ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 316 by tim, Fri Feb 11 22:41:02 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1532 by gezelter, Wed Dec 29 19:59:21 2010 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57   #include "UseTheForce/doForces_interface.h"
58 < #include "UseTheForce/notifyCutoffs_interface.h"
58 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
59   #include "utils/MemoryUtils.hpp"
60   #include "utils/simError.h"
61   #include "selection/SelectionManager.hpp"
62 + #include "io/ForceFieldOptions.hpp"
63 + #include "UseTheForce/ForceField.hpp"
64 + #include "nonbonded/SwitchingFunction.hpp"
65  
66 +
67   #ifdef IS_MPI
68   #include "UseTheForce/mpiComponentPlan.h"
69   #include "UseTheForce/DarkSide/simParallel_interface.h"
70   #endif
71  
72 < namespace oopse {
73 <
74 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
75 <                                ForceField* ff, Globals* simParams) :
76 <                                forceField_(ff), simParams_(simParams),
77 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
78 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
79 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
80 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
81 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
82 <                                sman_(NULL), fortranInitialized_(false), selectMan_(NULL) {
83 <
84 <            
79 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
72 > using namespace std;
73 > namespace OpenMD {
74 >  
75 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
76 >    forceField_(ff), simParams_(simParams),
77 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
78 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
79 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
80 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
81 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
82 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
83 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
84 >    
85      MoleculeStamp* molStamp;
86      int nMolWithSameStamp;
87      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
88 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
88 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
89      CutoffGroupStamp* cgStamp;    
90      RigidBodyStamp* rbStamp;
91      int nRigidAtoms = 0;
92      
93 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
94 <        molStamp = i->first;
95 <        nMolWithSameStamp = i->second;
96 <        
97 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
98 <
99 <        //calculate atoms in molecules
100 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
101 <
102 <
103 <        //calculate atoms in cutoff groups
104 <        int nAtomsInGroups = 0;
105 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
106 <        
107 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
108 <            cgStamp = molStamp->getCutoffGroup(j);
109 <            nAtomsInGroups += cgStamp->getNMembers();
110 <        }
111 <
112 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
113 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
114 <
115 <        //calculate atoms in rigid bodies
116 <        int nAtomsInRigidBodies = 0;
117 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
118 <        
119 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
120 <            rbStamp = molStamp->getRigidBody(j);
121 <            nAtomsInRigidBodies += rbStamp->getNMembers();
122 <        }
123 <
124 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
125 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
126 <        
93 >    vector<Component*> components = simParams->getComponents();
94 >    
95 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
96 >      molStamp = (*i)->getMoleculeStamp();
97 >      nMolWithSameStamp = (*i)->getNMol();
98 >      
99 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
100 >      
101 >      //calculate atoms in molecules
102 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
103 >      
104 >      //calculate atoms in cutoff groups
105 >      int nAtomsInGroups = 0;
106 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
107 >      
108 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
109 >        cgStamp = molStamp->getCutoffGroupStamp(j);
110 >        nAtomsInGroups += cgStamp->getNMembers();
111 >      }
112 >      
113 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
114 >      
115 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
116 >      
117 >      //calculate atoms in rigid bodies
118 >      int nAtomsInRigidBodies = 0;
119 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
120 >      
121 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
122 >        rbStamp = molStamp->getRigidBodyStamp(j);
123 >        nAtomsInRigidBodies += rbStamp->getNMembers();
124 >      }
125 >      
126 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
127 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
128 >      
129      }
130 <
131 <    //every free atom (atom does not belong to cutoff groups) is a cutoff group
132 <    //therefore the total number of cutoff groups in the system is equal to
133 <    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
134 <    //file plus the number of cutoff groups defined in meta-data file
130 >    
131 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
132 >    //group therefore the total number of cutoff groups in the system is
133 >    //equal to the total number of atoms minus number of atoms belong to
134 >    //cutoff group defined in meta-data file plus the number of cutoff
135 >    //groups defined in meta-data file
136      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
137 <
138 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
139 <    //therefore the total number of  integrable objects in the system is equal to
140 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
141 <    //file plus the number of  rigid bodies defined in meta-data file
142 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
143 <
137 >    
138 >    //every free atom (atom does not belong to rigid bodies) is an
139 >    //integrable object therefore the total number of integrable objects
140 >    //in the system is equal to the total number of atoms minus number of
141 >    //atoms belong to rigid body defined in meta-data file plus the number
142 >    //of rigid bodies defined in meta-data file
143 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
144 >      + nGlobalRigidBodies_;
145 >    
146      nGlobalMols_ = molStampIds_.size();
137
138 #ifdef IS_MPI    
147      molToProcMap_.resize(nGlobalMols_);
148 < #endif
149 <
150 <    selectMan_ = new SelectionManager(this);
151 <    selectMan_->selectAll();
152 < }
153 <
154 < SimInfo::~SimInfo() {
155 <    //MemoryUtils::deleteVectorOfPointer(molecules_);
156 <
149 <    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
150 <    
148 >  }
149 >  
150 >  SimInfo::~SimInfo() {
151 >    map<int, Molecule*>::iterator i;
152 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
153 >      delete i->second;
154 >    }
155 >    molecules_.clear();
156 >      
157      delete sman_;
158      delete simParams_;
159      delete forceField_;
160 <    delete selectMan_;
155 < }
160 >  }
161  
157 int SimInfo::getNGlobalConstraints() {
158    int nGlobalConstraints;
159 #ifdef IS_MPI
160    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
161                  MPI_COMM_WORLD);    
162 #else
163    nGlobalConstraints =  nConstraints_;
164 #endif
165    return nGlobalConstraints;
166 }
162  
163 < bool SimInfo::addMolecule(Molecule* mol) {
163 >  bool SimInfo::addMolecule(Molecule* mol) {
164      MoleculeIterator i;
165 <
165 >    
166      i = molecules_.find(mol->getGlobalIndex());
167      if (i == molecules_.end() ) {
168 <
169 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
170 <        
171 <        nAtoms_ += mol->getNAtoms();
172 <        nBonds_ += mol->getNBonds();
173 <        nBends_ += mol->getNBends();
174 <        nTorsions_ += mol->getNTorsions();
175 <        nRigidBodies_ += mol->getNRigidBodies();
176 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
177 <        nCutoffGroups_ += mol->getNCutoffGroups();
178 <        nConstraints_ += mol->getNConstraintPairs();
179 <
180 <        addExcludePairs(mol);
181 <        
182 <        return true;
168 >      
169 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
170 >      
171 >      nAtoms_ += mol->getNAtoms();
172 >      nBonds_ += mol->getNBonds();
173 >      nBends_ += mol->getNBends();
174 >      nTorsions_ += mol->getNTorsions();
175 >      nInversions_ += mol->getNInversions();
176 >      nRigidBodies_ += mol->getNRigidBodies();
177 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
178 >      nCutoffGroups_ += mol->getNCutoffGroups();
179 >      nConstraints_ += mol->getNConstraintPairs();
180 >      
181 >      addInteractionPairs(mol);
182 >      
183 >      return true;
184      } else {
185 <        return false;
185 >      return false;
186      }
187 < }
188 <
189 < bool SimInfo::removeMolecule(Molecule* mol) {
187 >  }
188 >  
189 >  bool SimInfo::removeMolecule(Molecule* mol) {
190      MoleculeIterator i;
191      i = molecules_.find(mol->getGlobalIndex());
192  
193      if (i != molecules_.end() ) {
194  
195 <        assert(mol == i->second);
195 >      assert(mol == i->second);
196          
197 <        nAtoms_ -= mol->getNAtoms();
198 <        nBonds_ -= mol->getNBonds();
199 <        nBends_ -= mol->getNBends();
200 <        nTorsions_ -= mol->getNTorsions();
201 <        nRigidBodies_ -= mol->getNRigidBodies();
202 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
203 <        nCutoffGroups_ -= mol->getNCutoffGroups();
204 <        nConstraints_ -= mol->getNConstraintPairs();
197 >      nAtoms_ -= mol->getNAtoms();
198 >      nBonds_ -= mol->getNBonds();
199 >      nBends_ -= mol->getNBends();
200 >      nTorsions_ -= mol->getNTorsions();
201 >      nInversions_ -= mol->getNInversions();
202 >      nRigidBodies_ -= mol->getNRigidBodies();
203 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
204 >      nCutoffGroups_ -= mol->getNCutoffGroups();
205 >      nConstraints_ -= mol->getNConstraintPairs();
206  
207 <        removeExcludePairs(mol);
208 <        molecules_.erase(mol->getGlobalIndex());
207 >      removeInteractionPairs(mol);
208 >      molecules_.erase(mol->getGlobalIndex());
209  
210 <        delete mol;
210 >      delete mol;
211          
212 <        return true;
212 >      return true;
213      } else {
214 <        return false;
214 >      return false;
215      }
216 +  }    
217  
220
221 }    
222
218          
219 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
219 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
220      i = molecules_.begin();
221      return i == molecules_.end() ? NULL : i->second;
222 < }    
222 >  }    
223  
224 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
224 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
225      ++i;
226      return i == molecules_.end() ? NULL : i->second;    
227 < }
227 >  }
228  
229  
230 < void SimInfo::calcNdf() {
230 >  void SimInfo::calcNdf() {
231      int ndf_local;
232      MoleculeIterator i;
233 <    std::vector<StuntDouble*>::iterator j;
233 >    vector<StuntDouble*>::iterator j;
234      Molecule* mol;
235      StuntDouble* integrableObject;
236  
237      ndf_local = 0;
238      
239      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
240 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
241 <               integrableObject = mol->nextIntegrableObject(j)) {
240 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
241 >           integrableObject = mol->nextIntegrableObject(j)) {
242  
243 <            ndf_local += 3;
243 >        ndf_local += 3;
244  
245 <            if (integrableObject->isDirectional()) {
246 <                if (integrableObject->isLinear()) {
247 <                    ndf_local += 2;
248 <                } else {
249 <                    ndf_local += 3;
250 <                }
251 <            }
245 >        if (integrableObject->isDirectional()) {
246 >          if (integrableObject->isLinear()) {
247 >            ndf_local += 2;
248 >          } else {
249 >            ndf_local += 3;
250 >          }
251 >        }
252              
253 <        }//end for (integrableObject)
254 <    }// end for (mol)
253 >      }
254 >    }
255      
256      // n_constraints is local, so subtract them on each processor
257      ndf_local -= nConstraints_;
# Line 271 | Line 266 | void SimInfo::calcNdf() {
266      // entire system:
267      ndf_ = ndf_ - 3 - nZconstraint_;
268  
269 < }
269 >  }
270  
271 < void SimInfo::calcNdfRaw() {
271 >  int SimInfo::getFdf() {
272 > #ifdef IS_MPI
273 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
274 > #else
275 >    fdf_ = fdf_local;
276 > #endif
277 >    return fdf_;
278 >  }
279 >    
280 >  void SimInfo::calcNdfRaw() {
281      int ndfRaw_local;
282  
283      MoleculeIterator i;
284 <    std::vector<StuntDouble*>::iterator j;
284 >    vector<StuntDouble*>::iterator j;
285      Molecule* mol;
286      StuntDouble* integrableObject;
287  
# Line 285 | Line 289 | void SimInfo::calcNdfRaw() {
289      ndfRaw_local = 0;
290      
291      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
292 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
293 <               integrableObject = mol->nextIntegrableObject(j)) {
292 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
293 >           integrableObject = mol->nextIntegrableObject(j)) {
294  
295 <            ndfRaw_local += 3;
295 >        ndfRaw_local += 3;
296  
297 <            if (integrableObject->isDirectional()) {
298 <                if (integrableObject->isLinear()) {
299 <                    ndfRaw_local += 2;
300 <                } else {
301 <                    ndfRaw_local += 3;
302 <                }
303 <            }
297 >        if (integrableObject->isDirectional()) {
298 >          if (integrableObject->isLinear()) {
299 >            ndfRaw_local += 2;
300 >          } else {
301 >            ndfRaw_local += 3;
302 >          }
303 >        }
304              
305 <        }
305 >      }
306      }
307      
308   #ifdef IS_MPI
# Line 306 | Line 310 | void SimInfo::calcNdfRaw() {
310   #else
311      ndfRaw_ = ndfRaw_local;
312   #endif
313 < }
313 >  }
314  
315 < void SimInfo::calcNdfTrans() {
315 >  void SimInfo::calcNdfTrans() {
316      int ndfTrans_local;
317  
318      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 322 | Line 326 | void SimInfo::calcNdfTrans() {
326  
327      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
328  
329 < }
329 >  }
330  
331 < void SimInfo::addExcludePairs(Molecule* mol) {
332 <    std::vector<Bond*>::iterator bondIter;
333 <    std::vector<Bend*>::iterator bendIter;
334 <    std::vector<Torsion*>::iterator torsionIter;
331 >  void SimInfo::addInteractionPairs(Molecule* mol) {
332 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
333 >    vector<Bond*>::iterator bondIter;
334 >    vector<Bend*>::iterator bendIter;
335 >    vector<Torsion*>::iterator torsionIter;
336 >    vector<Inversion*>::iterator inversionIter;
337      Bond* bond;
338      Bend* bend;
339      Torsion* torsion;
340 +    Inversion* inversion;
341      int a;
342      int b;
343      int c;
344      int d;
338    
339    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
340        a = bond->getAtomA()->getGlobalIndex();
341        b = bond->getAtomB()->getGlobalIndex();        
342        exclude_.addPair(a, b);
343    }
345  
346 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
347 <        a = bend->getAtomA()->getGlobalIndex();
348 <        b = bend->getAtomB()->getGlobalIndex();        
349 <        c = bend->getAtomC()->getGlobalIndex();
346 >    // atomGroups can be used to add special interaction maps between
347 >    // groups of atoms that are in two separate rigid bodies.
348 >    // However, most site-site interactions between two rigid bodies
349 >    // are probably not special, just the ones between the physically
350 >    // bonded atoms.  Interactions *within* a single rigid body should
351 >    // always be excluded.  These are done at the bottom of this
352 >    // function.
353  
354 <        exclude_.addPair(a, b);
355 <        exclude_.addPair(a, c);
356 <        exclude_.addPair(b, c);        
354 >    map<int, set<int> > atomGroups;
355 >    Molecule::RigidBodyIterator rbIter;
356 >    RigidBody* rb;
357 >    Molecule::IntegrableObjectIterator ii;
358 >    StuntDouble* integrableObject;
359 >    
360 >    for (integrableObject = mol->beginIntegrableObject(ii);
361 >         integrableObject != NULL;
362 >         integrableObject = mol->nextIntegrableObject(ii)) {
363 >      
364 >      if (integrableObject->isRigidBody()) {
365 >        rb = static_cast<RigidBody*>(integrableObject);
366 >        vector<Atom*> atoms = rb->getAtoms();
367 >        set<int> rigidAtoms;
368 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
369 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
370 >        }
371 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
372 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
373 >        }      
374 >      } else {
375 >        set<int> oneAtomSet;
376 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
377 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
378 >      }
379 >    }  
380 >          
381 >    for (bond= mol->beginBond(bondIter); bond != NULL;
382 >         bond = mol->nextBond(bondIter)) {
383 >
384 >      a = bond->getAtomA()->getGlobalIndex();
385 >      b = bond->getAtomB()->getGlobalIndex();  
386 >    
387 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
388 >        oneTwoInteractions_.addPair(a, b);
389 >      } else {
390 >        excludedInteractions_.addPair(a, b);
391 >      }
392      }
393  
394 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
395 <        a = torsion->getAtomA()->getGlobalIndex();
357 <        b = torsion->getAtomB()->getGlobalIndex();        
358 <        c = torsion->getAtomC()->getGlobalIndex();        
359 <        d = torsion->getAtomD()->getGlobalIndex();        
394 >    for (bend= mol->beginBend(bendIter); bend != NULL;
395 >         bend = mol->nextBend(bendIter)) {
396  
397 <        exclude_.addPair(a, b);
398 <        exclude_.addPair(a, c);
399 <        exclude_.addPair(a, d);
400 <        exclude_.addPair(b, c);
401 <        exclude_.addPair(b, d);
402 <        exclude_.addPair(c, d);        
397 >      a = bend->getAtomA()->getGlobalIndex();
398 >      b = bend->getAtomB()->getGlobalIndex();        
399 >      c = bend->getAtomC()->getGlobalIndex();
400 >      
401 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
402 >        oneTwoInteractions_.addPair(a, b);      
403 >        oneTwoInteractions_.addPair(b, c);
404 >      } else {
405 >        excludedInteractions_.addPair(a, b);
406 >        excludedInteractions_.addPair(b, c);
407 >      }
408 >
409 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
410 >        oneThreeInteractions_.addPair(a, c);      
411 >      } else {
412 >        excludedInteractions_.addPair(a, c);
413 >      }
414      }
415  
416 <    
417 < }
416 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
417 >         torsion = mol->nextTorsion(torsionIter)) {
418  
419 < void SimInfo::removeExcludePairs(Molecule* mol) {
420 <    std::vector<Bond*>::iterator bondIter;
421 <    std::vector<Bend*>::iterator bendIter;
422 <    std::vector<Torsion*>::iterator torsionIter;
419 >      a = torsion->getAtomA()->getGlobalIndex();
420 >      b = torsion->getAtomB()->getGlobalIndex();        
421 >      c = torsion->getAtomC()->getGlobalIndex();        
422 >      d = torsion->getAtomD()->getGlobalIndex();      
423 >
424 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
425 >        oneTwoInteractions_.addPair(a, b);      
426 >        oneTwoInteractions_.addPair(b, c);
427 >        oneTwoInteractions_.addPair(c, d);
428 >      } else {
429 >        excludedInteractions_.addPair(a, b);
430 >        excludedInteractions_.addPair(b, c);
431 >        excludedInteractions_.addPair(c, d);
432 >      }
433 >
434 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
435 >        oneThreeInteractions_.addPair(a, c);      
436 >        oneThreeInteractions_.addPair(b, d);      
437 >      } else {
438 >        excludedInteractions_.addPair(a, c);
439 >        excludedInteractions_.addPair(b, d);
440 >      }
441 >
442 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
443 >        oneFourInteractions_.addPair(a, d);      
444 >      } else {
445 >        excludedInteractions_.addPair(a, d);
446 >      }
447 >    }
448 >
449 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
450 >         inversion = mol->nextInversion(inversionIter)) {
451 >
452 >      a = inversion->getAtomA()->getGlobalIndex();
453 >      b = inversion->getAtomB()->getGlobalIndex();        
454 >      c = inversion->getAtomC()->getGlobalIndex();        
455 >      d = inversion->getAtomD()->getGlobalIndex();        
456 >
457 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
458 >        oneTwoInteractions_.addPair(a, b);      
459 >        oneTwoInteractions_.addPair(a, c);
460 >        oneTwoInteractions_.addPair(a, d);
461 >      } else {
462 >        excludedInteractions_.addPair(a, b);
463 >        excludedInteractions_.addPair(a, c);
464 >        excludedInteractions_.addPair(a, d);
465 >      }
466 >
467 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
468 >        oneThreeInteractions_.addPair(b, c);    
469 >        oneThreeInteractions_.addPair(b, d);    
470 >        oneThreeInteractions_.addPair(c, d);      
471 >      } else {
472 >        excludedInteractions_.addPair(b, c);
473 >        excludedInteractions_.addPair(b, d);
474 >        excludedInteractions_.addPair(c, d);
475 >      }
476 >    }
477 >
478 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
479 >         rb = mol->nextRigidBody(rbIter)) {
480 >      vector<Atom*> atoms = rb->getAtoms();
481 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
482 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
483 >          a = atoms[i]->getGlobalIndex();
484 >          b = atoms[j]->getGlobalIndex();
485 >          excludedInteractions_.addPair(a, b);
486 >        }
487 >      }
488 >    }        
489 >
490 >  }
491 >
492 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
493 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
494 >    vector<Bond*>::iterator bondIter;
495 >    vector<Bend*>::iterator bendIter;
496 >    vector<Torsion*>::iterator torsionIter;
497 >    vector<Inversion*>::iterator inversionIter;
498      Bond* bond;
499      Bend* bend;
500      Torsion* torsion;
501 +    Inversion* inversion;
502      int a;
503      int b;
504      int c;
505      int d;
506 +
507 +    map<int, set<int> > atomGroups;
508 +    Molecule::RigidBodyIterator rbIter;
509 +    RigidBody* rb;
510 +    Molecule::IntegrableObjectIterator ii;
511 +    StuntDouble* integrableObject;
512      
513 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
514 <        a = bond->getAtomA()->getGlobalIndex();
515 <        b = bond->getAtomB()->getGlobalIndex();        
516 <        exclude_.removePair(a, b);
513 >    for (integrableObject = mol->beginIntegrableObject(ii);
514 >         integrableObject != NULL;
515 >         integrableObject = mol->nextIntegrableObject(ii)) {
516 >      
517 >      if (integrableObject->isRigidBody()) {
518 >        rb = static_cast<RigidBody*>(integrableObject);
519 >        vector<Atom*> atoms = rb->getAtoms();
520 >        set<int> rigidAtoms;
521 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
522 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
523 >        }
524 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
525 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
526 >        }      
527 >      } else {
528 >        set<int> oneAtomSet;
529 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
530 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
531 >      }
532 >    }  
533 >
534 >    for (bond= mol->beginBond(bondIter); bond != NULL;
535 >         bond = mol->nextBond(bondIter)) {
536 >      
537 >      a = bond->getAtomA()->getGlobalIndex();
538 >      b = bond->getAtomB()->getGlobalIndex();  
539 >    
540 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
541 >        oneTwoInteractions_.removePair(a, b);
542 >      } else {
543 >        excludedInteractions_.removePair(a, b);
544 >      }
545      }
546  
547 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
548 <        a = bend->getAtomA()->getGlobalIndex();
392 <        b = bend->getAtomB()->getGlobalIndex();        
393 <        c = bend->getAtomC()->getGlobalIndex();
547 >    for (bend= mol->beginBend(bendIter); bend != NULL;
548 >         bend = mol->nextBend(bendIter)) {
549  
550 <        exclude_.removePair(a, b);
551 <        exclude_.removePair(a, c);
552 <        exclude_.removePair(b, c);        
550 >      a = bend->getAtomA()->getGlobalIndex();
551 >      b = bend->getAtomB()->getGlobalIndex();        
552 >      c = bend->getAtomC()->getGlobalIndex();
553 >      
554 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
555 >        oneTwoInteractions_.removePair(a, b);      
556 >        oneTwoInteractions_.removePair(b, c);
557 >      } else {
558 >        excludedInteractions_.removePair(a, b);
559 >        excludedInteractions_.removePair(b, c);
560 >      }
561 >
562 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
563 >        oneThreeInteractions_.removePair(a, c);      
564 >      } else {
565 >        excludedInteractions_.removePair(a, c);
566 >      }
567      }
568  
569 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
570 <        a = torsion->getAtomA()->getGlobalIndex();
402 <        b = torsion->getAtomB()->getGlobalIndex();        
403 <        c = torsion->getAtomC()->getGlobalIndex();        
404 <        d = torsion->getAtomD()->getGlobalIndex();        
569 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
570 >         torsion = mol->nextTorsion(torsionIter)) {
571  
572 <        exclude_.removePair(a, b);
573 <        exclude_.removePair(a, c);
574 <        exclude_.removePair(a, d);
575 <        exclude_.removePair(b, c);
576 <        exclude_.removePair(b, d);
577 <        exclude_.removePair(c, d);        
572 >      a = torsion->getAtomA()->getGlobalIndex();
573 >      b = torsion->getAtomB()->getGlobalIndex();        
574 >      c = torsion->getAtomC()->getGlobalIndex();        
575 >      d = torsion->getAtomD()->getGlobalIndex();      
576 >  
577 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
578 >        oneTwoInteractions_.removePair(a, b);      
579 >        oneTwoInteractions_.removePair(b, c);
580 >        oneTwoInteractions_.removePair(c, d);
581 >      } else {
582 >        excludedInteractions_.removePair(a, b);
583 >        excludedInteractions_.removePair(b, c);
584 >        excludedInteractions_.removePair(c, d);
585 >      }
586 >
587 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
588 >        oneThreeInteractions_.removePair(a, c);      
589 >        oneThreeInteractions_.removePair(b, d);      
590 >      } else {
591 >        excludedInteractions_.removePair(a, c);
592 >        excludedInteractions_.removePair(b, d);
593 >      }
594 >
595 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
596 >        oneFourInteractions_.removePair(a, d);      
597 >      } else {
598 >        excludedInteractions_.removePair(a, d);
599 >      }
600      }
601  
602 < }
602 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
603 >         inversion = mol->nextInversion(inversionIter)) {
604  
605 +      a = inversion->getAtomA()->getGlobalIndex();
606 +      b = inversion->getAtomB()->getGlobalIndex();        
607 +      c = inversion->getAtomC()->getGlobalIndex();        
608 +      d = inversion->getAtomD()->getGlobalIndex();        
609  
610 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
611 <    int curStampId;
610 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
611 >        oneTwoInteractions_.removePair(a, b);      
612 >        oneTwoInteractions_.removePair(a, c);
613 >        oneTwoInteractions_.removePair(a, d);
614 >      } else {
615 >        excludedInteractions_.removePair(a, b);
616 >        excludedInteractions_.removePair(a, c);
617 >        excludedInteractions_.removePair(a, d);
618 >      }
619  
620 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
621 +        oneThreeInteractions_.removePair(b, c);    
622 +        oneThreeInteractions_.removePair(b, d);    
623 +        oneThreeInteractions_.removePair(c, d);      
624 +      } else {
625 +        excludedInteractions_.removePair(b, c);
626 +        excludedInteractions_.removePair(b, d);
627 +        excludedInteractions_.removePair(c, d);
628 +      }
629 +    }
630 +
631 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
632 +         rb = mol->nextRigidBody(rbIter)) {
633 +      vector<Atom*> atoms = rb->getAtoms();
634 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
635 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
636 +          a = atoms[i]->getGlobalIndex();
637 +          b = atoms[j]->getGlobalIndex();
638 +          excludedInteractions_.removePair(a, b);
639 +        }
640 +      }
641 +    }        
642 +    
643 +  }
644 +  
645 +  
646 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
647 +    int curStampId;
648 +    
649      //index from 0
650      curStampId = moleculeStamps_.size();
651  
652      moleculeStamps_.push_back(molStamp);
653      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
654 < }
654 >  }
655  
427 void SimInfo::update() {
656  
657 <    setupSimType();
657 >  /**
658 >   * update
659 >   *
660 >   *  Performs the global checks and variable settings after the objects have been
661 >   *  created.
662 >   *
663 >   */
664 >  void SimInfo::update() {
665 >    
666 >    setupSimVariables();
667 >    setupCutoffs();
668 >    setupSwitching();
669 >    setupElectrostatics();
670 >    setupNeighborlists();
671  
672   #ifdef IS_MPI
673      setupFortranParallel();
674   #endif
434
675      setupFortranSim();
676 +    fortranInitialized_ = true;
677  
437    //setup fortran force field
438    /** @deprecate */    
439    int isError = 0;
440    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
441    if(isError){
442        sprintf( painCave.errMsg,
443         "ForceField error: There was an error initializing the forceField in fortran.\n" );
444        painCave.isFatal = 1;
445        simError();
446    }
447  
448    
449    setupCutoff();
450
678      calcNdf();
679      calcNdfRaw();
680      calcNdfTrans();
681 <
682 <    fortranInitialized_ = true;
683 < }
457 <
458 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
681 >  }
682 >  
683 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
684      SimInfo::MoleculeIterator mi;
685      Molecule* mol;
686      Molecule::AtomIterator ai;
687      Atom* atom;
688 <    std::set<AtomType*> atomTypes;
688 >    set<AtomType*> atomTypes;
689 >    
690 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
691 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
692 >        atomTypes.insert(atom->getAtomType());
693 >      }      
694 >    }    
695 >    return atomTypes;        
696 >  }
697  
698 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
699 <
700 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
701 <            atomTypes.insert(atom->getAtomType());
698 >  /**
699 >   * setupCutoffs
700 >   *
701 >   * Sets the values of cutoffRadius and cutoffMethod
702 >   *
703 >   * cutoffRadius : realType
704 >   *  If the cutoffRadius was explicitly set, use that value.
705 >   *  If the cutoffRadius was not explicitly set:
706 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
707 >   *      No electrostatic atoms?  Poll the atom types present in the
708 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
709 >   *      Use the maximum suggested value that was found.
710 >   *
711 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL)
712 >   *      If cutoffMethod was explicitly set, use that choice.
713 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
714 >   */
715 >  void SimInfo::setupCutoffs() {
716 >    
717 >    if (simParams_->haveCutoffRadius()) {
718 >      cutoffRadius_ = simParams_->getCutoffRadius();
719 >    } else {      
720 >      if (usesElectrostaticAtoms_) {
721 >        sprintf(painCave.errMsg,
722 >                "SimInfo: No value was set for the cutoffRadius.\n"
723 >                "\tOpenMD will use a default value of 12.0 angstroms"
724 >                "\tfor the cutoffRadius.\n");
725 >        painCave.isFatal = 0;
726 >        painCave.severity = OPENMD_INFO;
727 >        simError();
728 >        cutoffRadius_ = 12.0;
729 >      } else {
730 >        RealType thisCut;
731 >        set<AtomType*>::iterator i;
732 >        set<AtomType*> atomTypes;
733 >        atomTypes = getSimulatedAtomTypes();        
734 >        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
735 >          thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i));
736 >          cutoffRadius_ = max(thisCut, cutoffRadius_);
737          }
738 <        
738 >        sprintf(painCave.errMsg,
739 >                "SimInfo: No value was set for the cutoffRadius.\n"
740 >                "\tOpenMD will use %lf angstroms.\n",
741 >                cutoffRadius_);
742 >        painCave.isFatal = 0;
743 >        painCave.severity = OPENMD_INFO;
744 >        simError();
745 >      }            
746      }
747  
748 <    return atomTypes;        
474 < }
748 >    InteractionManager::Instance()->setCutoffRadius(cutoffRadius_);
749  
750 < void SimInfo::setupSimType() {
751 <    std::set<AtomType*>::iterator i;
752 <    std::set<AtomType*> atomTypes;
753 <    atomTypes = getUniqueAtomTypes();
754 <    
755 <    int useLennardJones = 0;
756 <    int useElectrostatic = 0;
757 <    int useEAM = 0;
758 <    int useCharge = 0;
759 <    int useDirectional = 0;
760 <    int useDipole = 0;
761 <    int useGayBerne = 0;
762 <    int useSticky = 0;
763 <    int useShape = 0;
764 <    int useFLARB = 0; //it is not in AtomType yet
765 <    int useDirectionalAtom = 0;    
766 <    int useElectrostatics = 0;
767 <    //usePBC and useRF are from simParams
768 <    int usePBC = simParams_->getPBC();
769 <    int useRF = simParams_->getUseRF();
770 <
771 <    //loop over all of the atom types
772 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
773 <        useLennardJones |= (*i)->isLennardJones();
774 <        useElectrostatic |= (*i)->isElectrostatic();
775 <        useEAM |= (*i)->isEAM();
776 <        useCharge |= (*i)->isCharge();
777 <        useDirectional |= (*i)->isDirectional();
778 <        useDipole |= (*i)->isDipole();
779 <        useGayBerne |= (*i)->isGayBerne();
506 <        useSticky |= (*i)->isSticky();
507 <        useShape |= (*i)->isShape();
750 >    map<string, CutoffMethod> stringToCutoffMethod;
751 >    stringToCutoffMethod["HARD"] = HARD;
752 >    stringToCutoffMethod["SWITCHING_FUNCTION"] = SWITCHING_FUNCTION;
753 >    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
754 >    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
755 >  
756 >    if (simParams_->haveCutoffMethod()) {
757 >      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
758 >      map<string, CutoffMethod>::iterator i;
759 >      i = stringToCutoffMethod.find(cutMeth);
760 >      if (i == stringToCutoffMethod.end()) {
761 >        sprintf(painCave.errMsg,
762 >                "SimInfo: Could not find chosen cutoffMethod %s\n"
763 >                "\tShould be one of: "
764 >                "HARD, SWITCHING_FUNCTION, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
765 >                cutMeth.c_str());
766 >        painCave.isFatal = 1;
767 >        painCave.severity = OPENMD_ERROR;
768 >        simError();
769 >      } else {
770 >        cutoffMethod_ = i->second;
771 >      }
772 >    } else {
773 >      sprintf(painCave.errMsg,
774 >              "SimInfo: No value was set for the cutoffMethod.\n"
775 >              "\tOpenMD will use SHIFTED_FORCE.\n");
776 >        painCave.isFatal = 0;
777 >        painCave.severity = OPENMD_INFO;
778 >        simError();
779 >        cutoffMethod_ = SHIFTED_FORCE;        
780      }
781  
782 <    if (useSticky || useDipole || useGayBerne || useShape) {
783 <        useDirectionalAtom = 1;
784 <    }
782 >    InteractionManager::Instance()->setCutoffMethod(cutoffMethod_);
783 >  }
784 >  
785 >  /**
786 >   * setupSwitching
787 >   *
788 >   * Sets the values of switchingRadius and
789 >   *  If the switchingRadius was explicitly set, use that value (but check it)
790 >   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
791 >   */
792 >  void SimInfo::setupSwitching() {
793 >    
794 >    if (simParams_->haveSwitchingRadius()) {
795 >      switchingRadius_ = simParams_->getSwitchingRadius();
796 >      if (switchingRadius_ > cutoffRadius_) {        
797 >        sprintf(painCave.errMsg,
798 >                "SimInfo: switchingRadius (%f) is larger than cutoffRadius(%f)\n",
799 >                switchingRadius_, cutoffRadius_);
800 >        painCave.isFatal = 1;
801 >        painCave.severity = OPENMD_ERROR;
802 >        simError();
803 >      }
804 >    } else {      
805 >      switchingRadius_ = 0.85 * cutoffRadius_;
806 >      sprintf(painCave.errMsg,
807 >              "SimInfo: No value was set for the switchingRadius.\n"
808 >              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
809 >              "\tswitchingRadius = %f. for this simulation\n", switchingRadius_);
810 >      painCave.isFatal = 0;
811 >      painCave.severity = OPENMD_WARNING;
812 >      simError();
813 >    }          
814 >  
815 >    InteractionManager::Instance()->setSwitchingRadius(switchingRadius_);
816  
817 <    if (useCharge || useDipole) {
818 <        useElectrostatics = 1;
817 >    SwitchingFunctionType ft;
818 >    
819 >    if (simParams_->haveSwitchingFunctionType()) {
820 >      string funcType = simParams_->getSwitchingFunctionType();
821 >      toUpper(funcType);
822 >      if (funcType == "CUBIC") {
823 >        ft = cubic;
824 >      } else {
825 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
826 >          ft = fifth_order_poly;
827 >        } else {
828 >          // throw error        
829 >          sprintf( painCave.errMsg,
830 >                   "SimInfo : Unknown switchingFunctionType. (Input file specified %s .)\n"
831 >                   "\tswitchingFunctionType must be one of: "
832 >                   "\"cubic\" or \"fifth_order_polynomial\".",
833 >                   funcType.c_str() );
834 >          painCave.isFatal = 1;
835 >          painCave.severity = OPENMD_ERROR;
836 >          simError();
837 >        }          
838 >      }
839      }
840  
841 < #ifdef IS_MPI    
842 <    int temp;
841 >    InteractionManager::Instance()->setSwitchingFunctionType(ft);
842 >  }
843  
844 <    temp = usePBC;
845 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
844 >  /**
845 >   * setupSkinThickness
846 >   *
847 >   *  If the skinThickness was explicitly set, use that value (but check it)
848 >   *  If the skinThickness was not explicitly set: use 1.0 angstroms
849 >   */
850 >  void SimInfo::setupSkinThickness() {    
851 >    if (simParams_->haveSkinThickness()) {
852 >      skinThickness_ = simParams_->getSkinThickness();
853 >    } else {      
854 >      skinThickness_ = 1.0;
855 >      sprintf(painCave.errMsg,
856 >              "SimInfo Warning: No value was set for the skinThickness.\n"
857 >              "\tOpenMD will use a default value of %f Angstroms\n"
858 >              "\tfor this simulation\n", skinThickness_);
859 >      painCave.isFatal = 0;
860 >      simError();
861 >    }            
862 >  }
863  
864 <    temp = useDirectionalAtom;
865 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
864 >  void SimInfo::setupSimType() {
865 >    set<AtomType*>::iterator i;
866 >    set<AtomType*> atomTypes;
867 >    atomTypes = getSimulatedAtomTypes();
868  
869 <    temp = useLennardJones;
528 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
869 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
870  
871 <    temp = useElectrostatics;
872 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
871 >    int usesElectrostatic = 0;
872 >    int usesMetallic = 0;
873 >    int usesDirectional = 0;
874 >    //loop over all of the atom types
875 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
876 >      usesElectrostatic |= (*i)->isElectrostatic();
877 >      usesMetallic |= (*i)->isMetal();
878 >      usesDirectional |= (*i)->isDirectional();
879 >    }
880  
881 <    temp = useCharge;
882 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
881 > #ifdef IS_MPI    
882 >    int temp;
883 >    temp = usesDirectional;
884 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
885  
886 <    temp = useDipole;
887 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
886 >    temp = usesMetallic;
887 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
888  
889 <    temp = useSticky;
890 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
889 >    temp = usesElectrostatic;
890 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
891 > #endif
892 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
893 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
894 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
895 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
896 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
897 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
898 >  }
899  
900 <    temp = useGayBerne;
901 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
902 <
903 <    temp = useEAM;
546 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
547 <
548 <    temp = useShape;
549 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
550 <
551 <    temp = useFLARB;
552 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
553 <
554 <    temp = useRF;
555 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
900 >  void SimInfo::setupFortranSim() {
901 >    int isError;
902 >    int nExclude, nOneTwo, nOneThree, nOneFour;
903 >    vector<int> fortranGlobalGroupMembership;
904      
905 < #endif
905 >    notifyFortranSkinThickness(&skinThickness_);
906  
907 <    fInfo_.SIM_uses_PBC = usePBC;    
908 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
909 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
562 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
563 <    fInfo_.SIM_uses_Charges = useCharge;
564 <    fInfo_.SIM_uses_Dipoles = useDipole;
565 <    fInfo_.SIM_uses_Sticky = useSticky;
566 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
567 <    fInfo_.SIM_uses_EAM = useEAM;
568 <    fInfo_.SIM_uses_Shapes = useShape;
569 <    fInfo_.SIM_uses_FLARB = useFLARB;
570 <    fInfo_.SIM_uses_RF = useRF;
571 <
572 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
573 <
574 <        if (simParams_->haveDielectric()) {
575 <            fInfo_.dielect = simParams_->getDielectric();
576 <        } else {
577 <            sprintf(painCave.errMsg,
578 <                    "SimSetup Error: No Dielectric constant was set.\n"
579 <                    "\tYou are trying to use Reaction Field without"
580 <                    "\tsetting a dielectric constant!\n");
581 <            painCave.isFatal = 1;
582 <            simError();
583 <        }
584 <        
585 <    } else {
586 <        fInfo_.dielect = 0.0;
587 <    }
907 >    int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0;
908 >    int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0;
909 >    notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf);
910  
589 }
590
591 void SimInfo::setupFortranSim() {
592    int isError;
593    int nExclude;
594    std::vector<int> fortranGlobalGroupMembership;
595    
596    nExclude = exclude_.getSize();
911      isError = 0;
912  
913      //globalGroupMembership_ is filled by SimCreator    
914      for (int i = 0; i < nGlobalAtoms_; i++) {
915 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
915 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
916      }
917  
918      //calculate mass ratio of cutoff group
919 <    std::vector<double> mfact;
919 >    vector<RealType> mfact;
920      SimInfo::MoleculeIterator mi;
921      Molecule* mol;
922      Molecule::CutoffGroupIterator ci;
923      CutoffGroup* cg;
924      Molecule::AtomIterator ai;
925      Atom* atom;
926 <    double totalMass;
926 >    RealType totalMass;
927  
928      //to avoid memory reallocation, reserve enough space for mfact
929      mfact.reserve(getNCutoffGroups());
930      
931      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
932 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
932 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
933  
934 <            totalMass = cg->getMass();
935 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
936 <                        mfact.push_back(atom->getMass()/totalMass);
937 <            }
938 <
939 <        }      
934 >        totalMass = cg->getMass();
935 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
936 >          // Check for massless groups - set mfact to 1 if true
937 >          if (totalMass != 0)
938 >            mfact.push_back(atom->getMass()/totalMass);
939 >          else
940 >            mfact.push_back( 1.0 );
941 >        }
942 >      }      
943      }
944  
945      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
946 <    std::vector<int> identArray;
946 >    vector<int> identArray;
947  
948      //to avoid memory reallocation, reserve enough space identArray
949      identArray.reserve(getNAtoms());
950      
951      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
952 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
953 <            identArray.push_back(atom->getIdent());
954 <        }
952 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
953 >        identArray.push_back(atom->getIdent());
954 >      }
955      }    
956  
957      //fill molMembershipArray
958      //molMembershipArray is filled by SimCreator    
959 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
959 >    vector<int> molMembershipArray(nGlobalAtoms_);
960      for (int i = 0; i < nGlobalAtoms_; i++) {
961 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
961 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
962      }
963      
964      //setup fortran simulation
648    //gloalExcludes and molMembershipArray should go away (They are never used)
649    //why the hell fortran need to know molecule?
650    //OOPSE = Object-Obfuscated Parallel Simulation Engine
651    int nGlobalExcludes = 0;
652    int* globalExcludes = NULL;
653    int* excludeList = exclude_.getExcludeList();
654    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
655                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
656                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
965  
966 <    if( isError ){
966 >    nExclude = excludedInteractions_.getSize();
967 >    nOneTwo = oneTwoInteractions_.getSize();
968 >    nOneThree = oneThreeInteractions_.getSize();
969 >    nOneFour = oneFourInteractions_.getSize();
970  
971 <        sprintf( painCave.errMsg,
972 <                 "There was an error setting the simulation information in fortran.\n" );
973 <        painCave.isFatal = 1;
974 <        painCave.severity = OOPSE_ERROR;
664 <        simError();
665 <    }
971 >    int* excludeList = excludedInteractions_.getPairList();
972 >    int* oneTwoList = oneTwoInteractions_.getPairList();
973 >    int* oneThreeList = oneThreeInteractions_.getPairList();
974 >    int* oneFourList = oneFourInteractions_.getPairList();
975  
976 < #ifdef IS_MPI
976 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
977 >                   &nExclude, excludeList,
978 >                   &nOneTwo, oneTwoList,
979 >                   &nOneThree, oneThreeList,
980 >                   &nOneFour, oneFourList,
981 >                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
982 >                   &fortranGlobalGroupMembership[0], &isError);
983 >    
984 >    if( isError ){
985 >      
986 >      sprintf( painCave.errMsg,
987 >               "There was an error setting the simulation information in fortran.\n" );
988 >      painCave.isFatal = 1;
989 >      painCave.severity = OPENMD_ERROR;
990 >      simError();
991 >    }
992 >    
993 >    
994      sprintf( checkPointMsg,
995 <       "succesfully sent the simulation information to fortran.\n");
996 <    MPIcheckPoint();
997 < #endif // is_mpi
998 < }
995 >             "succesfully sent the simulation information to fortran.\n");
996 >    
997 >    errorCheckPoint();
998 >    
999 >    // Setup number of neighbors in neighbor list if present
1000 >    if (simParams_->haveNeighborListNeighbors()) {
1001 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
1002 >      setNeighbors(&nlistNeighbors);
1003 >    }
1004 >  
1005  
1006 +  }
1007  
1008 < #ifdef IS_MPI
1009 < void SimInfo::setupFortranParallel() {
1010 <    
1008 >
1009 >  void SimInfo::setupFortranParallel() {
1010 > #ifdef IS_MPI    
1011      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
1012 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
1013 <    std::vector<int> localToGlobalCutoffGroupIndex;
1012 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
1013 >    vector<int> localToGlobalCutoffGroupIndex;
1014      SimInfo::MoleculeIterator mi;
1015      Molecule::AtomIterator ai;
1016      Molecule::CutoffGroupIterator ci;
# Line 689 | Line 1022 | void SimInfo::setupFortranParallel() {
1022  
1023      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
1024  
1025 <        //local index(index in DataStorge) of atom is important
1026 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1027 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1028 <        }
1025 >      //local index(index in DataStorge) of atom is important
1026 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1027 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1028 >      }
1029  
1030 <        //local index of cutoff group is trivial, it only depends on the order of travesing
1031 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1032 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1033 <        }        
1030 >      //local index of cutoff group is trivial, it only depends on the order of travesing
1031 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1032 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1033 >      }        
1034          
1035      }
1036  
# Line 717 | Line 1050 | void SimInfo::setupFortranParallel() {
1050                      &localToGlobalCutoffGroupIndex[0], &isError);
1051  
1052      if (isError) {
1053 <        sprintf(painCave.errMsg,
1054 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
1055 <        painCave.isFatal = 1;
1056 <        simError();
1053 >      sprintf(painCave.errMsg,
1054 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
1055 >      painCave.isFatal = 1;
1056 >      simError();
1057      }
1058  
1059      sprintf(checkPointMsg, " mpiRefresh successful.\n");
1060 <    MPIcheckPoint();
1060 >    errorCheckPoint();
1061  
729
730 }
731
1062   #endif
1063 +  }
1064  
734 double SimInfo::calcMaxCutoffRadius() {
1065  
1066 +  void SimInfo::setupSwitchingFunction() {    
1067  
1068 <    std::set<AtomType*> atomTypes;
738 <    std::set<AtomType*>::iterator i;
739 <    std::vector<double> cutoffRadius;
1068 >  }
1069  
1070 <    //get the unique atom types
742 <    atomTypes = getUniqueAtomTypes();
1070 >  void SimInfo::setupAccumulateBoxDipole() {    
1071  
1072 <    //query the max cutoff radius among these atom types
1073 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
1074 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
1075 <    }
1072 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1073 >    if ( simParams_->haveAccumulateBoxDipole() )
1074 >      if ( simParams_->getAccumulateBoxDipole() ) {
1075 >        calcBoxDipole_ = true;
1076 >      }
1077  
1078 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
750 < #ifdef IS_MPI
751 <    //pick the max cutoff radius among the processors
752 < #endif
1078 >  }
1079  
1080 <    return maxCutoffRadius;
1081 < }
1082 <
1083 < void SimInfo::setupCutoff() {
1084 <    double rcut_;  //cutoff radius
759 <    double rsw_; //switching radius
760 <    
761 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
762 <        
763 <        if (!simParams_->haveRcut()){
764 <            sprintf(painCave.errMsg,
765 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
766 <                "\tOOPSE will use a default value of 15.0 angstroms"
767 <                "\tfor the cutoffRadius.\n");
768 <            painCave.isFatal = 0;
769 <            simError();
770 <            rcut_ = 15.0;
771 <        } else{
772 <            rcut_ = simParams_->getRcut();
773 <        }
774 <
775 <        if (!simParams_->haveRsw()){
776 <            sprintf(painCave.errMsg,
777 <                "SimCreator Warning: No value was set for switchingRadius.\n"
778 <                "\tOOPSE will use a default value of\n"
779 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
780 <            painCave.isFatal = 0;
781 <            simError();
782 <            rsw_ = 0.95 * rcut_;
783 <        } else{
784 <            rsw_ = simParams_->getRsw();
785 <        }
786 <
787 <    } else {
788 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
789 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
790 <        
791 <        if (simParams_->haveRcut()) {
792 <            rcut_ = simParams_->getRcut();
793 <        } else {
794 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
795 <            rcut_ = calcMaxCutoffRadius();
796 <        }
797 <
798 <        if (simParams_->haveRsw()) {
799 <            rsw_  = simParams_->getRsw();
800 <        } else {
801 <            rsw_ = rcut_;
802 <        }
803 <    
804 <    }
805 <        
806 <    double rnblist = rcut_ + 1; // skin of neighbor list
807 <
808 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
809 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
810 < }
811 <
812 < void SimInfo::addProperty(GenericData* genData) {
813 <    properties_.addProperty(genData);  
814 < }
815 <
816 < void SimInfo::removeProperty(const std::string& propName) {
1080 >  void SimInfo::addProperty(GenericData* genData) {
1081 >    properties_.addProperty(genData);  
1082 >  }
1083 >
1084 >  void SimInfo::removeProperty(const string& propName) {
1085      properties_.removeProperty(propName);  
1086 < }
1086 >  }
1087  
1088 < void SimInfo::clearProperties() {
1088 >  void SimInfo::clearProperties() {
1089      properties_.clearProperties();
1090 < }
1090 >  }
1091  
1092 < std::vector<std::string> SimInfo::getPropertyNames() {
1092 >  vector<string> SimInfo::getPropertyNames() {
1093      return properties_.getPropertyNames();  
1094 < }
1094 >  }
1095        
1096 < std::vector<GenericData*> SimInfo::getProperties() {
1096 >  vector<GenericData*> SimInfo::getProperties() {
1097      return properties_.getProperties();
1098 < }
1098 >  }
1099  
1100 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1100 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
1101      return properties_.getPropertyByName(propName);
1102 < }
1102 >  }
1103  
1104 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1104 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1105 >    if (sman_ == sman) {
1106 >      return;
1107 >    }    
1108 >    delete sman_;
1109      sman_ = sman;
1110  
1111      Molecule* mol;
# Line 845 | Line 1117 | void SimInfo::setSnapshotManager(SnapshotManager* sman
1117  
1118      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1119          
1120 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1121 <            atom->setSnapshotManager(sman_);
1122 <        }
1120 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1121 >        atom->setSnapshotManager(sman_);
1122 >      }
1123          
1124 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1125 <            rb->setSnapshotManager(sman_);
1126 <        }
1124 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1125 >        rb->setSnapshotManager(sman_);
1126 >      }
1127      }    
1128      
1129 < }
1129 >  }
1130  
1131 < Vector3d SimInfo::getComVel(){
1131 >  Vector3d SimInfo::getComVel(){
1132      SimInfo::MoleculeIterator i;
1133      Molecule* mol;
1134  
1135      Vector3d comVel(0.0);
1136 <    double totalMass = 0.0;
1136 >    RealType totalMass = 0.0;
1137      
1138  
1139      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1140 <        double mass = mol->getMass();
1141 <        totalMass += mass;
1142 <        comVel += mass * mol->getComVel();
1140 >      RealType mass = mol->getMass();
1141 >      totalMass += mass;
1142 >      comVel += mass * mol->getComVel();
1143      }  
1144  
1145   #ifdef IS_MPI
1146 <    double tmpMass = totalMass;
1146 >    RealType tmpMass = totalMass;
1147      Vector3d tmpComVel(comVel);    
1148 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1149 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1148 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1149 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1150   #endif
1151  
1152      comVel /= totalMass;
1153  
1154      return comVel;
1155 < }
1155 >  }
1156  
1157 < Vector3d SimInfo::getCom(){
1157 >  Vector3d SimInfo::getCom(){
1158      SimInfo::MoleculeIterator i;
1159      Molecule* mol;
1160  
1161      Vector3d com(0.0);
1162 <    double totalMass = 0.0;
1162 >    RealType totalMass = 0.0;
1163      
1164      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1165 <        double mass = mol->getMass();
1166 <        totalMass += mass;
1167 <        com += mass * mol->getCom();
1165 >      RealType mass = mol->getMass();
1166 >      totalMass += mass;
1167 >      com += mass * mol->getCom();
1168      }  
1169  
1170   #ifdef IS_MPI
1171 <    double tmpMass = totalMass;
1171 >    RealType tmpMass = totalMass;
1172      Vector3d tmpCom(com);    
1173 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1174 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1173 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1174 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1175   #endif
1176  
1177      com /= totalMass;
1178  
1179      return com;
1180  
1181 < }        
1181 >  }        
1182  
1183 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1183 >  ostream& operator <<(ostream& o, SimInfo& info) {
1184  
1185      return o;
1186 < }
1186 >  }
1187 >  
1188 >  
1189 >   /*
1190 >   Returns center of mass and center of mass velocity in one function call.
1191 >   */
1192 >  
1193 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1194 >      SimInfo::MoleculeIterator i;
1195 >      Molecule* mol;
1196 >      
1197 >    
1198 >      RealType totalMass = 0.0;
1199 >    
1200  
1201 < }//end namespace oopse
1201 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1202 >         RealType mass = mol->getMass();
1203 >         totalMass += mass;
1204 >         com += mass * mol->getCom();
1205 >         comVel += mass * mol->getComVel();          
1206 >      }  
1207 >      
1208 > #ifdef IS_MPI
1209 >      RealType tmpMass = totalMass;
1210 >      Vector3d tmpCom(com);  
1211 >      Vector3d tmpComVel(comVel);
1212 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1213 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1214 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1215 > #endif
1216 >      
1217 >      com /= totalMass;
1218 >      comVel /= totalMass;
1219 >   }        
1220 >  
1221 >   /*
1222 >   Return intertia tensor for entire system and angular momentum Vector.
1223  
1224 +
1225 +       [  Ixx -Ixy  -Ixz ]
1226 +    J =| -Iyx  Iyy  -Iyz |
1227 +       [ -Izx -Iyz   Izz ]
1228 +    */
1229 +
1230 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1231 +      
1232 +
1233 +      RealType xx = 0.0;
1234 +      RealType yy = 0.0;
1235 +      RealType zz = 0.0;
1236 +      RealType xy = 0.0;
1237 +      RealType xz = 0.0;
1238 +      RealType yz = 0.0;
1239 +      Vector3d com(0.0);
1240 +      Vector3d comVel(0.0);
1241 +      
1242 +      getComAll(com, comVel);
1243 +      
1244 +      SimInfo::MoleculeIterator i;
1245 +      Molecule* mol;
1246 +      
1247 +      Vector3d thisq(0.0);
1248 +      Vector3d thisv(0.0);
1249 +
1250 +      RealType thisMass = 0.0;
1251 +    
1252 +      
1253 +      
1254 +  
1255 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1256 +        
1257 +         thisq = mol->getCom()-com;
1258 +         thisv = mol->getComVel()-comVel;
1259 +         thisMass = mol->getMass();
1260 +         // Compute moment of intertia coefficients.
1261 +         xx += thisq[0]*thisq[0]*thisMass;
1262 +         yy += thisq[1]*thisq[1]*thisMass;
1263 +         zz += thisq[2]*thisq[2]*thisMass;
1264 +        
1265 +         // compute products of intertia
1266 +         xy += thisq[0]*thisq[1]*thisMass;
1267 +         xz += thisq[0]*thisq[2]*thisMass;
1268 +         yz += thisq[1]*thisq[2]*thisMass;
1269 +            
1270 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1271 +            
1272 +      }  
1273 +      
1274 +      
1275 +      inertiaTensor(0,0) = yy + zz;
1276 +      inertiaTensor(0,1) = -xy;
1277 +      inertiaTensor(0,2) = -xz;
1278 +      inertiaTensor(1,0) = -xy;
1279 +      inertiaTensor(1,1) = xx + zz;
1280 +      inertiaTensor(1,2) = -yz;
1281 +      inertiaTensor(2,0) = -xz;
1282 +      inertiaTensor(2,1) = -yz;
1283 +      inertiaTensor(2,2) = xx + yy;
1284 +      
1285 + #ifdef IS_MPI
1286 +      Mat3x3d tmpI(inertiaTensor);
1287 +      Vector3d tmpAngMom;
1288 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1289 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1290 + #endif
1291 +              
1292 +      return;
1293 +   }
1294 +
1295 +   //Returns the angular momentum of the system
1296 +   Vector3d SimInfo::getAngularMomentum(){
1297 +      
1298 +      Vector3d com(0.0);
1299 +      Vector3d comVel(0.0);
1300 +      Vector3d angularMomentum(0.0);
1301 +      
1302 +      getComAll(com,comVel);
1303 +      
1304 +      SimInfo::MoleculeIterator i;
1305 +      Molecule* mol;
1306 +      
1307 +      Vector3d thisr(0.0);
1308 +      Vector3d thisp(0.0);
1309 +      
1310 +      RealType thisMass;
1311 +      
1312 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1313 +        thisMass = mol->getMass();
1314 +        thisr = mol->getCom()-com;
1315 +        thisp = (mol->getComVel()-comVel)*thisMass;
1316 +        
1317 +        angularMomentum += cross( thisr, thisp );
1318 +        
1319 +      }  
1320 +      
1321 + #ifdef IS_MPI
1322 +      Vector3d tmpAngMom;
1323 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1324 + #endif
1325 +      
1326 +      return angularMomentum;
1327 +   }
1328 +  
1329 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1330 +    return IOIndexToIntegrableObject.at(index);
1331 +  }
1332 +  
1333 +  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1334 +    IOIndexToIntegrableObject= v;
1335 +  }
1336 +
1337 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1338 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1339 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1340 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1341 +  */
1342 +  void SimInfo::getGyrationalVolume(RealType &volume){
1343 +    Mat3x3d intTensor;
1344 +    RealType det;
1345 +    Vector3d dummyAngMom;
1346 +    RealType sysconstants;
1347 +    RealType geomCnst;
1348 +
1349 +    geomCnst = 3.0/2.0;
1350 +    /* Get the inertial tensor and angular momentum for free*/
1351 +    getInertiaTensor(intTensor,dummyAngMom);
1352 +    
1353 +    det = intTensor.determinant();
1354 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1355 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1356 +    return;
1357 +  }
1358 +
1359 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1360 +    Mat3x3d intTensor;
1361 +    Vector3d dummyAngMom;
1362 +    RealType sysconstants;
1363 +    RealType geomCnst;
1364 +
1365 +    geomCnst = 3.0/2.0;
1366 +    /* Get the inertial tensor and angular momentum for free*/
1367 +    getInertiaTensor(intTensor,dummyAngMom);
1368 +    
1369 +    detI = intTensor.determinant();
1370 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1371 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1372 +    return;
1373 +  }
1374 + /*
1375 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1376 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1377 +      sdByGlobalIndex_ = v;
1378 +    }
1379 +
1380 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1381 +      //assert(index < nAtoms_ + nRigidBodies_);
1382 +      return sdByGlobalIndex_.at(index);
1383 +    }  
1384 + */  
1385 +  int SimInfo::getNGlobalConstraints() {
1386 +    int nGlobalConstraints;
1387 + #ifdef IS_MPI
1388 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1389 +                  MPI_COMM_WORLD);    
1390 + #else
1391 +    nGlobalConstraints =  nConstraints_;
1392 + #endif
1393 +    return nGlobalConstraints;
1394 +  }
1395 +
1396 + }//end namespace OpenMD
1397 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 316 by tim, Fri Feb 11 22:41:02 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1532 by gezelter, Wed Dec 29 19:59:21 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines