ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 430 by tim, Thu Mar 10 23:56:42 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1544 by gezelter, Fri Mar 18 19:31:52 2011 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57 + #include "UseTheForce/DarkSide/neighborLists_interface.h"
58   #include "UseTheForce/doForces_interface.h"
56 #include "UseTheForce/notifyCutoffs_interface.h"
59   #include "utils/MemoryUtils.hpp"
60   #include "utils/simError.h"
61   #include "selection/SelectionManager.hpp"
62 + #include "io/ForceFieldOptions.hpp"
63 + #include "UseTheForce/ForceField.hpp"
64 + #include "nonbonded/SwitchingFunction.hpp"
65  
66   #ifdef IS_MPI
67   #include "UseTheForce/mpiComponentPlan.h"
68   #include "UseTheForce/DarkSide/simParallel_interface.h"
69   #endif
70  
71 < namespace oopse {
72 <
73 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
74 <                                ForceField* ff, Globals* simParams) :
75 <                                forceField_(ff), simParams_(simParams),
76 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
77 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
78 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
79 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
80 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
81 <                                sman_(NULL), fortranInitialized_(false) {
82 <
83 <            
79 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
71 > using namespace std;
72 > namespace OpenMD {
73 >  
74 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
75 >    forceField_(ff), simParams_(simParams),
76 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
77 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
78 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
79 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
80 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
81 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
82 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
83 >    
84      MoleculeStamp* molStamp;
85      int nMolWithSameStamp;
86      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
87 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
88      CutoffGroupStamp* cgStamp;    
89      RigidBodyStamp* rbStamp;
90      int nRigidAtoms = 0;
91      
92 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
93 <        molStamp = i->first;
94 <        nMolWithSameStamp = i->second;
95 <        
96 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
97 <
98 <        //calculate atoms in molecules
99 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
100 <
101 <
102 <        //calculate atoms in cutoff groups
103 <        int nAtomsInGroups = 0;
104 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
105 <        
106 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
107 <            cgStamp = molStamp->getCutoffGroup(j);
108 <            nAtomsInGroups += cgStamp->getNMembers();
109 <        }
110 <
111 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
112 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
113 <
114 <        //calculate atoms in rigid bodies
115 <        int nAtomsInRigidBodies = 0;
116 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
117 <        
118 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
119 <            rbStamp = molStamp->getRigidBody(j);
120 <            nAtomsInRigidBodies += rbStamp->getNMembers();
121 <        }
122 <
123 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
124 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
125 <        
92 >    vector<Component*> components = simParams->getComponents();
93 >    
94 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
95 >      molStamp = (*i)->getMoleculeStamp();
96 >      nMolWithSameStamp = (*i)->getNMol();
97 >      
98 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
99 >      
100 >      //calculate atoms in molecules
101 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
102 >      
103 >      //calculate atoms in cutoff groups
104 >      int nAtomsInGroups = 0;
105 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
106 >      
107 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
108 >        cgStamp = molStamp->getCutoffGroupStamp(j);
109 >        nAtomsInGroups += cgStamp->getNMembers();
110 >      }
111 >      
112 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
113 >      
114 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
115 >      
116 >      //calculate atoms in rigid bodies
117 >      int nAtomsInRigidBodies = 0;
118 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
119 >      
120 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
121 >        rbStamp = molStamp->getRigidBodyStamp(j);
122 >        nAtomsInRigidBodies += rbStamp->getNMembers();
123 >      }
124 >      
125 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
126 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
127 >      
128      }
129 +    
130 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
131 +    //group therefore the total number of cutoff groups in the system is
132 +    //equal to the total number of atoms minus number of atoms belong to
133 +    //cutoff group defined in meta-data file plus the number of cutoff
134 +    //groups defined in meta-data file
135 +    std::cerr << "nGA = " << nGlobalAtoms_ << "\n";
136 +    std::cerr << "nCA = " << nCutoffAtoms << "\n";
137 +    std::cerr << "nG = " << nGroups << "\n";
138  
124    //every free atom (atom does not belong to cutoff groups) is a cutoff group
125    //therefore the total number of cutoff groups in the system is equal to
126    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
127    //file plus the number of cutoff groups defined in meta-data file
139      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
140  
141 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
142 <    //therefore the total number of  integrable objects in the system is equal to
143 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
144 <    //file plus the number of  rigid bodies defined in meta-data file
145 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
146 <
141 >    std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n";
142 >    
143 >    //every free atom (atom does not belong to rigid bodies) is an
144 >    //integrable object therefore the total number of integrable objects
145 >    //in the system is equal to the total number of atoms minus number of
146 >    //atoms belong to rigid body defined in meta-data file plus the number
147 >    //of rigid bodies defined in meta-data file
148 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
149 >      + nGlobalRigidBodies_;
150 >    
151      nGlobalMols_ = molStampIds_.size();
137
138 #ifdef IS_MPI    
152      molToProcMap_.resize(nGlobalMols_);
153 < #endif
154 <
155 < }
156 <
144 < SimInfo::~SimInfo() {
145 <    std::map<int, Molecule*>::iterator i;
153 >  }
154 >  
155 >  SimInfo::~SimInfo() {
156 >    map<int, Molecule*>::iterator i;
157      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
158 <        delete i->second;
158 >      delete i->second;
159      }
160      molecules_.clear();
161 <    
151 <    MemoryUtils::deletePointers(moleculeStamps_);
152 <    
161 >      
162      delete sman_;
163      delete simParams_;
164      delete forceField_;
165 < }
165 >  }
166  
158 int SimInfo::getNGlobalConstraints() {
159    int nGlobalConstraints;
160 #ifdef IS_MPI
161    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
162                  MPI_COMM_WORLD);    
163 #else
164    nGlobalConstraints =  nConstraints_;
165 #endif
166    return nGlobalConstraints;
167 }
167  
168 < bool SimInfo::addMolecule(Molecule* mol) {
168 >  bool SimInfo::addMolecule(Molecule* mol) {
169      MoleculeIterator i;
170 <
170 >    
171      i = molecules_.find(mol->getGlobalIndex());
172      if (i == molecules_.end() ) {
173 <
174 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
175 <        
176 <        nAtoms_ += mol->getNAtoms();
177 <        nBonds_ += mol->getNBonds();
178 <        nBends_ += mol->getNBends();
179 <        nTorsions_ += mol->getNTorsions();
180 <        nRigidBodies_ += mol->getNRigidBodies();
181 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
182 <        nCutoffGroups_ += mol->getNCutoffGroups();
183 <        nConstraints_ += mol->getNConstraintPairs();
184 <
185 <        addExcludePairs(mol);
186 <        
187 <        return true;
173 >      
174 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
175 >      
176 >      nAtoms_ += mol->getNAtoms();
177 >      nBonds_ += mol->getNBonds();
178 >      nBends_ += mol->getNBends();
179 >      nTorsions_ += mol->getNTorsions();
180 >      nInversions_ += mol->getNInversions();
181 >      nRigidBodies_ += mol->getNRigidBodies();
182 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
183 >      nCutoffGroups_ += mol->getNCutoffGroups();
184 >      nConstraints_ += mol->getNConstraintPairs();
185 >      
186 >      addInteractionPairs(mol);
187 >      
188 >      return true;
189      } else {
190 <        return false;
190 >      return false;
191      }
192 < }
193 <
194 < bool SimInfo::removeMolecule(Molecule* mol) {
192 >  }
193 >  
194 >  bool SimInfo::removeMolecule(Molecule* mol) {
195      MoleculeIterator i;
196      i = molecules_.find(mol->getGlobalIndex());
197  
198      if (i != molecules_.end() ) {
199  
200 <        assert(mol == i->second);
200 >      assert(mol == i->second);
201          
202 <        nAtoms_ -= mol->getNAtoms();
203 <        nBonds_ -= mol->getNBonds();
204 <        nBends_ -= mol->getNBends();
205 <        nTorsions_ -= mol->getNTorsions();
206 <        nRigidBodies_ -= mol->getNRigidBodies();
207 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
208 <        nCutoffGroups_ -= mol->getNCutoffGroups();
209 <        nConstraints_ -= mol->getNConstraintPairs();
202 >      nAtoms_ -= mol->getNAtoms();
203 >      nBonds_ -= mol->getNBonds();
204 >      nBends_ -= mol->getNBends();
205 >      nTorsions_ -= mol->getNTorsions();
206 >      nInversions_ -= mol->getNInversions();
207 >      nRigidBodies_ -= mol->getNRigidBodies();
208 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
209 >      nCutoffGroups_ -= mol->getNCutoffGroups();
210 >      nConstraints_ -= mol->getNConstraintPairs();
211  
212 <        removeExcludePairs(mol);
213 <        molecules_.erase(mol->getGlobalIndex());
212 >      removeInteractionPairs(mol);
213 >      molecules_.erase(mol->getGlobalIndex());
214  
215 <        delete mol;
215 >      delete mol;
216          
217 <        return true;
217 >      return true;
218      } else {
219 <        return false;
219 >      return false;
220      }
221 +  }    
222  
221
222 }    
223
223          
224 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
224 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
225      i = molecules_.begin();
226      return i == molecules_.end() ? NULL : i->second;
227 < }    
227 >  }    
228  
229 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
229 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
230      ++i;
231      return i == molecules_.end() ? NULL : i->second;    
232 < }
232 >  }
233  
234  
235 < void SimInfo::calcNdf() {
235 >  void SimInfo::calcNdf() {
236      int ndf_local;
237      MoleculeIterator i;
238 <    std::vector<StuntDouble*>::iterator j;
238 >    vector<StuntDouble*>::iterator j;
239      Molecule* mol;
240      StuntDouble* integrableObject;
241  
242      ndf_local = 0;
243      
244      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
245 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
246 <               integrableObject = mol->nextIntegrableObject(j)) {
245 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
246 >           integrableObject = mol->nextIntegrableObject(j)) {
247  
248 <            ndf_local += 3;
248 >        ndf_local += 3;
249  
250 <            if (integrableObject->isDirectional()) {
251 <                if (integrableObject->isLinear()) {
252 <                    ndf_local += 2;
253 <                } else {
254 <                    ndf_local += 3;
255 <                }
256 <            }
250 >        if (integrableObject->isDirectional()) {
251 >          if (integrableObject->isLinear()) {
252 >            ndf_local += 2;
253 >          } else {
254 >            ndf_local += 3;
255 >          }
256 >        }
257              
258 <        }//end for (integrableObject)
259 <    }// end for (mol)
258 >      }
259 >    }
260      
261      // n_constraints is local, so subtract them on each processor
262      ndf_local -= nConstraints_;
# Line 272 | Line 271 | void SimInfo::calcNdf() {
271      // entire system:
272      ndf_ = ndf_ - 3 - nZconstraint_;
273  
274 < }
274 >  }
275  
276 < void SimInfo::calcNdfRaw() {
276 >  int SimInfo::getFdf() {
277 > #ifdef IS_MPI
278 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
279 > #else
280 >    fdf_ = fdf_local;
281 > #endif
282 >    return fdf_;
283 >  }
284 >    
285 >  void SimInfo::calcNdfRaw() {
286      int ndfRaw_local;
287  
288      MoleculeIterator i;
289 <    std::vector<StuntDouble*>::iterator j;
289 >    vector<StuntDouble*>::iterator j;
290      Molecule* mol;
291      StuntDouble* integrableObject;
292  
# Line 286 | Line 294 | void SimInfo::calcNdfRaw() {
294      ndfRaw_local = 0;
295      
296      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
297 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
298 <               integrableObject = mol->nextIntegrableObject(j)) {
297 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
298 >           integrableObject = mol->nextIntegrableObject(j)) {
299  
300 <            ndfRaw_local += 3;
300 >        ndfRaw_local += 3;
301  
302 <            if (integrableObject->isDirectional()) {
303 <                if (integrableObject->isLinear()) {
304 <                    ndfRaw_local += 2;
305 <                } else {
306 <                    ndfRaw_local += 3;
307 <                }
308 <            }
302 >        if (integrableObject->isDirectional()) {
303 >          if (integrableObject->isLinear()) {
304 >            ndfRaw_local += 2;
305 >          } else {
306 >            ndfRaw_local += 3;
307 >          }
308 >        }
309              
310 <        }
310 >      }
311      }
312      
313   #ifdef IS_MPI
# Line 307 | Line 315 | void SimInfo::calcNdfRaw() {
315   #else
316      ndfRaw_ = ndfRaw_local;
317   #endif
318 < }
318 >  }
319  
320 < void SimInfo::calcNdfTrans() {
320 >  void SimInfo::calcNdfTrans() {
321      int ndfTrans_local;
322  
323      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 323 | Line 331 | void SimInfo::calcNdfTrans() {
331  
332      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
333  
334 < }
334 >  }
335  
336 < void SimInfo::addExcludePairs(Molecule* mol) {
337 <    std::vector<Bond*>::iterator bondIter;
338 <    std::vector<Bend*>::iterator bendIter;
339 <    std::vector<Torsion*>::iterator torsionIter;
336 >  void SimInfo::addInteractionPairs(Molecule* mol) {
337 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
338 >    vector<Bond*>::iterator bondIter;
339 >    vector<Bend*>::iterator bendIter;
340 >    vector<Torsion*>::iterator torsionIter;
341 >    vector<Inversion*>::iterator inversionIter;
342      Bond* bond;
343      Bend* bend;
344      Torsion* torsion;
345 +    Inversion* inversion;
346      int a;
347      int b;
348      int c;
349      int d;
350 +
351 +    // atomGroups can be used to add special interaction maps between
352 +    // groups of atoms that are in two separate rigid bodies.
353 +    // However, most site-site interactions between two rigid bodies
354 +    // are probably not special, just the ones between the physically
355 +    // bonded atoms.  Interactions *within* a single rigid body should
356 +    // always be excluded.  These are done at the bottom of this
357 +    // function.
358 +
359 +    map<int, set<int> > atomGroups;
360 +    Molecule::RigidBodyIterator rbIter;
361 +    RigidBody* rb;
362 +    Molecule::IntegrableObjectIterator ii;
363 +    StuntDouble* integrableObject;
364      
365 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
366 <        a = bond->getAtomA()->getGlobalIndex();
367 <        b = bond->getAtomB()->getGlobalIndex();        
368 <        exclude_.addPair(a, b);
365 >    for (integrableObject = mol->beginIntegrableObject(ii);
366 >         integrableObject != NULL;
367 >         integrableObject = mol->nextIntegrableObject(ii)) {
368 >      
369 >      if (integrableObject->isRigidBody()) {
370 >        rb = static_cast<RigidBody*>(integrableObject);
371 >        vector<Atom*> atoms = rb->getAtoms();
372 >        set<int> rigidAtoms;
373 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
374 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
375 >        }
376 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
377 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
378 >        }      
379 >      } else {
380 >        set<int> oneAtomSet;
381 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
382 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
383 >      }
384 >    }  
385 >          
386 >    for (bond= mol->beginBond(bondIter); bond != NULL;
387 >         bond = mol->nextBond(bondIter)) {
388 >
389 >      a = bond->getAtomA()->getGlobalIndex();
390 >      b = bond->getAtomB()->getGlobalIndex();  
391 >    
392 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
393 >        oneTwoInteractions_.addPair(a, b);
394 >      } else {
395 >        excludedInteractions_.addPair(a, b);
396 >      }
397      }
398  
399 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
400 <        a = bend->getAtomA()->getGlobalIndex();
348 <        b = bend->getAtomB()->getGlobalIndex();        
349 <        c = bend->getAtomC()->getGlobalIndex();
399 >    for (bend= mol->beginBend(bendIter); bend != NULL;
400 >         bend = mol->nextBend(bendIter)) {
401  
402 <        exclude_.addPair(a, b);
403 <        exclude_.addPair(a, c);
404 <        exclude_.addPair(b, c);        
402 >      a = bend->getAtomA()->getGlobalIndex();
403 >      b = bend->getAtomB()->getGlobalIndex();        
404 >      c = bend->getAtomC()->getGlobalIndex();
405 >      
406 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
407 >        oneTwoInteractions_.addPair(a, b);      
408 >        oneTwoInteractions_.addPair(b, c);
409 >      } else {
410 >        excludedInteractions_.addPair(a, b);
411 >        excludedInteractions_.addPair(b, c);
412 >      }
413 >
414 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
415 >        oneThreeInteractions_.addPair(a, c);      
416 >      } else {
417 >        excludedInteractions_.addPair(a, c);
418 >      }
419      }
420  
421 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
422 <        a = torsion->getAtomA()->getGlobalIndex();
358 <        b = torsion->getAtomB()->getGlobalIndex();        
359 <        c = torsion->getAtomC()->getGlobalIndex();        
360 <        d = torsion->getAtomD()->getGlobalIndex();        
421 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
422 >         torsion = mol->nextTorsion(torsionIter)) {
423  
424 <        exclude_.addPair(a, b);
425 <        exclude_.addPair(a, c);
426 <        exclude_.addPair(a, d);
427 <        exclude_.addPair(b, c);
428 <        exclude_.addPair(b, d);
429 <        exclude_.addPair(c, d);        
424 >      a = torsion->getAtomA()->getGlobalIndex();
425 >      b = torsion->getAtomB()->getGlobalIndex();        
426 >      c = torsion->getAtomC()->getGlobalIndex();        
427 >      d = torsion->getAtomD()->getGlobalIndex();      
428 >
429 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
430 >        oneTwoInteractions_.addPair(a, b);      
431 >        oneTwoInteractions_.addPair(b, c);
432 >        oneTwoInteractions_.addPair(c, d);
433 >      } else {
434 >        excludedInteractions_.addPair(a, b);
435 >        excludedInteractions_.addPair(b, c);
436 >        excludedInteractions_.addPair(c, d);
437 >      }
438 >
439 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
440 >        oneThreeInteractions_.addPair(a, c);      
441 >        oneThreeInteractions_.addPair(b, d);      
442 >      } else {
443 >        excludedInteractions_.addPair(a, c);
444 >        excludedInteractions_.addPair(b, d);
445 >      }
446 >
447 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
448 >        oneFourInteractions_.addPair(a, d);      
449 >      } else {
450 >        excludedInteractions_.addPair(a, d);
451 >      }
452      }
453  
454 <    Molecule::RigidBodyIterator rbIter;
455 <    RigidBody* rb;
372 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
373 <        std::vector<Atom*> atoms = rb->getAtoms();
374 <        for (int i = 0; i < atoms.size() -1 ; ++i) {
375 <            for (int j = i + 1; j < atoms.size(); ++j) {
376 <                a = atoms[i]->getGlobalIndex();
377 <                b = atoms[j]->getGlobalIndex();
378 <                exclude_.addPair(a, b);
379 <            }
380 <        }
381 <    }        
454 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
455 >         inversion = mol->nextInversion(inversionIter)) {
456  
457 <    Molecule::CutoffGroupIterator cgIter;
458 <    CutoffGroup* cg;
459 <    for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
460 <        std::vector<Atom*> atoms = cg->getAtoms();
387 <        for (int i = 0; i < atoms.size() -1 ; ++i) {
388 <            for (int j = i + 1; j < atoms.size(); ++j) {
389 <                a = atoms[i]->getGlobalIndex();
390 <                b = atoms[j]->getGlobalIndex();
391 <                exclude_.addPair(a, b);
392 <            }
393 <        }
394 <    }  
457 >      a = inversion->getAtomA()->getGlobalIndex();
458 >      b = inversion->getAtomB()->getGlobalIndex();        
459 >      c = inversion->getAtomC()->getGlobalIndex();        
460 >      d = inversion->getAtomD()->getGlobalIndex();        
461  
462 < }
462 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
463 >        oneTwoInteractions_.addPair(a, b);      
464 >        oneTwoInteractions_.addPair(a, c);
465 >        oneTwoInteractions_.addPair(a, d);
466 >      } else {
467 >        excludedInteractions_.addPair(a, b);
468 >        excludedInteractions_.addPair(a, c);
469 >        excludedInteractions_.addPair(a, d);
470 >      }
471  
472 < void SimInfo::removeExcludePairs(Molecule* mol) {
473 <    std::vector<Bond*>::iterator bondIter;
474 <    std::vector<Bend*>::iterator bendIter;
475 <    std::vector<Torsion*>::iterator torsionIter;
472 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
473 >        oneThreeInteractions_.addPair(b, c);    
474 >        oneThreeInteractions_.addPair(b, d);    
475 >        oneThreeInteractions_.addPair(c, d);      
476 >      } else {
477 >        excludedInteractions_.addPair(b, c);
478 >        excludedInteractions_.addPair(b, d);
479 >        excludedInteractions_.addPair(c, d);
480 >      }
481 >    }
482 >
483 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
484 >         rb = mol->nextRigidBody(rbIter)) {
485 >      vector<Atom*> atoms = rb->getAtoms();
486 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
487 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
488 >          a = atoms[i]->getGlobalIndex();
489 >          b = atoms[j]->getGlobalIndex();
490 >          excludedInteractions_.addPair(a, b);
491 >        }
492 >      }
493 >    }        
494 >
495 >  }
496 >
497 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
498 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
499 >    vector<Bond*>::iterator bondIter;
500 >    vector<Bend*>::iterator bendIter;
501 >    vector<Torsion*>::iterator torsionIter;
502 >    vector<Inversion*>::iterator inversionIter;
503      Bond* bond;
504      Bend* bend;
505      Torsion* torsion;
506 +    Inversion* inversion;
507      int a;
508      int b;
509      int c;
510      int d;
511 +
512 +    map<int, set<int> > atomGroups;
513 +    Molecule::RigidBodyIterator rbIter;
514 +    RigidBody* rb;
515 +    Molecule::IntegrableObjectIterator ii;
516 +    StuntDouble* integrableObject;
517      
518 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
519 <        a = bond->getAtomA()->getGlobalIndex();
520 <        b = bond->getAtomB()->getGlobalIndex();        
521 <        exclude_.removePair(a, b);
518 >    for (integrableObject = mol->beginIntegrableObject(ii);
519 >         integrableObject != NULL;
520 >         integrableObject = mol->nextIntegrableObject(ii)) {
521 >      
522 >      if (integrableObject->isRigidBody()) {
523 >        rb = static_cast<RigidBody*>(integrableObject);
524 >        vector<Atom*> atoms = rb->getAtoms();
525 >        set<int> rigidAtoms;
526 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
527 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
528 >        }
529 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
530 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
531 >        }      
532 >      } else {
533 >        set<int> oneAtomSet;
534 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
535 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
536 >      }
537 >    }  
538 >
539 >    for (bond= mol->beginBond(bondIter); bond != NULL;
540 >         bond = mol->nextBond(bondIter)) {
541 >      
542 >      a = bond->getAtomA()->getGlobalIndex();
543 >      b = bond->getAtomB()->getGlobalIndex();  
544 >    
545 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
546 >        oneTwoInteractions_.removePair(a, b);
547 >      } else {
548 >        excludedInteractions_.removePair(a, b);
549 >      }
550      }
551  
552 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
553 <        a = bend->getAtomA()->getGlobalIndex();
418 <        b = bend->getAtomB()->getGlobalIndex();        
419 <        c = bend->getAtomC()->getGlobalIndex();
552 >    for (bend= mol->beginBend(bendIter); bend != NULL;
553 >         bend = mol->nextBend(bendIter)) {
554  
555 <        exclude_.removePair(a, b);
556 <        exclude_.removePair(a, c);
557 <        exclude_.removePair(b, c);        
555 >      a = bend->getAtomA()->getGlobalIndex();
556 >      b = bend->getAtomB()->getGlobalIndex();        
557 >      c = bend->getAtomC()->getGlobalIndex();
558 >      
559 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
560 >        oneTwoInteractions_.removePair(a, b);      
561 >        oneTwoInteractions_.removePair(b, c);
562 >      } else {
563 >        excludedInteractions_.removePair(a, b);
564 >        excludedInteractions_.removePair(b, c);
565 >      }
566 >
567 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
568 >        oneThreeInteractions_.removePair(a, c);      
569 >      } else {
570 >        excludedInteractions_.removePair(a, c);
571 >      }
572      }
573  
574 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
575 <        a = torsion->getAtomA()->getGlobalIndex();
428 <        b = torsion->getAtomB()->getGlobalIndex();        
429 <        c = torsion->getAtomC()->getGlobalIndex();        
430 <        d = torsion->getAtomD()->getGlobalIndex();        
574 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
575 >         torsion = mol->nextTorsion(torsionIter)) {
576  
577 <        exclude_.removePair(a, b);
578 <        exclude_.removePair(a, c);
579 <        exclude_.removePair(a, d);
580 <        exclude_.removePair(b, c);
581 <        exclude_.removePair(b, d);
582 <        exclude_.removePair(c, d);        
577 >      a = torsion->getAtomA()->getGlobalIndex();
578 >      b = torsion->getAtomB()->getGlobalIndex();        
579 >      c = torsion->getAtomC()->getGlobalIndex();        
580 >      d = torsion->getAtomD()->getGlobalIndex();      
581 >  
582 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
583 >        oneTwoInteractions_.removePair(a, b);      
584 >        oneTwoInteractions_.removePair(b, c);
585 >        oneTwoInteractions_.removePair(c, d);
586 >      } else {
587 >        excludedInteractions_.removePair(a, b);
588 >        excludedInteractions_.removePair(b, c);
589 >        excludedInteractions_.removePair(c, d);
590 >      }
591 >
592 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
593 >        oneThreeInteractions_.removePair(a, c);      
594 >        oneThreeInteractions_.removePair(b, d);      
595 >      } else {
596 >        excludedInteractions_.removePair(a, c);
597 >        excludedInteractions_.removePair(b, d);
598 >      }
599 >
600 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
601 >        oneFourInteractions_.removePair(a, d);      
602 >      } else {
603 >        excludedInteractions_.removePair(a, d);
604 >      }
605      }
606  
607 <    Molecule::RigidBodyIterator rbIter;
608 <    RigidBody* rb;
442 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
443 <        std::vector<Atom*> atoms = rb->getAtoms();
444 <        for (int i = 0; i < atoms.size() -1 ; ++i) {
445 <            for (int j = i + 1; j < atoms.size(); ++j) {
446 <                a = atoms[i]->getGlobalIndex();
447 <                b = atoms[j]->getGlobalIndex();
448 <                exclude_.removePair(a, b);
449 <            }
450 <        }
451 <    }        
607 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
608 >         inversion = mol->nextInversion(inversionIter)) {
609  
610 <    Molecule::CutoffGroupIterator cgIter;
611 <    CutoffGroup* cg;
612 <    for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
613 <        std::vector<Atom*> atoms = cg->getAtoms();
457 <        for (int i = 0; i < atoms.size() -1 ; ++i) {
458 <            for (int j = i + 1; j < atoms.size(); ++j) {
459 <                a = atoms[i]->getGlobalIndex();
460 <                b = atoms[j]->getGlobalIndex();
461 <                exclude_.removePair(a, b);
462 <            }
463 <        }
464 <    }  
610 >      a = inversion->getAtomA()->getGlobalIndex();
611 >      b = inversion->getAtomB()->getGlobalIndex();        
612 >      c = inversion->getAtomC()->getGlobalIndex();        
613 >      d = inversion->getAtomD()->getGlobalIndex();        
614  
615 < }
615 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
616 >        oneTwoInteractions_.removePair(a, b);      
617 >        oneTwoInteractions_.removePair(a, c);
618 >        oneTwoInteractions_.removePair(a, d);
619 >      } else {
620 >        excludedInteractions_.removePair(a, b);
621 >        excludedInteractions_.removePair(a, c);
622 >        excludedInteractions_.removePair(a, d);
623 >      }
624  
625 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
626 +        oneThreeInteractions_.removePair(b, c);    
627 +        oneThreeInteractions_.removePair(b, d);    
628 +        oneThreeInteractions_.removePair(c, d);      
629 +      } else {
630 +        excludedInteractions_.removePair(b, c);
631 +        excludedInteractions_.removePair(b, d);
632 +        excludedInteractions_.removePair(c, d);
633 +      }
634 +    }
635  
636 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
636 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
637 >         rb = mol->nextRigidBody(rbIter)) {
638 >      vector<Atom*> atoms = rb->getAtoms();
639 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
640 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
641 >          a = atoms[i]->getGlobalIndex();
642 >          b = atoms[j]->getGlobalIndex();
643 >          excludedInteractions_.removePair(a, b);
644 >        }
645 >      }
646 >    }        
647 >    
648 >  }
649 >  
650 >  
651 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
652      int curStampId;
653 <
653 >    
654      //index from 0
655      curStampId = moleculeStamps_.size();
656  
657      moleculeStamps_.push_back(molStamp);
658      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
659 < }
659 >  }
660  
479 void SimInfo::update() {
661  
662 <    setupSimType();
663 <
664 < #ifdef IS_MPI
665 <    setupFortranParallel();
666 < #endif
667 <
668 <    setupFortranSim();
669 <
670 <    //setup fortran force field
490 <    /** @deprecate */    
491 <    int isError = 0;
492 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
493 <    if(isError){
494 <        sprintf( painCave.errMsg,
495 <         "ForceField error: There was an error initializing the forceField in fortran.\n" );
496 <        painCave.isFatal = 1;
497 <        simError();
498 <    }
499 <  
500 <    
501 <    setupCutoff();
502 <
662 >  /**
663 >   * update
664 >   *
665 >   *  Performs the global checks and variable settings after the
666 >   *  objects have been created.
667 >   *
668 >   */
669 >  void SimInfo::update() {  
670 >    setupSimVariables();
671      calcNdf();
672      calcNdfRaw();
673      calcNdfTrans();
674 <
675 <    fortranInitialized_ = true;
676 < }
677 <
678 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
674 >  }
675 >  
676 >  /**
677 >   * getSimulatedAtomTypes
678 >   *
679 >   * Returns an STL set of AtomType* that are actually present in this
680 >   * simulation.  Must query all processors to assemble this information.
681 >   *
682 >   */
683 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
684      SimInfo::MoleculeIterator mi;
685      Molecule* mol;
686      Molecule::AtomIterator ai;
687      Atom* atom;
688 <    std::set<AtomType*> atomTypes;
688 >    set<AtomType*> atomTypes;
689 >    
690 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
691 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
692 >        atomTypes.insert(atom->getAtomType());
693 >      }      
694 >    }    
695  
696 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
696 > #ifdef IS_MPI
697  
698 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
699 <            atomTypes.insert(atom->getAtomType());
521 <        }
522 <        
523 <    }
698 >    // loop over the found atom types on this processor, and add their
699 >    // numerical idents to a vector:
700  
701 <    return atomTypes;        
702 < }
703 <
704 < void SimInfo::setupSimType() {
529 <    std::set<AtomType*>::iterator i;
530 <    std::set<AtomType*> atomTypes;
531 <    atomTypes = getUniqueAtomTypes();
532 <    
533 <    int useLennardJones = 0;
534 <    int useElectrostatic = 0;
535 <    int useEAM = 0;
536 <    int useCharge = 0;
537 <    int useDirectional = 0;
538 <    int useDipole = 0;
539 <    int useGayBerne = 0;
540 <    int useSticky = 0;
541 <    int useShape = 0;
542 <    int useFLARB = 0; //it is not in AtomType yet
543 <    int useDirectionalAtom = 0;    
544 <    int useElectrostatics = 0;
545 <    //usePBC and useRF are from simParams
546 <    int usePBC = simParams_->getPBC();
547 <    int useRF = simParams_->getUseRF();
701 >    vector<int> foundTypes;
702 >    set<AtomType*>::iterator i;
703 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
704 >      foundTypes.push_back( (*i)->getIdent() );
705  
706 <    //loop over all of the atom types
707 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
551 <        useLennardJones |= (*i)->isLennardJones();
552 <        useElectrostatic |= (*i)->isElectrostatic();
553 <        useEAM |= (*i)->isEAM();
554 <        useCharge |= (*i)->isCharge();
555 <        useDirectional |= (*i)->isDirectional();
556 <        useDipole |= (*i)->isDipole();
557 <        useGayBerne |= (*i)->isGayBerne();
558 <        useSticky |= (*i)->isSticky();
559 <        useShape |= (*i)->isShape();
560 <    }
706 >    // count_local holds the number of found types on this processor
707 >    int count_local = foundTypes.size();
708  
709 <    if (useSticky || useDipole || useGayBerne || useShape) {
710 <        useDirectionalAtom = 1;
711 <    }
709 >    // count holds the total number of found types on all processors
710 >    // (some will be redundant with the ones found locally):
711 >    int count;
712 >    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
713  
714 <    if (useCharge || useDipole) {
715 <        useElectrostatics = 1;
716 <    }
714 >    // create a vector to hold the globally found types, and resize it:
715 >    vector<int> ftGlobal;
716 >    ftGlobal.resize(count);
717 >    vector<int> counts;
718  
719 < #ifdef IS_MPI    
720 <    int temp;
719 >    int nproc = MPI::COMM_WORLD.Get_size();
720 >    counts.resize(nproc);
721 >    vector<int> disps;
722 >    disps.resize(nproc);
723  
724 <    temp = usePBC;
725 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
724 >    // now spray out the foundTypes to all the other processors:
725 >    
726 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
727 >                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
728  
729 <    temp = useDirectionalAtom;
730 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
731 <
732 <    temp = useLennardJones;
733 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
734 <
582 <    temp = useElectrostatics;
583 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
584 <
585 <    temp = useCharge;
586 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
587 <
588 <    temp = useDipole;
589 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
590 <
591 <    temp = useSticky;
592 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
593 <
594 <    temp = useGayBerne;
595 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
596 <
597 <    temp = useEAM;
598 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
599 <
600 <    temp = useShape;
601 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
602 <
603 <    temp = useFLARB;
604 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
605 <
606 <    temp = useRF;
607 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
729 >    // foundIdents is a stl set, so inserting an already found ident
730 >    // will have no effect.
731 >    set<int> foundIdents;
732 >    vector<int>::iterator j;
733 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
734 >      foundIdents.insert((*j));
735      
736 +    // now iterate over the foundIdents and get the actual atom types
737 +    // that correspond to these:
738 +    set<int>::iterator it;
739 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
740 +      atomTypes.insert( forceField_->getAtomType((*it)) );
741 +
742   #endif
743 +    
744 +    return atomTypes;        
745 +  }
746  
747 <    fInfo_.SIM_uses_PBC = usePBC;    
748 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
749 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
750 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
751 <    fInfo_.SIM_uses_Charges = useCharge;
752 <    fInfo_.SIM_uses_Dipoles = useDipole;
753 <    fInfo_.SIM_uses_Sticky = useSticky;
754 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
619 <    fInfo_.SIM_uses_EAM = useEAM;
620 <    fInfo_.SIM_uses_Shapes = useShape;
621 <    fInfo_.SIM_uses_FLARB = useFLARB;
622 <    fInfo_.SIM_uses_RF = useRF;
747 >  void SimInfo::setupSimVariables() {
748 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
749 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
750 >    calcBoxDipole_ = false;
751 >    if ( simParams_->haveAccumulateBoxDipole() )
752 >      if ( simParams_->getAccumulateBoxDipole() ) {
753 >        calcBoxDipole_ = true;      
754 >      }
755  
756 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
757 <
758 <        if (simParams_->haveDielectric()) {
759 <            fInfo_.dielect = simParams_->getDielectric();
760 <        } else {
761 <            sprintf(painCave.errMsg,
762 <                    "SimSetup Error: No Dielectric constant was set.\n"
763 <                    "\tYou are trying to use Reaction Field without"
764 <                    "\tsetting a dielectric constant!\n");
765 <            painCave.isFatal = 1;
766 <            simError();
635 <        }
636 <        
637 <    } else {
638 <        fInfo_.dielect = 0.0;
756 >    set<AtomType*>::iterator i;
757 >    set<AtomType*> atomTypes;
758 >    atomTypes = getSimulatedAtomTypes();    
759 >    int usesElectrostatic = 0;
760 >    int usesMetallic = 0;
761 >    int usesDirectional = 0;
762 >    //loop over all of the atom types
763 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
764 >      usesElectrostatic |= (*i)->isElectrostatic();
765 >      usesMetallic |= (*i)->isMetal();
766 >      usesDirectional |= (*i)->isDirectional();
767      }
768  
769 < }
769 > #ifdef IS_MPI    
770 >    int temp;
771 >    temp = usesDirectional;
772 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
773  
774 < void SimInfo::setupFortranSim() {
774 >    temp = usesMetallic;
775 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
776 >
777 >    temp = usesElectrostatic;
778 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
779 > #endif
780 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
781 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
782 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
783 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
784 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
785 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
786 >  }
787 >
788 >  void SimInfo::setupFortran() {
789      int isError;
790 <    int nExclude;
791 <    std::vector<int> fortranGlobalGroupMembership;
790 >    int nExclude, nOneTwo, nOneThree, nOneFour;
791 >    vector<int> fortranGlobalGroupMembership;
792      
648    nExclude = exclude_.getSize();
793      isError = 0;
794  
795      //globalGroupMembership_ is filled by SimCreator    
796      for (int i = 0; i < nGlobalAtoms_; i++) {
797 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
797 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
798      }
799  
800      //calculate mass ratio of cutoff group
801 <    std::vector<double> mfact;
801 >    vector<RealType> mfact;
802      SimInfo::MoleculeIterator mi;
803      Molecule* mol;
804      Molecule::CutoffGroupIterator ci;
805      CutoffGroup* cg;
806      Molecule::AtomIterator ai;
807      Atom* atom;
808 <    double totalMass;
808 >    RealType totalMass;
809  
810      //to avoid memory reallocation, reserve enough space for mfact
811      mfact.reserve(getNCutoffGroups());
812      
813      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
814 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
814 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
815  
816 <            totalMass = cg->getMass();
817 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
818 <                        mfact.push_back(atom->getMass()/totalMass);
819 <            }
820 <
821 <        }      
816 >        totalMass = cg->getMass();
817 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
818 >          // Check for massless groups - set mfact to 1 if true
819 >          if (totalMass != 0)
820 >            mfact.push_back(atom->getMass()/totalMass);
821 >          else
822 >            mfact.push_back( 1.0 );
823 >        }
824 >      }      
825      }
826  
827 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
681 <    std::vector<int> identArray;
827 >    // Build the identArray_
828  
829 <    //to avoid memory reallocation, reserve enough space identArray
830 <    identArray.reserve(getNAtoms());
685 <    
829 >    identArray_.clear();
830 >    identArray_.reserve(getNAtoms());    
831      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
832 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
833 <            identArray.push_back(atom->getIdent());
834 <        }
832 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
833 >        identArray_.push_back(atom->getIdent());
834 >      }
835      }    
836  
837      //fill molMembershipArray
838      //molMembershipArray is filled by SimCreator    
839 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
839 >    vector<int> molMembershipArray(nGlobalAtoms_);
840      for (int i = 0; i < nGlobalAtoms_; i++) {
841 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
841 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
842      }
843      
844      //setup fortran simulation
700    //gloalExcludes and molMembershipArray should go away (They are never used)
701    //why the hell fortran need to know molecule?
702    //OOPSE = Object-Obfuscated Parallel Simulation Engine
703    int nGlobalExcludes = 0;
704    int* globalExcludes = NULL;
705    int* excludeList = exclude_.getExcludeList();
706    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
707                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
708                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
845  
846 <    if( isError ){
846 >    nExclude = excludedInteractions_.getSize();
847 >    nOneTwo = oneTwoInteractions_.getSize();
848 >    nOneThree = oneThreeInteractions_.getSize();
849 >    nOneFour = oneFourInteractions_.getSize();
850  
851 <        sprintf( painCave.errMsg,
852 <                 "There was an error setting the simulation information in fortran.\n" );
853 <        painCave.isFatal = 1;
854 <        painCave.severity = OOPSE_ERROR;
716 <        simError();
717 <    }
851 >    int* excludeList = excludedInteractions_.getPairList();
852 >    int* oneTwoList = oneTwoInteractions_.getPairList();
853 >    int* oneThreeList = oneThreeInteractions_.getPairList();
854 >    int* oneFourList = oneFourInteractions_.getPairList();
855  
856 < #ifdef IS_MPI
856 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
857 >                   &nExclude, excludeList,
858 >                   &nOneTwo, oneTwoList,
859 >                   &nOneThree, oneThreeList,
860 >                   &nOneFour, oneFourList,
861 >                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
862 >                   &fortranGlobalGroupMembership[0], &isError);
863 >    
864 >    if( isError ){
865 >      
866 >      sprintf( painCave.errMsg,
867 >               "There was an error setting the simulation information in fortran.\n" );
868 >      painCave.isFatal = 1;
869 >      painCave.severity = OPENMD_ERROR;
870 >      simError();
871 >    }
872 >    
873 >    
874      sprintf( checkPointMsg,
875 <       "succesfully sent the simulation information to fortran.\n");
722 <    MPIcheckPoint();
723 < #endif // is_mpi
724 < }
725 <
726 <
727 < #ifdef IS_MPI
728 < void SimInfo::setupFortranParallel() {
875 >             "succesfully sent the simulation information to fortran.\n");
876      
877 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
878 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
879 <    std::vector<int> localToGlobalCutoffGroupIndex;
880 <    SimInfo::MoleculeIterator mi;
881 <    Molecule::AtomIterator ai;
882 <    Molecule::CutoffGroupIterator ci;
883 <    Molecule* mol;
884 <    Atom* atom;
885 <    CutoffGroup* cg;
877 >    errorCheckPoint();
878 >    
879 >    // Setup number of neighbors in neighbor list if present
880 >    if (simParams_->haveNeighborListNeighbors()) {
881 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
882 >      setNeighbors(&nlistNeighbors);
883 >    }
884 >  
885 > #ifdef IS_MPI    
886 >    //SimInfo is responsible for creating localToGlobalAtomIndex and
887 >    //localToGlobalGroupIndex
888 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
889 >    vector<int> localToGlobalCutoffGroupIndex;
890      mpiSimData parallelData;
740    int isError;
891  
892      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
893  
894 <        //local index(index in DataStorge) of atom is important
895 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
896 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
897 <        }
894 >      //local index(index in DataStorge) of atom is important
895 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
896 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
897 >      }
898  
899 <        //local index of cutoff group is trivial, it only depends on the order of travesing
900 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
901 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
902 <        }        
899 >      //local index of cutoff group is trivial, it only depends on the order of travesing
900 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
901 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
902 >      }        
903          
904      }
905  
# Line 769 | Line 919 | void SimInfo::setupFortranParallel() {
919                      &localToGlobalCutoffGroupIndex[0], &isError);
920  
921      if (isError) {
922 <        sprintf(painCave.errMsg,
923 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
924 <        painCave.isFatal = 1;
925 <        simError();
922 >      sprintf(painCave.errMsg,
923 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
924 >      painCave.isFatal = 1;
925 >      simError();
926      }
927  
928      sprintf(checkPointMsg, " mpiRefresh successful.\n");
929 <    MPIcheckPoint();
780 <
781 <
782 < }
783 <
929 >    errorCheckPoint();
930   #endif
931  
932 < double SimInfo::calcMaxCutoffRadius() {
932 >    initFortranFF(&isError);
933 >    if (isError) {
934 >      sprintf(painCave.errMsg,
935 >              "initFortranFF errror: fortran didn't like something we gave it.\n");
936 >      painCave.isFatal = 1;
937 >      simError();
938 >    }
939 >    fortranInitialized_ = true;
940 >  }
941  
942 +  void SimInfo::addProperty(GenericData* genData) {
943 +    properties_.addProperty(genData);  
944 +  }
945  
946 <    std::set<AtomType*> atomTypes;
947 <    std::set<AtomType*>::iterator i;
948 <    std::vector<double> cutoffRadius;
946 >  void SimInfo::removeProperty(const string& propName) {
947 >    properties_.removeProperty(propName);  
948 >  }
949  
950 <    //get the unique atom types
951 <    atomTypes = getUniqueAtomTypes();
950 >  void SimInfo::clearProperties() {
951 >    properties_.clearProperties();
952 >  }
953  
954 <    //query the max cutoff radius among these atom types
955 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
956 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
957 <    }
954 >  vector<string> SimInfo::getPropertyNames() {
955 >    return properties_.getPropertyNames();  
956 >  }
957 >      
958 >  vector<GenericData*> SimInfo::getProperties() {
959 >    return properties_.getProperties();
960 >  }
961  
962 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
963 < #ifdef IS_MPI
964 <    //pick the max cutoff radius among the processors
804 < #endif
962 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
963 >    return properties_.getPropertyByName(propName);
964 >  }
965  
966 <    return maxCutoffRadius;
967 < }
968 <
969 < void SimInfo::getCutoff(double& rcut, double& rsw) {
970 <    
811 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
812 <        
813 <        if (!simParams_->haveRcut()){
814 <            sprintf(painCave.errMsg,
815 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
816 <                "\tOOPSE will use a default value of 15.0 angstroms"
817 <                "\tfor the cutoffRadius.\n");
818 <            painCave.isFatal = 0;
819 <            simError();
820 <            rcut = 15.0;
821 <        } else{
822 <            rcut = simParams_->getRcut();
823 <        }
824 <
825 <        if (!simParams_->haveRsw()){
826 <            sprintf(painCave.errMsg,
827 <                "SimCreator Warning: No value was set for switchingRadius.\n"
828 <                "\tOOPSE will use a default value of\n"
829 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
830 <            painCave.isFatal = 0;
831 <            simError();
832 <            rsw = 0.95 * rcut;
833 <        } else{
834 <            rsw = simParams_->getRsw();
835 <        }
836 <
837 <    } else {
838 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
839 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
840 <        
841 <        if (simParams_->haveRcut()) {
842 <            rcut = simParams_->getRcut();
843 <        } else {
844 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
845 <            rcut = calcMaxCutoffRadius();
846 <        }
847 <
848 <        if (simParams_->haveRsw()) {
849 <            rsw  = simParams_->getRsw();
850 <        } else {
851 <            rsw = rcut;
852 <        }
853 <    
854 <    }
855 < }
856 <
857 < void SimInfo::setupCutoff() {
858 <    getCutoff(rcut_, rsw_);    
859 <    double rnblist = rcut_ + 1; // skin of neighbor list
860 <
861 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
862 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
863 < }
864 <
865 < void SimInfo::addProperty(GenericData* genData) {
866 <    properties_.addProperty(genData);  
867 < }
868 <
869 < void SimInfo::removeProperty(const std::string& propName) {
870 <    properties_.removeProperty(propName);  
871 < }
872 <
873 < void SimInfo::clearProperties() {
874 <    properties_.clearProperties();
875 < }
876 <
877 < std::vector<std::string> SimInfo::getPropertyNames() {
878 <    return properties_.getPropertyNames();  
879 < }
880 <      
881 < std::vector<GenericData*> SimInfo::getProperties() {
882 <    return properties_.getProperties();
883 < }
884 <
885 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
886 <    return properties_.getPropertyByName(propName);
887 < }
888 <
889 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
890 <    //if (sman_ == sman_) {
891 <    //    return;
892 <    //}
893 <    
894 <    //delete sman_;
966 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
967 >    if (sman_ == sman) {
968 >      return;
969 >    }    
970 >    delete sman_;
971      sman_ = sman;
972  
973      Molecule* mol;
974      RigidBody* rb;
975      Atom* atom;
976 +    CutoffGroup* cg;
977      SimInfo::MoleculeIterator mi;
978      Molecule::RigidBodyIterator rbIter;
979 <    Molecule::AtomIterator atomIter;;
979 >    Molecule::AtomIterator atomIter;
980 >    Molecule::CutoffGroupIterator cgIter;
981  
982      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
983          
984 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
985 <            atom->setSnapshotManager(sman_);
986 <        }
984 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
985 >        atom->setSnapshotManager(sman_);
986 >      }
987          
988 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
989 <            rb->setSnapshotManager(sman_);
990 <        }
988 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
989 >        rb->setSnapshotManager(sman_);
990 >      }
991 >
992 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
993 >        cg->setSnapshotManager(sman_);
994 >      }
995      }    
996      
997 < }
997 >  }
998  
999 < Vector3d SimInfo::getComVel(){
999 >  Vector3d SimInfo::getComVel(){
1000      SimInfo::MoleculeIterator i;
1001      Molecule* mol;
1002  
1003      Vector3d comVel(0.0);
1004 <    double totalMass = 0.0;
1004 >    RealType totalMass = 0.0;
1005      
1006  
1007      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1008 <        double mass = mol->getMass();
1009 <        totalMass += mass;
1010 <        comVel += mass * mol->getComVel();
1008 >      RealType mass = mol->getMass();
1009 >      totalMass += mass;
1010 >      comVel += mass * mol->getComVel();
1011      }  
1012  
1013   #ifdef IS_MPI
1014 <    double tmpMass = totalMass;
1014 >    RealType tmpMass = totalMass;
1015      Vector3d tmpComVel(comVel);    
1016 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1017 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1016 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1017 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1018   #endif
1019  
1020      comVel /= totalMass;
1021  
1022      return comVel;
1023 < }
1023 >  }
1024  
1025 < Vector3d SimInfo::getCom(){
1025 >  Vector3d SimInfo::getCom(){
1026      SimInfo::MoleculeIterator i;
1027      Molecule* mol;
1028  
1029      Vector3d com(0.0);
1030 <    double totalMass = 0.0;
1030 >    RealType totalMass = 0.0;
1031      
1032      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1033 <        double mass = mol->getMass();
1034 <        totalMass += mass;
1035 <        com += mass * mol->getCom();
1033 >      RealType mass = mol->getMass();
1034 >      totalMass += mass;
1035 >      com += mass * mol->getCom();
1036      }  
1037  
1038   #ifdef IS_MPI
1039 <    double tmpMass = totalMass;
1039 >    RealType tmpMass = totalMass;
1040      Vector3d tmpCom(com);    
1041 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1042 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1041 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1042 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1043   #endif
1044  
1045      com /= totalMass;
1046  
1047      return com;
1048  
1049 < }        
1049 >  }        
1050  
1051 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1051 >  ostream& operator <<(ostream& o, SimInfo& info) {
1052  
1053      return o;
1054 < }
1054 >  }
1055 >  
1056 >  
1057 >   /*
1058 >   Returns center of mass and center of mass velocity in one function call.
1059 >   */
1060 >  
1061 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1062 >      SimInfo::MoleculeIterator i;
1063 >      Molecule* mol;
1064 >      
1065 >    
1066 >      RealType totalMass = 0.0;
1067 >    
1068  
1069 < }//end namespace oopse
1069 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1070 >         RealType mass = mol->getMass();
1071 >         totalMass += mass;
1072 >         com += mass * mol->getCom();
1073 >         comVel += mass * mol->getComVel();          
1074 >      }  
1075 >      
1076 > #ifdef IS_MPI
1077 >      RealType tmpMass = totalMass;
1078 >      Vector3d tmpCom(com);  
1079 >      Vector3d tmpComVel(comVel);
1080 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1081 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1082 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1083 > #endif
1084 >      
1085 >      com /= totalMass;
1086 >      comVel /= totalMass;
1087 >   }        
1088 >  
1089 >   /*
1090 >   Return intertia tensor for entire system and angular momentum Vector.
1091  
1092 +
1093 +       [  Ixx -Ixy  -Ixz ]
1094 +    J =| -Iyx  Iyy  -Iyz |
1095 +       [ -Izx -Iyz   Izz ]
1096 +    */
1097 +
1098 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1099 +      
1100 +
1101 +      RealType xx = 0.0;
1102 +      RealType yy = 0.0;
1103 +      RealType zz = 0.0;
1104 +      RealType xy = 0.0;
1105 +      RealType xz = 0.0;
1106 +      RealType yz = 0.0;
1107 +      Vector3d com(0.0);
1108 +      Vector3d comVel(0.0);
1109 +      
1110 +      getComAll(com, comVel);
1111 +      
1112 +      SimInfo::MoleculeIterator i;
1113 +      Molecule* mol;
1114 +      
1115 +      Vector3d thisq(0.0);
1116 +      Vector3d thisv(0.0);
1117 +
1118 +      RealType thisMass = 0.0;
1119 +    
1120 +      
1121 +      
1122 +  
1123 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1124 +        
1125 +         thisq = mol->getCom()-com;
1126 +         thisv = mol->getComVel()-comVel;
1127 +         thisMass = mol->getMass();
1128 +         // Compute moment of intertia coefficients.
1129 +         xx += thisq[0]*thisq[0]*thisMass;
1130 +         yy += thisq[1]*thisq[1]*thisMass;
1131 +         zz += thisq[2]*thisq[2]*thisMass;
1132 +        
1133 +         // compute products of intertia
1134 +         xy += thisq[0]*thisq[1]*thisMass;
1135 +         xz += thisq[0]*thisq[2]*thisMass;
1136 +         yz += thisq[1]*thisq[2]*thisMass;
1137 +            
1138 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1139 +            
1140 +      }  
1141 +      
1142 +      
1143 +      inertiaTensor(0,0) = yy + zz;
1144 +      inertiaTensor(0,1) = -xy;
1145 +      inertiaTensor(0,2) = -xz;
1146 +      inertiaTensor(1,0) = -xy;
1147 +      inertiaTensor(1,1) = xx + zz;
1148 +      inertiaTensor(1,2) = -yz;
1149 +      inertiaTensor(2,0) = -xz;
1150 +      inertiaTensor(2,1) = -yz;
1151 +      inertiaTensor(2,2) = xx + yy;
1152 +      
1153 + #ifdef IS_MPI
1154 +      Mat3x3d tmpI(inertiaTensor);
1155 +      Vector3d tmpAngMom;
1156 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1157 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1158 + #endif
1159 +              
1160 +      return;
1161 +   }
1162 +
1163 +   //Returns the angular momentum of the system
1164 +   Vector3d SimInfo::getAngularMomentum(){
1165 +      
1166 +      Vector3d com(0.0);
1167 +      Vector3d comVel(0.0);
1168 +      Vector3d angularMomentum(0.0);
1169 +      
1170 +      getComAll(com,comVel);
1171 +      
1172 +      SimInfo::MoleculeIterator i;
1173 +      Molecule* mol;
1174 +      
1175 +      Vector3d thisr(0.0);
1176 +      Vector3d thisp(0.0);
1177 +      
1178 +      RealType thisMass;
1179 +      
1180 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1181 +        thisMass = mol->getMass();
1182 +        thisr = mol->getCom()-com;
1183 +        thisp = (mol->getComVel()-comVel)*thisMass;
1184 +        
1185 +        angularMomentum += cross( thisr, thisp );
1186 +        
1187 +      }  
1188 +      
1189 + #ifdef IS_MPI
1190 +      Vector3d tmpAngMom;
1191 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1192 + #endif
1193 +      
1194 +      return angularMomentum;
1195 +   }
1196 +  
1197 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1198 +    return IOIndexToIntegrableObject.at(index);
1199 +  }
1200 +  
1201 +  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1202 +    IOIndexToIntegrableObject= v;
1203 +  }
1204 +
1205 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1206 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1207 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1208 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1209 +  */
1210 +  void SimInfo::getGyrationalVolume(RealType &volume){
1211 +    Mat3x3d intTensor;
1212 +    RealType det;
1213 +    Vector3d dummyAngMom;
1214 +    RealType sysconstants;
1215 +    RealType geomCnst;
1216 +
1217 +    geomCnst = 3.0/2.0;
1218 +    /* Get the inertial tensor and angular momentum for free*/
1219 +    getInertiaTensor(intTensor,dummyAngMom);
1220 +    
1221 +    det = intTensor.determinant();
1222 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1223 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1224 +    return;
1225 +  }
1226 +
1227 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1228 +    Mat3x3d intTensor;
1229 +    Vector3d dummyAngMom;
1230 +    RealType sysconstants;
1231 +    RealType geomCnst;
1232 +
1233 +    geomCnst = 3.0/2.0;
1234 +    /* Get the inertial tensor and angular momentum for free*/
1235 +    getInertiaTensor(intTensor,dummyAngMom);
1236 +    
1237 +    detI = intTensor.determinant();
1238 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1239 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1240 +    return;
1241 +  }
1242 + /*
1243 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1244 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1245 +      sdByGlobalIndex_ = v;
1246 +    }
1247 +
1248 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1249 +      //assert(index < nAtoms_ + nRigidBodies_);
1250 +      return sdByGlobalIndex_.at(index);
1251 +    }  
1252 + */  
1253 +  int SimInfo::getNGlobalConstraints() {
1254 +    int nGlobalConstraints;
1255 + #ifdef IS_MPI
1256 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1257 +                  MPI_COMM_WORLD);    
1258 + #else
1259 +    nGlobalConstraints =  nConstraints_;
1260 + #endif
1261 +    return nGlobalConstraints;
1262 +  }
1263 +
1264 + }//end namespace OpenMD
1265 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 430 by tim, Thu Mar 10 23:56:42 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1544 by gezelter, Fri Mar 18 19:31:52 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines