6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
|
|
42 |
|
/** |
54 |
|
#include "math/Vector3.hpp" |
55 |
|
#include "primitives/Molecule.hpp" |
56 |
|
#include "primitives/StuntDouble.hpp" |
57 |
– |
#include "UseTheForce/fCutoffPolicy.h" |
58 |
– |
#include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" |
59 |
– |
#include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h" |
60 |
– |
#include "UseTheForce/DarkSide/fSwitchingFunctionType.h" |
61 |
– |
#include "UseTheForce/doForces_interface.h" |
57 |
|
#include "UseTheForce/DarkSide/neighborLists_interface.h" |
58 |
< |
#include "UseTheForce/DarkSide/electrostatic_interface.h" |
64 |
< |
#include "UseTheForce/DarkSide/switcheroo_interface.h" |
58 |
> |
#include "UseTheForce/doForces_interface.h" |
59 |
|
#include "utils/MemoryUtils.hpp" |
60 |
|
#include "utils/simError.h" |
61 |
|
#include "selection/SelectionManager.hpp" |
62 |
|
#include "io/ForceFieldOptions.hpp" |
63 |
|
#include "UseTheForce/ForceField.hpp" |
64 |
+ |
#include "nonbonded/SwitchingFunction.hpp" |
65 |
|
|
71 |
– |
|
66 |
|
#ifdef IS_MPI |
67 |
|
#include "UseTheForce/mpiComponentPlan.h" |
68 |
|
#include "UseTheForce/DarkSide/simParallel_interface.h" |
69 |
|
#endif |
70 |
|
|
71 |
< |
namespace oopse { |
72 |
< |
std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) { |
79 |
< |
std::map<int, std::set<int> >::iterator i = container.find(index); |
80 |
< |
std::set<int> result; |
81 |
< |
if (i != container.end()) { |
82 |
< |
result = i->second; |
83 |
< |
} |
84 |
< |
|
85 |
< |
return result; |
86 |
< |
} |
71 |
> |
using namespace std; |
72 |
> |
namespace OpenMD { |
73 |
|
|
74 |
|
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
75 |
|
forceField_(ff), simParams_(simParams), |
79 |
|
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
80 |
|
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
81 |
|
nConstraints_(0), sman_(NULL), fortranInitialized_(false), |
82 |
< |
calcBoxDipole_(false), useAtomicVirial_(true) { |
83 |
< |
|
84 |
< |
|
85 |
< |
MoleculeStamp* molStamp; |
86 |
< |
int nMolWithSameStamp; |
87 |
< |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
88 |
< |
int nGroups = 0; //total cutoff groups defined in meta-data file |
89 |
< |
CutoffGroupStamp* cgStamp; |
90 |
< |
RigidBodyStamp* rbStamp; |
91 |
< |
int nRigidAtoms = 0; |
92 |
< |
|
93 |
< |
std::vector<Component*> components = simParams->getComponents(); |
94 |
< |
|
95 |
< |
for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
96 |
< |
molStamp = (*i)->getMoleculeStamp(); |
97 |
< |
nMolWithSameStamp = (*i)->getNMol(); |
98 |
< |
|
99 |
< |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
100 |
< |
|
101 |
< |
//calculate atoms in molecules |
102 |
< |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
103 |
< |
|
104 |
< |
//calculate atoms in cutoff groups |
105 |
< |
int nAtomsInGroups = 0; |
106 |
< |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
107 |
< |
|
108 |
< |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
109 |
< |
cgStamp = molStamp->getCutoffGroupStamp(j); |
110 |
< |
nAtomsInGroups += cgStamp->getNMembers(); |
111 |
< |
} |
112 |
< |
|
113 |
< |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
114 |
< |
|
115 |
< |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
116 |
< |
|
117 |
< |
//calculate atoms in rigid bodies |
118 |
< |
int nAtomsInRigidBodies = 0; |
119 |
< |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
120 |
< |
|
121 |
< |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
122 |
< |
rbStamp = molStamp->getRigidBodyStamp(j); |
123 |
< |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
124 |
< |
} |
125 |
< |
|
126 |
< |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
127 |
< |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
142 |
< |
|
143 |
< |
} |
144 |
< |
|
145 |
< |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
146 |
< |
//group therefore the total number of cutoff groups in the system is |
147 |
< |
//equal to the total number of atoms minus number of atoms belong to |
148 |
< |
//cutoff group defined in meta-data file plus the number of cutoff |
149 |
< |
//groups defined in meta-data file |
150 |
< |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
151 |
< |
|
152 |
< |
//every free atom (atom does not belong to rigid bodies) is an |
153 |
< |
//integrable object therefore the total number of integrable objects |
154 |
< |
//in the system is equal to the total number of atoms minus number of |
155 |
< |
//atoms belong to rigid body defined in meta-data file plus the number |
156 |
< |
//of rigid bodies defined in meta-data file |
157 |
< |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
158 |
< |
+ nGlobalRigidBodies_; |
159 |
< |
|
160 |
< |
nGlobalMols_ = molStampIds_.size(); |
161 |
< |
molToProcMap_.resize(nGlobalMols_); |
82 |
> |
calcBoxDipole_(false), useAtomicVirial_(true) { |
83 |
> |
|
84 |
> |
MoleculeStamp* molStamp; |
85 |
> |
int nMolWithSameStamp; |
86 |
> |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
87 |
> |
int nGroups = 0; //total cutoff groups defined in meta-data file |
88 |
> |
CutoffGroupStamp* cgStamp; |
89 |
> |
RigidBodyStamp* rbStamp; |
90 |
> |
int nRigidAtoms = 0; |
91 |
> |
|
92 |
> |
vector<Component*> components = simParams->getComponents(); |
93 |
> |
|
94 |
> |
for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
95 |
> |
molStamp = (*i)->getMoleculeStamp(); |
96 |
> |
nMolWithSameStamp = (*i)->getNMol(); |
97 |
> |
|
98 |
> |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
99 |
> |
|
100 |
> |
//calculate atoms in molecules |
101 |
> |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
102 |
> |
|
103 |
> |
//calculate atoms in cutoff groups |
104 |
> |
int nAtomsInGroups = 0; |
105 |
> |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
106 |
> |
|
107 |
> |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
108 |
> |
cgStamp = molStamp->getCutoffGroupStamp(j); |
109 |
> |
nAtomsInGroups += cgStamp->getNMembers(); |
110 |
> |
} |
111 |
> |
|
112 |
> |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
113 |
> |
|
114 |
> |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
115 |
> |
|
116 |
> |
//calculate atoms in rigid bodies |
117 |
> |
int nAtomsInRigidBodies = 0; |
118 |
> |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
119 |
> |
|
120 |
> |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
121 |
> |
rbStamp = molStamp->getRigidBodyStamp(j); |
122 |
> |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
123 |
> |
} |
124 |
> |
|
125 |
> |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
126 |
> |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
127 |
> |
|
128 |
|
} |
129 |
+ |
|
130 |
+ |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
131 |
+ |
//group therefore the total number of cutoff groups in the system is |
132 |
+ |
//equal to the total number of atoms minus number of atoms belong to |
133 |
+ |
//cutoff group defined in meta-data file plus the number of cutoff |
134 |
+ |
//groups defined in meta-data file |
135 |
+ |
std::cerr << "nGA = " << nGlobalAtoms_ << "\n"; |
136 |
+ |
std::cerr << "nCA = " << nCutoffAtoms << "\n"; |
137 |
+ |
std::cerr << "nG = " << nGroups << "\n"; |
138 |
|
|
139 |
+ |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
140 |
+ |
|
141 |
+ |
std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n"; |
142 |
+ |
|
143 |
+ |
//every free atom (atom does not belong to rigid bodies) is an |
144 |
+ |
//integrable object therefore the total number of integrable objects |
145 |
+ |
//in the system is equal to the total number of atoms minus number of |
146 |
+ |
//atoms belong to rigid body defined in meta-data file plus the number |
147 |
+ |
//of rigid bodies defined in meta-data file |
148 |
+ |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
149 |
+ |
+ nGlobalRigidBodies_; |
150 |
+ |
|
151 |
+ |
nGlobalMols_ = molStampIds_.size(); |
152 |
+ |
molToProcMap_.resize(nGlobalMols_); |
153 |
+ |
} |
154 |
+ |
|
155 |
|
SimInfo::~SimInfo() { |
156 |
< |
std::map<int, Molecule*>::iterator i; |
156 |
> |
map<int, Molecule*>::iterator i; |
157 |
|
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
158 |
|
delete i->second; |
159 |
|
} |
164 |
|
delete forceField_; |
165 |
|
} |
166 |
|
|
176 |
– |
int SimInfo::getNGlobalConstraints() { |
177 |
– |
int nGlobalConstraints; |
178 |
– |
#ifdef IS_MPI |
179 |
– |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
180 |
– |
MPI_COMM_WORLD); |
181 |
– |
#else |
182 |
– |
nGlobalConstraints = nConstraints_; |
183 |
– |
#endif |
184 |
– |
return nGlobalConstraints; |
185 |
– |
} |
167 |
|
|
168 |
|
bool SimInfo::addMolecule(Molecule* mol) { |
169 |
|
MoleculeIterator i; |
170 |
< |
|
170 |
> |
|
171 |
|
i = molecules_.find(mol->getGlobalIndex()); |
172 |
|
if (i == molecules_.end() ) { |
173 |
< |
|
174 |
< |
molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol)); |
175 |
< |
|
173 |
> |
|
174 |
> |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
175 |
> |
|
176 |
|
nAtoms_ += mol->getNAtoms(); |
177 |
|
nBonds_ += mol->getNBonds(); |
178 |
|
nBends_ += mol->getNBends(); |
182 |
|
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
183 |
|
nCutoffGroups_ += mol->getNCutoffGroups(); |
184 |
|
nConstraints_ += mol->getNConstraintPairs(); |
185 |
< |
|
185 |
> |
|
186 |
|
addInteractionPairs(mol); |
187 |
< |
|
187 |
> |
|
188 |
|
return true; |
189 |
|
} else { |
190 |
|
return false; |
191 |
|
} |
192 |
|
} |
193 |
< |
|
193 |
> |
|
194 |
|
bool SimInfo::removeMolecule(Molecule* mol) { |
195 |
|
MoleculeIterator i; |
196 |
|
i = molecules_.find(mol->getGlobalIndex()); |
218 |
|
} else { |
219 |
|
return false; |
220 |
|
} |
240 |
– |
|
241 |
– |
|
221 |
|
} |
222 |
|
|
223 |
|
|
235 |
|
void SimInfo::calcNdf() { |
236 |
|
int ndf_local; |
237 |
|
MoleculeIterator i; |
238 |
< |
std::vector<StuntDouble*>::iterator j; |
238 |
> |
vector<StuntDouble*>::iterator j; |
239 |
|
Molecule* mol; |
240 |
|
StuntDouble* integrableObject; |
241 |
|
|
286 |
|
int ndfRaw_local; |
287 |
|
|
288 |
|
MoleculeIterator i; |
289 |
< |
std::vector<StuntDouble*>::iterator j; |
289 |
> |
vector<StuntDouble*>::iterator j; |
290 |
|
Molecule* mol; |
291 |
|
StuntDouble* integrableObject; |
292 |
|
|
335 |
|
|
336 |
|
void SimInfo::addInteractionPairs(Molecule* mol) { |
337 |
|
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
338 |
< |
std::vector<Bond*>::iterator bondIter; |
339 |
< |
std::vector<Bend*>::iterator bendIter; |
340 |
< |
std::vector<Torsion*>::iterator torsionIter; |
341 |
< |
std::vector<Inversion*>::iterator inversionIter; |
338 |
> |
vector<Bond*>::iterator bondIter; |
339 |
> |
vector<Bend*>::iterator bendIter; |
340 |
> |
vector<Torsion*>::iterator torsionIter; |
341 |
> |
vector<Inversion*>::iterator inversionIter; |
342 |
|
Bond* bond; |
343 |
|
Bend* bend; |
344 |
|
Torsion* torsion; |
356 |
|
// always be excluded. These are done at the bottom of this |
357 |
|
// function. |
358 |
|
|
359 |
< |
std::map<int, std::set<int> > atomGroups; |
359 |
> |
map<int, set<int> > atomGroups; |
360 |
|
Molecule::RigidBodyIterator rbIter; |
361 |
|
RigidBody* rb; |
362 |
|
Molecule::IntegrableObjectIterator ii; |
368 |
|
|
369 |
|
if (integrableObject->isRigidBody()) { |
370 |
|
rb = static_cast<RigidBody*>(integrableObject); |
371 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
372 |
< |
std::set<int> rigidAtoms; |
371 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
372 |
> |
set<int> rigidAtoms; |
373 |
|
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
374 |
|
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
375 |
|
} |
376 |
|
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
377 |
< |
atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
377 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
378 |
|
} |
379 |
|
} else { |
380 |
< |
std::set<int> oneAtomSet; |
380 |
> |
set<int> oneAtomSet; |
381 |
|
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
382 |
< |
atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
382 |
> |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
383 |
|
} |
384 |
|
} |
385 |
|
|
425 |
|
b = torsion->getAtomB()->getGlobalIndex(); |
426 |
|
c = torsion->getAtomC()->getGlobalIndex(); |
427 |
|
d = torsion->getAtomD()->getGlobalIndex(); |
428 |
< |
|
428 |
> |
|
429 |
|
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
430 |
|
oneTwoInteractions_.addPair(a, b); |
431 |
|
oneTwoInteractions_.addPair(b, c); |
482 |
|
|
483 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
484 |
|
rb = mol->nextRigidBody(rbIter)) { |
485 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
485 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
486 |
|
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
487 |
|
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
488 |
|
a = atoms[i]->getGlobalIndex(); |
496 |
|
|
497 |
|
void SimInfo::removeInteractionPairs(Molecule* mol) { |
498 |
|
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
499 |
< |
std::vector<Bond*>::iterator bondIter; |
500 |
< |
std::vector<Bend*>::iterator bendIter; |
501 |
< |
std::vector<Torsion*>::iterator torsionIter; |
502 |
< |
std::vector<Inversion*>::iterator inversionIter; |
499 |
> |
vector<Bond*>::iterator bondIter; |
500 |
> |
vector<Bend*>::iterator bendIter; |
501 |
> |
vector<Torsion*>::iterator torsionIter; |
502 |
> |
vector<Inversion*>::iterator inversionIter; |
503 |
|
Bond* bond; |
504 |
|
Bend* bend; |
505 |
|
Torsion* torsion; |
509 |
|
int c; |
510 |
|
int d; |
511 |
|
|
512 |
< |
std::map<int, std::set<int> > atomGroups; |
512 |
> |
map<int, set<int> > atomGroups; |
513 |
|
Molecule::RigidBodyIterator rbIter; |
514 |
|
RigidBody* rb; |
515 |
|
Molecule::IntegrableObjectIterator ii; |
521 |
|
|
522 |
|
if (integrableObject->isRigidBody()) { |
523 |
|
rb = static_cast<RigidBody*>(integrableObject); |
524 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
525 |
< |
std::set<int> rigidAtoms; |
524 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
525 |
> |
set<int> rigidAtoms; |
526 |
|
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
527 |
|
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
528 |
|
} |
529 |
|
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
530 |
< |
atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
530 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
531 |
|
} |
532 |
|
} else { |
533 |
< |
std::set<int> oneAtomSet; |
533 |
> |
set<int> oneAtomSet; |
534 |
|
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
535 |
< |
atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
535 |
> |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
536 |
|
} |
537 |
|
} |
538 |
|
|
635 |
|
|
636 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
637 |
|
rb = mol->nextRigidBody(rbIter)) { |
638 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
638 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
639 |
|
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
640 |
|
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
641 |
|
a = atoms[i]->getGlobalIndex(); |
658 |
|
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
659 |
|
} |
660 |
|
|
682 |
– |
void SimInfo::update() { |
661 |
|
|
662 |
< |
setupSimType(); |
663 |
< |
|
664 |
< |
#ifdef IS_MPI |
665 |
< |
setupFortranParallel(); |
666 |
< |
#endif |
667 |
< |
|
668 |
< |
setupFortranSim(); |
669 |
< |
|
670 |
< |
//setup fortran force field |
693 |
< |
/** @deprecate */ |
694 |
< |
int isError = 0; |
695 |
< |
|
696 |
< |
setupCutoff(); |
697 |
< |
|
698 |
< |
setupElectrostaticSummationMethod( isError ); |
699 |
< |
setupSwitchingFunction(); |
700 |
< |
setupAccumulateBoxDipole(); |
701 |
< |
|
702 |
< |
if(isError){ |
703 |
< |
sprintf( painCave.errMsg, |
704 |
< |
"ForceField error: There was an error initializing the forceField in fortran.\n" ); |
705 |
< |
painCave.isFatal = 1; |
706 |
< |
simError(); |
707 |
< |
} |
708 |
< |
|
662 |
> |
/** |
663 |
> |
* update |
664 |
> |
* |
665 |
> |
* Performs the global checks and variable settings after the |
666 |
> |
* objects have been created. |
667 |
> |
* |
668 |
> |
*/ |
669 |
> |
void SimInfo::update() { |
670 |
> |
setupSimVariables(); |
671 |
|
calcNdf(); |
672 |
|
calcNdfRaw(); |
673 |
|
calcNdfTrans(); |
712 |
– |
|
713 |
– |
fortranInitialized_ = true; |
674 |
|
} |
675 |
< |
|
676 |
< |
std::set<AtomType*> SimInfo::getUniqueAtomTypes() { |
675 |
> |
|
676 |
> |
/** |
677 |
> |
* getSimulatedAtomTypes |
678 |
> |
* |
679 |
> |
* Returns an STL set of AtomType* that are actually present in this |
680 |
> |
* simulation. Must query all processors to assemble this information. |
681 |
> |
* |
682 |
> |
*/ |
683 |
> |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
684 |
|
SimInfo::MoleculeIterator mi; |
685 |
|
Molecule* mol; |
686 |
|
Molecule::AtomIterator ai; |
687 |
|
Atom* atom; |
688 |
< |
std::set<AtomType*> atomTypes; |
689 |
< |
|
690 |
< |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
724 |
< |
|
688 |
> |
set<AtomType*> atomTypes; |
689 |
> |
|
690 |
> |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
691 |
|
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
692 |
|
atomTypes.insert(atom->getAtomType()); |
693 |
< |
} |
694 |
< |
|
729 |
< |
} |
693 |
> |
} |
694 |
> |
} |
695 |
|
|
696 |
< |
return atomTypes; |
732 |
< |
} |
696 |
> |
#ifdef IS_MPI |
697 |
|
|
698 |
< |
void SimInfo::setupSimType() { |
699 |
< |
std::set<AtomType*>::iterator i; |
736 |
< |
std::set<AtomType*> atomTypes; |
737 |
< |
atomTypes = getUniqueAtomTypes(); |
738 |
< |
|
739 |
< |
int useLennardJones = 0; |
740 |
< |
int useElectrostatic = 0; |
741 |
< |
int useEAM = 0; |
742 |
< |
int useSC = 0; |
743 |
< |
int useCharge = 0; |
744 |
< |
int useDirectional = 0; |
745 |
< |
int useDipole = 0; |
746 |
< |
int useGayBerne = 0; |
747 |
< |
int useSticky = 0; |
748 |
< |
int useStickyPower = 0; |
749 |
< |
int useShape = 0; |
750 |
< |
int useFLARB = 0; //it is not in AtomType yet |
751 |
< |
int useDirectionalAtom = 0; |
752 |
< |
int useElectrostatics = 0; |
753 |
< |
//usePBC and useRF are from simParams |
754 |
< |
int usePBC = simParams_->getUsePeriodicBoundaryConditions(); |
755 |
< |
int useRF; |
756 |
< |
int useSF; |
757 |
< |
int useSP; |
758 |
< |
int useBoxDipole; |
698 |
> |
// loop over the found atom types on this processor, and add their |
699 |
> |
// numerical idents to a vector: |
700 |
|
|
701 |
< |
std::string myMethod; |
702 |
< |
|
703 |
< |
// set the useRF logical |
704 |
< |
useRF = 0; |
764 |
< |
useSF = 0; |
765 |
< |
useSP = 0; |
701 |
> |
vector<int> foundTypes; |
702 |
> |
set<AtomType*>::iterator i; |
703 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
704 |
> |
foundTypes.push_back( (*i)->getIdent() ); |
705 |
|
|
706 |
+ |
// count_local holds the number of found types on this processor |
707 |
+ |
int count_local = foundTypes.size(); |
708 |
|
|
709 |
< |
if (simParams_->haveElectrostaticSummationMethod()) { |
710 |
< |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
711 |
< |
toUpper(myMethod); |
712 |
< |
if (myMethod == "REACTION_FIELD"){ |
713 |
< |
useRF = 1; |
714 |
< |
} else if (myMethod == "SHIFTED_FORCE"){ |
715 |
< |
useSF = 1; |
716 |
< |
} else if (myMethod == "SHIFTED_POTENTIAL"){ |
717 |
< |
useSP = 1; |
718 |
< |
} |
719 |
< |
} |
709 |
> |
// count holds the total number of found types on all processors |
710 |
> |
// (some will be redundant with the ones found locally): |
711 |
> |
int count; |
712 |
> |
MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM); |
713 |
> |
|
714 |
> |
// create a vector to hold the globally found types, and resize it: |
715 |
> |
vector<int> ftGlobal; |
716 |
> |
ftGlobal.resize(count); |
717 |
> |
vector<int> counts; |
718 |
> |
|
719 |
> |
int nproc = MPI::COMM_WORLD.Get_size(); |
720 |
> |
counts.resize(nproc); |
721 |
> |
vector<int> disps; |
722 |
> |
disps.resize(nproc); |
723 |
> |
|
724 |
> |
// now spray out the foundTypes to all the other processors: |
725 |
|
|
726 |
< |
if (simParams_->haveAccumulateBoxDipole()) |
727 |
< |
if (simParams_->getAccumulateBoxDipole()) |
782 |
< |
useBoxDipole = 1; |
726 |
> |
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
727 |
> |
&ftGlobal[0], &counts[0], &disps[0], MPI::INT); |
728 |
|
|
729 |
+ |
// foundIdents is a stl set, so inserting an already found ident |
730 |
+ |
// will have no effect. |
731 |
+ |
set<int> foundIdents; |
732 |
+ |
vector<int>::iterator j; |
733 |
+ |
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
734 |
+ |
foundIdents.insert((*j)); |
735 |
+ |
|
736 |
+ |
// now iterate over the foundIdents and get the actual atom types |
737 |
+ |
// that correspond to these: |
738 |
+ |
set<int>::iterator it; |
739 |
+ |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
740 |
+ |
atomTypes.insert( forceField_->getAtomType((*it)) ); |
741 |
+ |
|
742 |
+ |
#endif |
743 |
+ |
|
744 |
+ |
return atomTypes; |
745 |
+ |
} |
746 |
+ |
|
747 |
+ |
void SimInfo::setupSimVariables() { |
748 |
|
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
749 |
+ |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
750 |
+ |
calcBoxDipole_ = false; |
751 |
+ |
if ( simParams_->haveAccumulateBoxDipole() ) |
752 |
+ |
if ( simParams_->getAccumulateBoxDipole() ) { |
753 |
+ |
calcBoxDipole_ = true; |
754 |
+ |
} |
755 |
|
|
756 |
+ |
set<AtomType*>::iterator i; |
757 |
+ |
set<AtomType*> atomTypes; |
758 |
+ |
atomTypes = getSimulatedAtomTypes(); |
759 |
+ |
int usesElectrostatic = 0; |
760 |
+ |
int usesMetallic = 0; |
761 |
+ |
int usesDirectional = 0; |
762 |
|
//loop over all of the atom types |
763 |
|
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
764 |
< |
useLennardJones |= (*i)->isLennardJones(); |
765 |
< |
useElectrostatic |= (*i)->isElectrostatic(); |
766 |
< |
useEAM |= (*i)->isEAM(); |
791 |
< |
useSC |= (*i)->isSC(); |
792 |
< |
useCharge |= (*i)->isCharge(); |
793 |
< |
useDirectional |= (*i)->isDirectional(); |
794 |
< |
useDipole |= (*i)->isDipole(); |
795 |
< |
useGayBerne |= (*i)->isGayBerne(); |
796 |
< |
useSticky |= (*i)->isSticky(); |
797 |
< |
useStickyPower |= (*i)->isStickyPower(); |
798 |
< |
useShape |= (*i)->isShape(); |
764 |
> |
usesElectrostatic |= (*i)->isElectrostatic(); |
765 |
> |
usesMetallic |= (*i)->isMetal(); |
766 |
> |
usesDirectional |= (*i)->isDirectional(); |
767 |
|
} |
768 |
|
|
801 |
– |
if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) { |
802 |
– |
useDirectionalAtom = 1; |
803 |
– |
} |
804 |
– |
|
805 |
– |
if (useCharge || useDipole) { |
806 |
– |
useElectrostatics = 1; |
807 |
– |
} |
808 |
– |
|
769 |
|
#ifdef IS_MPI |
770 |
|
int temp; |
771 |
< |
|
772 |
< |
temp = usePBC; |
813 |
< |
MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
814 |
< |
|
815 |
< |
temp = useDirectionalAtom; |
816 |
< |
MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
817 |
< |
|
818 |
< |
temp = useLennardJones; |
819 |
< |
MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
820 |
< |
|
821 |
< |
temp = useElectrostatics; |
822 |
< |
MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
771 |
> |
temp = usesDirectional; |
772 |
> |
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
773 |
|
|
774 |
< |
temp = useCharge; |
775 |
< |
MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
774 |
> |
temp = usesMetallic; |
775 |
> |
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
776 |
|
|
777 |
< |
temp = useDipole; |
778 |
< |
MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
829 |
< |
|
830 |
< |
temp = useSticky; |
831 |
< |
MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
832 |
< |
|
833 |
< |
temp = useStickyPower; |
834 |
< |
MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
835 |
< |
|
836 |
< |
temp = useGayBerne; |
837 |
< |
MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
838 |
< |
|
839 |
< |
temp = useEAM; |
840 |
< |
MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
841 |
< |
|
842 |
< |
temp = useSC; |
843 |
< |
MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
844 |
< |
|
845 |
< |
temp = useShape; |
846 |
< |
MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
847 |
< |
|
848 |
< |
temp = useFLARB; |
849 |
< |
MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
850 |
< |
|
851 |
< |
temp = useRF; |
852 |
< |
MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
853 |
< |
|
854 |
< |
temp = useSF; |
855 |
< |
MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
856 |
< |
|
857 |
< |
temp = useSP; |
858 |
< |
MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
859 |
< |
|
860 |
< |
temp = useBoxDipole; |
861 |
< |
MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
862 |
< |
|
863 |
< |
temp = useAtomicVirial_; |
864 |
< |
MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
865 |
< |
|
777 |
> |
temp = usesElectrostatic; |
778 |
> |
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
779 |
|
#endif |
780 |
< |
|
781 |
< |
fInfo_.SIM_uses_PBC = usePBC; |
782 |
< |
fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom; |
783 |
< |
fInfo_.SIM_uses_LennardJones = useLennardJones; |
784 |
< |
fInfo_.SIM_uses_Electrostatics = useElectrostatics; |
785 |
< |
fInfo_.SIM_uses_Charges = useCharge; |
873 |
< |
fInfo_.SIM_uses_Dipoles = useDipole; |
874 |
< |
fInfo_.SIM_uses_Sticky = useSticky; |
875 |
< |
fInfo_.SIM_uses_StickyPower = useStickyPower; |
876 |
< |
fInfo_.SIM_uses_GayBerne = useGayBerne; |
877 |
< |
fInfo_.SIM_uses_EAM = useEAM; |
878 |
< |
fInfo_.SIM_uses_SC = useSC; |
879 |
< |
fInfo_.SIM_uses_Shapes = useShape; |
880 |
< |
fInfo_.SIM_uses_FLARB = useFLARB; |
881 |
< |
fInfo_.SIM_uses_RF = useRF; |
882 |
< |
fInfo_.SIM_uses_SF = useSF; |
883 |
< |
fInfo_.SIM_uses_SP = useSP; |
884 |
< |
fInfo_.SIM_uses_BoxDipole = useBoxDipole; |
885 |
< |
fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_; |
780 |
> |
fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_; |
781 |
> |
fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_; |
782 |
> |
fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_; |
783 |
> |
fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_; |
784 |
> |
fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_; |
785 |
> |
fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_; |
786 |
|
} |
787 |
|
|
788 |
< |
void SimInfo::setupFortranSim() { |
788 |
> |
void SimInfo::setupFortran() { |
789 |
|
int isError; |
790 |
|
int nExclude, nOneTwo, nOneThree, nOneFour; |
791 |
< |
std::vector<int> fortranGlobalGroupMembership; |
791 |
> |
vector<int> fortranGlobalGroupMembership; |
792 |
|
|
793 |
|
isError = 0; |
794 |
|
|
798 |
|
} |
799 |
|
|
800 |
|
//calculate mass ratio of cutoff group |
801 |
< |
std::vector<RealType> mfact; |
801 |
> |
vector<RealType> mfact; |
802 |
|
SimInfo::MoleculeIterator mi; |
803 |
|
Molecule* mol; |
804 |
|
Molecule::CutoffGroupIterator ci; |
824 |
|
} |
825 |
|
} |
826 |
|
|
827 |
< |
//fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) |
928 |
< |
std::vector<int> identArray; |
827 |
> |
// Build the identArray_ |
828 |
|
|
829 |
< |
//to avoid memory reallocation, reserve enough space identArray |
830 |
< |
identArray.reserve(getNAtoms()); |
932 |
< |
|
829 |
> |
identArray_.clear(); |
830 |
> |
identArray_.reserve(getNAtoms()); |
831 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
832 |
|
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
833 |
< |
identArray.push_back(atom->getIdent()); |
833 |
> |
identArray_.push_back(atom->getIdent()); |
834 |
|
} |
835 |
|
} |
836 |
|
|
837 |
|
//fill molMembershipArray |
838 |
|
//molMembershipArray is filled by SimCreator |
839 |
< |
std::vector<int> molMembershipArray(nGlobalAtoms_); |
839 |
> |
vector<int> molMembershipArray(nGlobalAtoms_); |
840 |
|
for (int i = 0; i < nGlobalAtoms_; i++) { |
841 |
|
molMembershipArray[i] = globalMolMembership_[i] + 1; |
842 |
|
} |
848 |
|
nOneThree = oneThreeInteractions_.getSize(); |
849 |
|
nOneFour = oneFourInteractions_.getSize(); |
850 |
|
|
953 |
– |
std::cerr << "exculdes:\n"; |
954 |
– |
std::cerr << excludedInteractions_; |
955 |
– |
std::cerr << "\noneTwo:\n"; |
956 |
– |
std::cerr << oneTwoInteractions_; |
957 |
– |
std::cerr << "\noneThree:\n"; |
958 |
– |
std::cerr << oneThreeInteractions_; |
959 |
– |
std::cerr << "\noneFour:\n"; |
960 |
– |
std::cerr << oneFourInteractions_; |
961 |
– |
|
851 |
|
int* excludeList = excludedInteractions_.getPairList(); |
852 |
|
int* oneTwoList = oneTwoInteractions_.getPairList(); |
853 |
|
int* oneThreeList = oneThreeInteractions_.getPairList(); |
866 |
|
sprintf( painCave.errMsg, |
867 |
|
"There was an error setting the simulation information in fortran.\n" ); |
868 |
|
painCave.isFatal = 1; |
869 |
< |
painCave.severity = OOPSE_ERROR; |
869 |
> |
painCave.severity = OPENMD_ERROR; |
870 |
|
simError(); |
871 |
|
} |
872 |
|
|
882 |
|
setNeighbors(&nlistNeighbors); |
883 |
|
} |
884 |
|
|
996 |
– |
|
997 |
– |
} |
998 |
– |
|
999 |
– |
|
1000 |
– |
void SimInfo::setupFortranParallel() { |
885 |
|
#ifdef IS_MPI |
886 |
< |
//SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
887 |
< |
std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
888 |
< |
std::vector<int> localToGlobalCutoffGroupIndex; |
889 |
< |
SimInfo::MoleculeIterator mi; |
1006 |
< |
Molecule::AtomIterator ai; |
1007 |
< |
Molecule::CutoffGroupIterator ci; |
1008 |
< |
Molecule* mol; |
1009 |
< |
Atom* atom; |
1010 |
< |
CutoffGroup* cg; |
886 |
> |
//SimInfo is responsible for creating localToGlobalAtomIndex and |
887 |
> |
//localToGlobalGroupIndex |
888 |
> |
vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
889 |
> |
vector<int> localToGlobalCutoffGroupIndex; |
890 |
|
mpiSimData parallelData; |
1012 |
– |
int isError; |
891 |
|
|
892 |
|
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
893 |
|
|
927 |
|
|
928 |
|
sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
929 |
|
errorCheckPoint(); |
1052 |
– |
|
930 |
|
#endif |
1054 |
– |
} |
931 |
|
|
932 |
< |
void SimInfo::setupCutoff() { |
933 |
< |
|
934 |
< |
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
935 |
< |
|
936 |
< |
// Check the cutoff policy |
937 |
< |
int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default |
1062 |
< |
|
1063 |
< |
// Set LJ shifting bools to false |
1064 |
< |
ljsp_ = false; |
1065 |
< |
ljsf_ = false; |
1066 |
< |
|
1067 |
< |
std::string myPolicy; |
1068 |
< |
if (forceFieldOptions_.haveCutoffPolicy()){ |
1069 |
< |
myPolicy = forceFieldOptions_.getCutoffPolicy(); |
1070 |
< |
}else if (simParams_->haveCutoffPolicy()) { |
1071 |
< |
myPolicy = simParams_->getCutoffPolicy(); |
932 |
> |
initFortranFF(&isError); |
933 |
> |
if (isError) { |
934 |
> |
sprintf(painCave.errMsg, |
935 |
> |
"initFortranFF errror: fortran didn't like something we gave it.\n"); |
936 |
> |
painCave.isFatal = 1; |
937 |
> |
simError(); |
938 |
|
} |
939 |
< |
|
1074 |
< |
if (!myPolicy.empty()){ |
1075 |
< |
toUpper(myPolicy); |
1076 |
< |
if (myPolicy == "MIX") { |
1077 |
< |
cp = MIX_CUTOFF_POLICY; |
1078 |
< |
} else { |
1079 |
< |
if (myPolicy == "MAX") { |
1080 |
< |
cp = MAX_CUTOFF_POLICY; |
1081 |
< |
} else { |
1082 |
< |
if (myPolicy == "TRADITIONAL") { |
1083 |
< |
cp = TRADITIONAL_CUTOFF_POLICY; |
1084 |
< |
} else { |
1085 |
< |
// throw error |
1086 |
< |
sprintf( painCave.errMsg, |
1087 |
< |
"SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() ); |
1088 |
< |
painCave.isFatal = 1; |
1089 |
< |
simError(); |
1090 |
< |
} |
1091 |
< |
} |
1092 |
< |
} |
1093 |
< |
} |
1094 |
< |
notifyFortranCutoffPolicy(&cp); |
1095 |
< |
|
1096 |
< |
// Check the Skin Thickness for neighborlists |
1097 |
< |
RealType skin; |
1098 |
< |
if (simParams_->haveSkinThickness()) { |
1099 |
< |
skin = simParams_->getSkinThickness(); |
1100 |
< |
notifyFortranSkinThickness(&skin); |
1101 |
< |
} |
1102 |
< |
|
1103 |
< |
// Check if the cutoff was set explicitly: |
1104 |
< |
if (simParams_->haveCutoffRadius()) { |
1105 |
< |
rcut_ = simParams_->getCutoffRadius(); |
1106 |
< |
if (simParams_->haveSwitchingRadius()) { |
1107 |
< |
rsw_ = simParams_->getSwitchingRadius(); |
1108 |
< |
} else { |
1109 |
< |
if (fInfo_.SIM_uses_Charges | |
1110 |
< |
fInfo_.SIM_uses_Dipoles | |
1111 |
< |
fInfo_.SIM_uses_RF) { |
1112 |
< |
|
1113 |
< |
rsw_ = 0.85 * rcut_; |
1114 |
< |
sprintf(painCave.errMsg, |
1115 |
< |
"SimCreator Warning: No value was set for the switchingRadius.\n" |
1116 |
< |
"\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n" |
1117 |
< |
"\tswitchingRadius = %f. for this simulation\n", rsw_); |
1118 |
< |
painCave.isFatal = 0; |
1119 |
< |
simError(); |
1120 |
< |
} else { |
1121 |
< |
rsw_ = rcut_; |
1122 |
< |
sprintf(painCave.errMsg, |
1123 |
< |
"SimCreator Warning: No value was set for the switchingRadius.\n" |
1124 |
< |
"\tOOPSE will use the same value as the cutoffRadius.\n" |
1125 |
< |
"\tswitchingRadius = %f. for this simulation\n", rsw_); |
1126 |
< |
painCave.isFatal = 0; |
1127 |
< |
simError(); |
1128 |
< |
} |
1129 |
< |
} |
1130 |
< |
|
1131 |
< |
if (simParams_->haveElectrostaticSummationMethod()) { |
1132 |
< |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1133 |
< |
toUpper(myMethod); |
1134 |
< |
|
1135 |
< |
if (myMethod == "SHIFTED_POTENTIAL") { |
1136 |
< |
ljsp_ = true; |
1137 |
< |
} else if (myMethod == "SHIFTED_FORCE") { |
1138 |
< |
ljsf_ = true; |
1139 |
< |
} |
1140 |
< |
} |
1141 |
< |
notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); |
1142 |
< |
|
1143 |
< |
} else { |
1144 |
< |
|
1145 |
< |
// For electrostatic atoms, we'll assume a large safe value: |
1146 |
< |
if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { |
1147 |
< |
sprintf(painCave.errMsg, |
1148 |
< |
"SimCreator Warning: No value was set for the cutoffRadius.\n" |
1149 |
< |
"\tOOPSE will use a default value of 15.0 angstroms" |
1150 |
< |
"\tfor the cutoffRadius.\n"); |
1151 |
< |
painCave.isFatal = 0; |
1152 |
< |
simError(); |
1153 |
< |
rcut_ = 15.0; |
1154 |
< |
|
1155 |
< |
if (simParams_->haveElectrostaticSummationMethod()) { |
1156 |
< |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1157 |
< |
toUpper(myMethod); |
1158 |
< |
|
1159 |
< |
// For the time being, we're tethering the LJ shifted behavior to the |
1160 |
< |
// electrostaticSummationMethod keyword options |
1161 |
< |
if (myMethod == "SHIFTED_POTENTIAL") { |
1162 |
< |
ljsp_ = true; |
1163 |
< |
} else if (myMethod == "SHIFTED_FORCE") { |
1164 |
< |
ljsf_ = true; |
1165 |
< |
} |
1166 |
< |
if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") { |
1167 |
< |
if (simParams_->haveSwitchingRadius()){ |
1168 |
< |
sprintf(painCave.errMsg, |
1169 |
< |
"SimInfo Warning: A value was set for the switchingRadius\n" |
1170 |
< |
"\teven though the electrostaticSummationMethod was\n" |
1171 |
< |
"\tset to %s\n", myMethod.c_str()); |
1172 |
< |
painCave.isFatal = 1; |
1173 |
< |
simError(); |
1174 |
< |
} |
1175 |
< |
} |
1176 |
< |
} |
1177 |
< |
|
1178 |
< |
if (simParams_->haveSwitchingRadius()){ |
1179 |
< |
rsw_ = simParams_->getSwitchingRadius(); |
1180 |
< |
} else { |
1181 |
< |
sprintf(painCave.errMsg, |
1182 |
< |
"SimCreator Warning: No value was set for switchingRadius.\n" |
1183 |
< |
"\tOOPSE will use a default value of\n" |
1184 |
< |
"\t0.85 * cutoffRadius for the switchingRadius\n"); |
1185 |
< |
painCave.isFatal = 0; |
1186 |
< |
simError(); |
1187 |
< |
rsw_ = 0.85 * rcut_; |
1188 |
< |
} |
1189 |
< |
|
1190 |
< |
notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); |
1191 |
< |
|
1192 |
< |
} else { |
1193 |
< |
// We didn't set rcut explicitly, and we don't have electrostatic atoms, so |
1194 |
< |
// We'll punt and let fortran figure out the cutoffs later. |
1195 |
< |
|
1196 |
< |
notifyFortranYouAreOnYourOwn(); |
1197 |
< |
|
1198 |
< |
} |
1199 |
< |
} |
939 |
> |
fortranInitialized_ = true; |
940 |
|
} |
941 |
|
|
1202 |
– |
void SimInfo::setupElectrostaticSummationMethod( int isError ) { |
1203 |
– |
|
1204 |
– |
int errorOut; |
1205 |
– |
int esm = NONE; |
1206 |
– |
int sm = UNDAMPED; |
1207 |
– |
RealType alphaVal; |
1208 |
– |
RealType dielectric; |
1209 |
– |
|
1210 |
– |
errorOut = isError; |
1211 |
– |
|
1212 |
– |
if (simParams_->haveElectrostaticSummationMethod()) { |
1213 |
– |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1214 |
– |
toUpper(myMethod); |
1215 |
– |
if (myMethod == "NONE") { |
1216 |
– |
esm = NONE; |
1217 |
– |
} else { |
1218 |
– |
if (myMethod == "SWITCHING_FUNCTION") { |
1219 |
– |
esm = SWITCHING_FUNCTION; |
1220 |
– |
} else { |
1221 |
– |
if (myMethod == "SHIFTED_POTENTIAL") { |
1222 |
– |
esm = SHIFTED_POTENTIAL; |
1223 |
– |
} else { |
1224 |
– |
if (myMethod == "SHIFTED_FORCE") { |
1225 |
– |
esm = SHIFTED_FORCE; |
1226 |
– |
} else { |
1227 |
– |
if (myMethod == "REACTION_FIELD") { |
1228 |
– |
esm = REACTION_FIELD; |
1229 |
– |
dielectric = simParams_->getDielectric(); |
1230 |
– |
if (!simParams_->haveDielectric()) { |
1231 |
– |
// throw warning |
1232 |
– |
sprintf( painCave.errMsg, |
1233 |
– |
"SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n" |
1234 |
– |
"\tA default value of %f will be used for the dielectric.\n", dielectric); |
1235 |
– |
painCave.isFatal = 0; |
1236 |
– |
simError(); |
1237 |
– |
} |
1238 |
– |
} else { |
1239 |
– |
// throw error |
1240 |
– |
sprintf( painCave.errMsg, |
1241 |
– |
"SimInfo error: Unknown electrostaticSummationMethod.\n" |
1242 |
– |
"\t(Input file specified %s .)\n" |
1243 |
– |
"\telectrostaticSummationMethod must be one of: \"none\",\n" |
1244 |
– |
"\t\"shifted_potential\", \"shifted_force\", or \n" |
1245 |
– |
"\t\"reaction_field\".\n", myMethod.c_str() ); |
1246 |
– |
painCave.isFatal = 1; |
1247 |
– |
simError(); |
1248 |
– |
} |
1249 |
– |
} |
1250 |
– |
} |
1251 |
– |
} |
1252 |
– |
} |
1253 |
– |
} |
1254 |
– |
|
1255 |
– |
if (simParams_->haveElectrostaticScreeningMethod()) { |
1256 |
– |
std::string myScreen = simParams_->getElectrostaticScreeningMethod(); |
1257 |
– |
toUpper(myScreen); |
1258 |
– |
if (myScreen == "UNDAMPED") { |
1259 |
– |
sm = UNDAMPED; |
1260 |
– |
} else { |
1261 |
– |
if (myScreen == "DAMPED") { |
1262 |
– |
sm = DAMPED; |
1263 |
– |
if (!simParams_->haveDampingAlpha()) { |
1264 |
– |
// first set a cutoff dependent alpha value |
1265 |
– |
// we assume alpha depends linearly with rcut from 0 to 20.5 ang |
1266 |
– |
alphaVal = 0.5125 - rcut_* 0.025; |
1267 |
– |
// for values rcut > 20.5, alpha is zero |
1268 |
– |
if (alphaVal < 0) alphaVal = 0; |
1269 |
– |
|
1270 |
– |
// throw warning |
1271 |
– |
sprintf( painCave.errMsg, |
1272 |
– |
"SimInfo warning: dampingAlpha was not specified in the input file.\n" |
1273 |
– |
"\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_); |
1274 |
– |
painCave.isFatal = 0; |
1275 |
– |
simError(); |
1276 |
– |
} else { |
1277 |
– |
alphaVal = simParams_->getDampingAlpha(); |
1278 |
– |
} |
1279 |
– |
|
1280 |
– |
} else { |
1281 |
– |
// throw error |
1282 |
– |
sprintf( painCave.errMsg, |
1283 |
– |
"SimInfo error: Unknown electrostaticScreeningMethod.\n" |
1284 |
– |
"\t(Input file specified %s .)\n" |
1285 |
– |
"\telectrostaticScreeningMethod must be one of: \"undamped\"\n" |
1286 |
– |
"or \"damped\".\n", myScreen.c_str() ); |
1287 |
– |
painCave.isFatal = 1; |
1288 |
– |
simError(); |
1289 |
– |
} |
1290 |
– |
} |
1291 |
– |
} |
1292 |
– |
|
1293 |
– |
// let's pass some summation method variables to fortran |
1294 |
– |
setElectrostaticSummationMethod( &esm ); |
1295 |
– |
setFortranElectrostaticMethod( &esm ); |
1296 |
– |
setScreeningMethod( &sm ); |
1297 |
– |
setDampingAlpha( &alphaVal ); |
1298 |
– |
setReactionFieldDielectric( &dielectric ); |
1299 |
– |
initFortranFF( &errorOut ); |
1300 |
– |
} |
1301 |
– |
|
1302 |
– |
void SimInfo::setupSwitchingFunction() { |
1303 |
– |
int ft = CUBIC; |
1304 |
– |
|
1305 |
– |
if (simParams_->haveSwitchingFunctionType()) { |
1306 |
– |
std::string funcType = simParams_->getSwitchingFunctionType(); |
1307 |
– |
toUpper(funcType); |
1308 |
– |
if (funcType == "CUBIC") { |
1309 |
– |
ft = CUBIC; |
1310 |
– |
} else { |
1311 |
– |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
1312 |
– |
ft = FIFTH_ORDER_POLY; |
1313 |
– |
} else { |
1314 |
– |
// throw error |
1315 |
– |
sprintf( painCave.errMsg, |
1316 |
– |
"SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() ); |
1317 |
– |
painCave.isFatal = 1; |
1318 |
– |
simError(); |
1319 |
– |
} |
1320 |
– |
} |
1321 |
– |
} |
1322 |
– |
|
1323 |
– |
// send switching function notification to switcheroo |
1324 |
– |
setFunctionType(&ft); |
1325 |
– |
|
1326 |
– |
} |
1327 |
– |
|
1328 |
– |
void SimInfo::setupAccumulateBoxDipole() { |
1329 |
– |
|
1330 |
– |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
1331 |
– |
if ( simParams_->haveAccumulateBoxDipole() ) |
1332 |
– |
if ( simParams_->getAccumulateBoxDipole() ) { |
1333 |
– |
setAccumulateBoxDipole(); |
1334 |
– |
calcBoxDipole_ = true; |
1335 |
– |
} |
1336 |
– |
|
1337 |
– |
} |
1338 |
– |
|
942 |
|
void SimInfo::addProperty(GenericData* genData) { |
943 |
|
properties_.addProperty(genData); |
944 |
|
} |
945 |
|
|
946 |
< |
void SimInfo::removeProperty(const std::string& propName) { |
946 |
> |
void SimInfo::removeProperty(const string& propName) { |
947 |
|
properties_.removeProperty(propName); |
948 |
|
} |
949 |
|
|
951 |
|
properties_.clearProperties(); |
952 |
|
} |
953 |
|
|
954 |
< |
std::vector<std::string> SimInfo::getPropertyNames() { |
954 |
> |
vector<string> SimInfo::getPropertyNames() { |
955 |
|
return properties_.getPropertyNames(); |
956 |
|
} |
957 |
|
|
958 |
< |
std::vector<GenericData*> SimInfo::getProperties() { |
958 |
> |
vector<GenericData*> SimInfo::getProperties() { |
959 |
|
return properties_.getProperties(); |
960 |
|
} |
961 |
|
|
962 |
< |
GenericData* SimInfo::getPropertyByName(const std::string& propName) { |
962 |
> |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
963 |
|
return properties_.getPropertyByName(propName); |
964 |
|
} |
965 |
|
|
973 |
|
Molecule* mol; |
974 |
|
RigidBody* rb; |
975 |
|
Atom* atom; |
976 |
+ |
CutoffGroup* cg; |
977 |
|
SimInfo::MoleculeIterator mi; |
978 |
|
Molecule::RigidBodyIterator rbIter; |
979 |
< |
Molecule::AtomIterator atomIter;; |
979 |
> |
Molecule::AtomIterator atomIter; |
980 |
> |
Molecule::CutoffGroupIterator cgIter; |
981 |
|
|
982 |
|
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
983 |
|
|
988 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
989 |
|
rb->setSnapshotManager(sman_); |
990 |
|
} |
991 |
+ |
|
992 |
+ |
for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) { |
993 |
+ |
cg->setSnapshotManager(sman_); |
994 |
+ |
} |
995 |
|
} |
996 |
|
|
997 |
|
} |
1048 |
|
|
1049 |
|
} |
1050 |
|
|
1051 |
< |
std::ostream& operator <<(std::ostream& o, SimInfo& info) { |
1051 |
> |
ostream& operator <<(ostream& o, SimInfo& info) { |
1052 |
|
|
1053 |
|
return o; |
1054 |
|
} |
1091 |
|
|
1092 |
|
|
1093 |
|
[ Ixx -Ixy -Ixz ] |
1094 |
< |
J =| -Iyx Iyy -Iyz | |
1094 |
> |
J =| -Iyx Iyy -Iyz | |
1095 |
|
[ -Izx -Iyz Izz ] |
1096 |
|
*/ |
1097 |
|
|
1198 |
|
return IOIndexToIntegrableObject.at(index); |
1199 |
|
} |
1200 |
|
|
1201 |
< |
void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) { |
1201 |
> |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1202 |
|
IOIndexToIntegrableObject= v; |
1203 |
|
} |
1204 |
|
|
1240 |
|
return; |
1241 |
|
} |
1242 |
|
/* |
1243 |
< |
void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) { |
1243 |
> |
void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1244 |
|
assert( v.size() == nAtoms_ + nRigidBodies_); |
1245 |
|
sdByGlobalIndex_ = v; |
1246 |
|
} |
1250 |
|
return sdByGlobalIndex_.at(index); |
1251 |
|
} |
1252 |
|
*/ |
1253 |
< |
}//end namespace oopse |
1253 |
> |
int SimInfo::getNGlobalConstraints() { |
1254 |
> |
int nGlobalConstraints; |
1255 |
> |
#ifdef IS_MPI |
1256 |
> |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
1257 |
> |
MPI_COMM_WORLD); |
1258 |
> |
#else |
1259 |
> |
nGlobalConstraints = nConstraints_; |
1260 |
> |
#endif |
1261 |
> |
return nGlobalConstraints; |
1262 |
> |
} |
1263 |
|
|
1264 |
+ |
}//end namespace OpenMD |
1265 |
+ |
|