.0);
1139  
1140 <      double thisMass = 0.0;
1140 >      RealType thisMass = 0.0;
1141      
1142        
1143        
# Line 1340 | Line 1175 | namespace oopse {
1175   #ifdef IS_MPI
1176        Mat3x3d tmpI(inertiaTensor);
1177        Vector3d tmpAngMom;
1178 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1179 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1178 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1179 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1180   #endif
1181                
1182        return;
# Line 1362 | Line 1197 | namespace oopse {
1197        Vector3d thisr(0.0);
1198        Vector3d thisp(0.0);
1199        
1200 <      double thisMass;
1200 >      RealType thisMass;
1201        
1202        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1203          thisMass = mol->getMass();
# Line 1375 | Line 1210 | namespace oopse {
1210        
1211   #ifdef IS_MPI
1212        Vector3d tmpAngMom;
1213 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1213 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1214   #endif
1215        
1216        return angularMomentum;
1217     }
1218    
1219 <  
1220 < }//end namespace oopse
1219 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1220 >    return IOIndexToIntegrableObject.at(index);
1221 >  }
1222 >  
1223 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1224 >    IOIndexToIntegrableObject= v;
1225 >  }
1226  
1227 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1228 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1229 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1230 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1231 +  */
1232 +  void SimInfo::getGyrationalVolume(RealType &volume){
1233 +    Mat3x3d intTensor;
1234 +    RealType det;
1235 +    Vector3d dummyAngMom;
1236 +    RealType sysconstants;
1237 +    RealType geomCnst;
1238 +
1239 +    geomCnst = 3.0/2.0;
1240 +    /* Get the inertial tensor and angular momentum for free*/
1241 +    getInertiaTensor(intTensor,dummyAngMom);
1242 +    
1243 +    det = intTensor.determinant();
1244 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1245 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1246 +    return;
1247 +  }
1248 +
1249 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1250 +    Mat3x3d intTensor;
1251 +    Vector3d dummyAngMom;
1252 +    RealType sysconstants;
1253 +    RealType geomCnst;
1254 +
1255 +    geomCnst = 3.0/2.0;
1256 +    /* Get the inertial tensor and angular momentum for free*/
1257 +    getInertiaTensor(intTensor,dummyAngMom);
1258 +    
1259 +    detI = intTensor.determinant();
1260 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1261 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1262 +    return;
1263 +  }
1264 + /*
1265 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1266 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1267 +      sdByGlobalIndex_ = v;
1268 +    }
1269 +
1270 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1271 +      //assert(index < nAtoms_ + nRigidBodies_);
1272 +      return sdByGlobalIndex_.at(index);
1273 +    }  
1274 + */  
1275 +  int SimInfo::getNGlobalConstraints() {
1276 +    int nGlobalConstraints;
1277 + #ifdef IS_MPI
1278 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1279 +                  MPI_COMM_WORLD);    
1280 + #else
1281 +    nGlobalConstraints =  nConstraints_;
1282 + #endif
1283 +    return nGlobalConstraints;
1284 +  }
1285 +
1286 + }//end namespace OpenMD
1287 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 834 by chuckv, Fri Dec 30 23:15:59 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1549 by gezelter, Wed Apr 27 18:38:15 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines