ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 726 by chrisfen, Fri Nov 11 15:22:11 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1528 by gezelter, Fri Dec 17 20:11:05 2010 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57   #include "UseTheForce/fCutoffPolicy.h"
56 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
58   #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
59   #include "UseTheForce/doForces_interface.h"
60 < #include "UseTheForce/DarkSide/electrostatic_interface.h"
61 < #include "UseTheForce/notifyCutoffs_interface.h"
60 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
61   #include "UseTheForce/DarkSide/switcheroo_interface.h"
62   #include "utils/MemoryUtils.hpp"
63   #include "utils/simError.h"
64   #include "selection/SelectionManager.hpp"
65 + #include "io/ForceFieldOptions.hpp"
66 + #include "UseTheForce/ForceField.hpp"
67 + #include "nonbonded/InteractionManager.hpp"
68  
69 +
70   #ifdef IS_MPI
71   #include "UseTheForce/mpiComponentPlan.h"
72   #include "UseTheForce/DarkSide/simParallel_interface.h"
73   #endif
74  
75 < namespace oopse {
76 <
77 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
78 <                   ForceField* ff, Globals* simParams) :
79 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
80 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
75 > using namespace std;
76 > namespace OpenMD {
77 >  
78 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
79 >    forceField_(ff), simParams_(simParams),
80 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
81      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
82      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
83 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
84 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
85 <    sman_(NULL), fortranInitialized_(false) {
86 <
84 <            
85 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
86 <      MoleculeStamp* molStamp;
87 <      int nMolWithSameStamp;
88 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
89 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
90 <      CutoffGroupStamp* cgStamp;    
91 <      RigidBodyStamp* rbStamp;
92 <      int nRigidAtoms = 0;
83 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
84 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
85 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
86 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
87      
88 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
89 <        molStamp = i->first;
90 <        nMolWithSameStamp = i->second;
91 <        
92 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
93 <
94 <        //calculate atoms in molecules
95 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
96 <
97 <
98 <        //calculate atoms in cutoff groups
99 <        int nAtomsInGroups = 0;
100 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
101 <        
102 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
103 <          cgStamp = molStamp->getCutoffGroup(j);
104 <          nAtomsInGroups += cgStamp->getNMembers();
105 <        }
106 <
107 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
108 <
109 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
110 <
111 <        //calculate atoms in rigid bodies
112 <        int nAtomsInRigidBodies = 0;
113 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
120 <        
121 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
122 <          rbStamp = molStamp->getRigidBody(j);
123 <          nAtomsInRigidBodies += rbStamp->getNMembers();
124 <        }
125 <
126 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
127 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
128 <        
88 >    MoleculeStamp* molStamp;
89 >    int nMolWithSameStamp;
90 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
91 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
92 >    CutoffGroupStamp* cgStamp;    
93 >    RigidBodyStamp* rbStamp;
94 >    int nRigidAtoms = 0;
95 >    
96 >    vector<Component*> components = simParams->getComponents();
97 >    
98 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
99 >      molStamp = (*i)->getMoleculeStamp();
100 >      nMolWithSameStamp = (*i)->getNMol();
101 >      
102 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
103 >      
104 >      //calculate atoms in molecules
105 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
106 >      
107 >      //calculate atoms in cutoff groups
108 >      int nAtomsInGroups = 0;
109 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
110 >      
111 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
112 >        cgStamp = molStamp->getCutoffGroupStamp(j);
113 >        nAtomsInGroups += cgStamp->getNMembers();
114        }
115 <
116 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
117 <      //group therefore the total number of cutoff groups in the system is
118 <      //equal to the total number of atoms minus number of atoms belong to
119 <      //cutoff group defined in meta-data file plus the number of cutoff
120 <      //groups defined in meta-data file
121 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
122 <
123 <      //every free atom (atom does not belong to rigid bodies) is an
124 <      //integrable object therefore the total number of integrable objects
125 <      //in the system is equal to the total number of atoms minus number of
126 <      //atoms belong to rigid body defined in meta-data file plus the number
127 <      //of rigid bodies defined in meta-data file
128 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
129 <                                                + nGlobalRigidBodies_;
130 <  
131 <      nGlobalMols_ = molStampIds_.size();
147 <
148 < #ifdef IS_MPI    
149 <      molToProcMap_.resize(nGlobalMols_);
150 < #endif
151 <
115 >      
116 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
117 >      
118 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
119 >      
120 >      //calculate atoms in rigid bodies
121 >      int nAtomsInRigidBodies = 0;
122 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
123 >      
124 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
125 >        rbStamp = molStamp->getRigidBodyStamp(j);
126 >        nAtomsInRigidBodies += rbStamp->getNMembers();
127 >      }
128 >      
129 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
130 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
131 >      
132      }
133 <
133 >    
134 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
135 >    //group therefore the total number of cutoff groups in the system is
136 >    //equal to the total number of atoms minus number of atoms belong to
137 >    //cutoff group defined in meta-data file plus the number of cutoff
138 >    //groups defined in meta-data file
139 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
140 >    
141 >    //every free atom (atom does not belong to rigid bodies) is an
142 >    //integrable object therefore the total number of integrable objects
143 >    //in the system is equal to the total number of atoms minus number of
144 >    //atoms belong to rigid body defined in meta-data file plus the number
145 >    //of rigid bodies defined in meta-data file
146 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
147 >      + nGlobalRigidBodies_;
148 >    
149 >    nGlobalMols_ = molStampIds_.size();
150 >    molToProcMap_.resize(nGlobalMols_);
151 >  }
152 >  
153    SimInfo::~SimInfo() {
154 <    std::map<int, Molecule*>::iterator i;
154 >    map<int, Molecule*>::iterator i;
155      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
156        delete i->second;
157      }
158      molecules_.clear();
159        
161    delete stamps_;
160      delete sman_;
161      delete simParams_;
162      delete forceField_;
163    }
164  
167  int SimInfo::getNGlobalConstraints() {
168    int nGlobalConstraints;
169 #ifdef IS_MPI
170    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
171                  MPI_COMM_WORLD);    
172 #else
173    nGlobalConstraints =  nConstraints_;
174 #endif
175    return nGlobalConstraints;
176  }
165  
166    bool SimInfo::addMolecule(Molecule* mol) {
167      MoleculeIterator i;
168 <
168 >    
169      i = molecules_.find(mol->getGlobalIndex());
170      if (i == molecules_.end() ) {
171 <
172 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
173 <        
171 >      
172 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
173 >      
174        nAtoms_ += mol->getNAtoms();
175        nBonds_ += mol->getNBonds();
176        nBends_ += mol->getNBends();
177        nTorsions_ += mol->getNTorsions();
178 +      nInversions_ += mol->getNInversions();
179        nRigidBodies_ += mol->getNRigidBodies();
180        nIntegrableObjects_ += mol->getNIntegrableObjects();
181        nCutoffGroups_ += mol->getNCutoffGroups();
182        nConstraints_ += mol->getNConstraintPairs();
183 <
184 <      addExcludePairs(mol);
185 <        
183 >      
184 >      addInteractionPairs(mol);
185 >      
186        return true;
187      } else {
188        return false;
189      }
190    }
191 <
191 >  
192    bool SimInfo::removeMolecule(Molecule* mol) {
193      MoleculeIterator i;
194      i = molecules_.find(mol->getGlobalIndex());
# Line 212 | Line 201 | namespace oopse {
201        nBonds_ -= mol->getNBonds();
202        nBends_ -= mol->getNBends();
203        nTorsions_ -= mol->getNTorsions();
204 +      nInversions_ -= mol->getNInversions();
205        nRigidBodies_ -= mol->getNRigidBodies();
206        nIntegrableObjects_ -= mol->getNIntegrableObjects();
207        nCutoffGroups_ -= mol->getNCutoffGroups();
208        nConstraints_ -= mol->getNConstraintPairs();
209  
210 <      removeExcludePairs(mol);
210 >      removeInteractionPairs(mol);
211        molecules_.erase(mol->getGlobalIndex());
212  
213        delete mol;
# Line 226 | Line 216 | namespace oopse {
216      } else {
217        return false;
218      }
229
230
219    }    
220  
221          
# Line 245 | Line 233 | namespace oopse {
233    void SimInfo::calcNdf() {
234      int ndf_local;
235      MoleculeIterator i;
236 <    std::vector<StuntDouble*>::iterator j;
236 >    vector<StuntDouble*>::iterator j;
237      Molecule* mol;
238      StuntDouble* integrableObject;
239  
# Line 265 | Line 253 | namespace oopse {
253            }
254          }
255              
256 <      }//end for (integrableObject)
257 <    }// end for (mol)
256 >      }
257 >    }
258      
259      // n_constraints is local, so subtract them on each processor
260      ndf_local -= nConstraints_;
# Line 283 | Line 271 | namespace oopse {
271  
272    }
273  
274 +  int SimInfo::getFdf() {
275 + #ifdef IS_MPI
276 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
277 + #else
278 +    fdf_ = fdf_local;
279 + #endif
280 +    return fdf_;
281 +  }
282 +    
283    void SimInfo::calcNdfRaw() {
284      int ndfRaw_local;
285  
286      MoleculeIterator i;
287 <    std::vector<StuntDouble*>::iterator j;
287 >    vector<StuntDouble*>::iterator j;
288      Molecule* mol;
289      StuntDouble* integrableObject;
290  
# Line 334 | Line 331 | namespace oopse {
331  
332    }
333  
334 <  void SimInfo::addExcludePairs(Molecule* mol) {
335 <    std::vector<Bond*>::iterator bondIter;
336 <    std::vector<Bend*>::iterator bendIter;
337 <    std::vector<Torsion*>::iterator torsionIter;
334 >  void SimInfo::addInteractionPairs(Molecule* mol) {
335 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
336 >    vector<Bond*>::iterator bondIter;
337 >    vector<Bend*>::iterator bendIter;
338 >    vector<Torsion*>::iterator torsionIter;
339 >    vector<Inversion*>::iterator inversionIter;
340      Bond* bond;
341      Bend* bend;
342      Torsion* torsion;
343 +    Inversion* inversion;
344      int a;
345      int b;
346      int c;
347      int d;
348 +
349 +    // atomGroups can be used to add special interaction maps between
350 +    // groups of atoms that are in two separate rigid bodies.
351 +    // However, most site-site interactions between two rigid bodies
352 +    // are probably not special, just the ones between the physically
353 +    // bonded atoms.  Interactions *within* a single rigid body should
354 +    // always be excluded.  These are done at the bottom of this
355 +    // function.
356 +
357 +    map<int, set<int> > atomGroups;
358 +    Molecule::RigidBodyIterator rbIter;
359 +    RigidBody* rb;
360 +    Molecule::IntegrableObjectIterator ii;
361 +    StuntDouble* integrableObject;
362      
363 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
363 >    for (integrableObject = mol->beginIntegrableObject(ii);
364 >         integrableObject != NULL;
365 >         integrableObject = mol->nextIntegrableObject(ii)) {
366 >      
367 >      if (integrableObject->isRigidBody()) {
368 >        rb = static_cast<RigidBody*>(integrableObject);
369 >        vector<Atom*> atoms = rb->getAtoms();
370 >        set<int> rigidAtoms;
371 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
372 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
373 >        }
374 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
375 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
376 >        }      
377 >      } else {
378 >        set<int> oneAtomSet;
379 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
380 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
381 >      }
382 >    }  
383 >          
384 >    for (bond= mol->beginBond(bondIter); bond != NULL;
385 >         bond = mol->nextBond(bondIter)) {
386 >
387        a = bond->getAtomA()->getGlobalIndex();
388 <      b = bond->getAtomB()->getGlobalIndex();        
389 <      exclude_.addPair(a, b);
388 >      b = bond->getAtomB()->getGlobalIndex();  
389 >    
390 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
391 >        oneTwoInteractions_.addPair(a, b);
392 >      } else {
393 >        excludedInteractions_.addPair(a, b);
394 >      }
395      }
396  
397 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
397 >    for (bend= mol->beginBend(bendIter); bend != NULL;
398 >         bend = mol->nextBend(bendIter)) {
399 >
400        a = bend->getAtomA()->getGlobalIndex();
401        b = bend->getAtomB()->getGlobalIndex();        
402        c = bend->getAtomC()->getGlobalIndex();
403 +      
404 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
405 +        oneTwoInteractions_.addPair(a, b);      
406 +        oneTwoInteractions_.addPair(b, c);
407 +      } else {
408 +        excludedInteractions_.addPair(a, b);
409 +        excludedInteractions_.addPair(b, c);
410 +      }
411  
412 <      exclude_.addPair(a, b);
413 <      exclude_.addPair(a, c);
414 <      exclude_.addPair(b, c);        
412 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
413 >        oneThreeInteractions_.addPair(a, c);      
414 >      } else {
415 >        excludedInteractions_.addPair(a, c);
416 >      }
417      }
418  
419 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
419 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
420 >         torsion = mol->nextTorsion(torsionIter)) {
421 >
422        a = torsion->getAtomA()->getGlobalIndex();
423        b = torsion->getAtomB()->getGlobalIndex();        
424        c = torsion->getAtomC()->getGlobalIndex();        
425 <      d = torsion->getAtomD()->getGlobalIndex();        
425 >      d = torsion->getAtomD()->getGlobalIndex();      
426  
427 <      exclude_.addPair(a, b);
428 <      exclude_.addPair(a, c);
429 <      exclude_.addPair(a, d);
430 <      exclude_.addPair(b, c);
431 <      exclude_.addPair(b, d);
432 <      exclude_.addPair(c, d);        
427 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
428 >        oneTwoInteractions_.addPair(a, b);      
429 >        oneTwoInteractions_.addPair(b, c);
430 >        oneTwoInteractions_.addPair(c, d);
431 >      } else {
432 >        excludedInteractions_.addPair(a, b);
433 >        excludedInteractions_.addPair(b, c);
434 >        excludedInteractions_.addPair(c, d);
435 >      }
436 >
437 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
438 >        oneThreeInteractions_.addPair(a, c);      
439 >        oneThreeInteractions_.addPair(b, d);      
440 >      } else {
441 >        excludedInteractions_.addPair(a, c);
442 >        excludedInteractions_.addPair(b, d);
443 >      }
444 >
445 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
446 >        oneFourInteractions_.addPair(a, d);      
447 >      } else {
448 >        excludedInteractions_.addPair(a, d);
449 >      }
450      }
451  
452 <    Molecule::RigidBodyIterator rbIter;
453 <    RigidBody* rb;
454 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
455 <      std::vector<Atom*> atoms = rb->getAtoms();
456 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
457 <        for (int j = i + 1; j < atoms.size(); ++j) {
452 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
453 >         inversion = mol->nextInversion(inversionIter)) {
454 >
455 >      a = inversion->getAtomA()->getGlobalIndex();
456 >      b = inversion->getAtomB()->getGlobalIndex();        
457 >      c = inversion->getAtomC()->getGlobalIndex();        
458 >      d = inversion->getAtomD()->getGlobalIndex();        
459 >
460 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
461 >        oneTwoInteractions_.addPair(a, b);      
462 >        oneTwoInteractions_.addPair(a, c);
463 >        oneTwoInteractions_.addPair(a, d);
464 >      } else {
465 >        excludedInteractions_.addPair(a, b);
466 >        excludedInteractions_.addPair(a, c);
467 >        excludedInteractions_.addPair(a, d);
468 >      }
469 >
470 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
471 >        oneThreeInteractions_.addPair(b, c);    
472 >        oneThreeInteractions_.addPair(b, d);    
473 >        oneThreeInteractions_.addPair(c, d);      
474 >      } else {
475 >        excludedInteractions_.addPair(b, c);
476 >        excludedInteractions_.addPair(b, d);
477 >        excludedInteractions_.addPair(c, d);
478 >      }
479 >    }
480 >
481 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
482 >         rb = mol->nextRigidBody(rbIter)) {
483 >      vector<Atom*> atoms = rb->getAtoms();
484 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
485 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
486            a = atoms[i]->getGlobalIndex();
487            b = atoms[j]->getGlobalIndex();
488 <          exclude_.addPair(a, b);
488 >          excludedInteractions_.addPair(a, b);
489          }
490        }
491      }        
492  
493    }
494  
495 <  void SimInfo::removeExcludePairs(Molecule* mol) {
496 <    std::vector<Bond*>::iterator bondIter;
497 <    std::vector<Bend*>::iterator bendIter;
498 <    std::vector<Torsion*>::iterator torsionIter;
495 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
496 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
497 >    vector<Bond*>::iterator bondIter;
498 >    vector<Bend*>::iterator bendIter;
499 >    vector<Torsion*>::iterator torsionIter;
500 >    vector<Inversion*>::iterator inversionIter;
501      Bond* bond;
502      Bend* bend;
503      Torsion* torsion;
504 +    Inversion* inversion;
505      int a;
506      int b;
507      int c;
508      int d;
509 +
510 +    map<int, set<int> > atomGroups;
511 +    Molecule::RigidBodyIterator rbIter;
512 +    RigidBody* rb;
513 +    Molecule::IntegrableObjectIterator ii;
514 +    StuntDouble* integrableObject;
515      
516 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
516 >    for (integrableObject = mol->beginIntegrableObject(ii);
517 >         integrableObject != NULL;
518 >         integrableObject = mol->nextIntegrableObject(ii)) {
519 >      
520 >      if (integrableObject->isRigidBody()) {
521 >        rb = static_cast<RigidBody*>(integrableObject);
522 >        vector<Atom*> atoms = rb->getAtoms();
523 >        set<int> rigidAtoms;
524 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
525 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
526 >        }
527 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
528 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
529 >        }      
530 >      } else {
531 >        set<int> oneAtomSet;
532 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
533 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
534 >      }
535 >    }  
536 >
537 >    for (bond= mol->beginBond(bondIter); bond != NULL;
538 >         bond = mol->nextBond(bondIter)) {
539 >      
540        a = bond->getAtomA()->getGlobalIndex();
541 <      b = bond->getAtomB()->getGlobalIndex();        
542 <      exclude_.removePair(a, b);
541 >      b = bond->getAtomB()->getGlobalIndex();  
542 >    
543 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
544 >        oneTwoInteractions_.removePair(a, b);
545 >      } else {
546 >        excludedInteractions_.removePair(a, b);
547 >      }
548      }
549  
550 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
550 >    for (bend= mol->beginBend(bendIter); bend != NULL;
551 >         bend = mol->nextBend(bendIter)) {
552 >
553        a = bend->getAtomA()->getGlobalIndex();
554        b = bend->getAtomB()->getGlobalIndex();        
555        c = bend->getAtomC()->getGlobalIndex();
556 +      
557 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
558 +        oneTwoInteractions_.removePair(a, b);      
559 +        oneTwoInteractions_.removePair(b, c);
560 +      } else {
561 +        excludedInteractions_.removePair(a, b);
562 +        excludedInteractions_.removePair(b, c);
563 +      }
564  
565 <      exclude_.removePair(a, b);
566 <      exclude_.removePair(a, c);
567 <      exclude_.removePair(b, c);        
565 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
566 >        oneThreeInteractions_.removePair(a, c);      
567 >      } else {
568 >        excludedInteractions_.removePair(a, c);
569 >      }
570      }
571  
572 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
572 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
573 >         torsion = mol->nextTorsion(torsionIter)) {
574 >
575        a = torsion->getAtomA()->getGlobalIndex();
576        b = torsion->getAtomB()->getGlobalIndex();        
577        c = torsion->getAtomC()->getGlobalIndex();        
578 <      d = torsion->getAtomD()->getGlobalIndex();        
578 >      d = torsion->getAtomD()->getGlobalIndex();      
579 >  
580 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
581 >        oneTwoInteractions_.removePair(a, b);      
582 >        oneTwoInteractions_.removePair(b, c);
583 >        oneTwoInteractions_.removePair(c, d);
584 >      } else {
585 >        excludedInteractions_.removePair(a, b);
586 >        excludedInteractions_.removePair(b, c);
587 >        excludedInteractions_.removePair(c, d);
588 >      }
589  
590 <      exclude_.removePair(a, b);
591 <      exclude_.removePair(a, c);
592 <      exclude_.removePair(a, d);
593 <      exclude_.removePair(b, c);
594 <      exclude_.removePair(b, d);
595 <      exclude_.removePair(c, d);        
590 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
591 >        oneThreeInteractions_.removePair(a, c);      
592 >        oneThreeInteractions_.removePair(b, d);      
593 >      } else {
594 >        excludedInteractions_.removePair(a, c);
595 >        excludedInteractions_.removePair(b, d);
596 >      }
597 >
598 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
599 >        oneFourInteractions_.removePair(a, d);      
600 >      } else {
601 >        excludedInteractions_.removePair(a, d);
602 >      }
603      }
604  
605 <    Molecule::RigidBodyIterator rbIter;
606 <    RigidBody* rb;
607 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
608 <      std::vector<Atom*> atoms = rb->getAtoms();
609 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
610 <        for (int j = i + 1; j < atoms.size(); ++j) {
605 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
606 >         inversion = mol->nextInversion(inversionIter)) {
607 >
608 >      a = inversion->getAtomA()->getGlobalIndex();
609 >      b = inversion->getAtomB()->getGlobalIndex();        
610 >      c = inversion->getAtomC()->getGlobalIndex();        
611 >      d = inversion->getAtomD()->getGlobalIndex();        
612 >
613 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
614 >        oneTwoInteractions_.removePair(a, b);      
615 >        oneTwoInteractions_.removePair(a, c);
616 >        oneTwoInteractions_.removePair(a, d);
617 >      } else {
618 >        excludedInteractions_.removePair(a, b);
619 >        excludedInteractions_.removePair(a, c);
620 >        excludedInteractions_.removePair(a, d);
621 >      }
622 >
623 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
624 >        oneThreeInteractions_.removePair(b, c);    
625 >        oneThreeInteractions_.removePair(b, d);    
626 >        oneThreeInteractions_.removePair(c, d);      
627 >      } else {
628 >        excludedInteractions_.removePair(b, c);
629 >        excludedInteractions_.removePair(b, d);
630 >        excludedInteractions_.removePair(c, d);
631 >      }
632 >    }
633 >
634 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
635 >         rb = mol->nextRigidBody(rbIter)) {
636 >      vector<Atom*> atoms = rb->getAtoms();
637 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
638 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
639            a = atoms[i]->getGlobalIndex();
640            b = atoms[j]->getGlobalIndex();
641 <          exclude_.removePair(a, b);
641 >          excludedInteractions_.removePair(a, b);
642          }
643        }
644      }        
645 <
645 >    
646    }
647 <
648 <
647 >  
648 >  
649    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
650      int curStampId;
651 <
651 >    
652      //index from 0
653      curStampId = moleculeStamps_.size();
654  
# Line 462 | Line 659 | namespace oopse {
659    void SimInfo::update() {
660  
661      setupSimType();
662 +    setupCutoffRadius();
663 +    setupSwitchingRadius();
664 +    setupCutoffMethod();
665 +    setupSkinThickness();
666 +    setupSwitchingFunction();
667 +    setupAccumulateBoxDipole();
668  
669   #ifdef IS_MPI
670      setupFortranParallel();
671   #endif
469
672      setupFortranSim();
673 +    fortranInitialized_ = true;
674  
472    //setup fortran force field
473    /** @deprecate */    
474    int isError = 0;
475    
476    setupElectrostaticSummationMethod( isError );
477    setupSwitchingFunction();
478
479    if(isError){
480      sprintf( painCave.errMsg,
481               "ForceField error: There was an error initializing the forceField in fortran.\n" );
482      painCave.isFatal = 1;
483      simError();
484    }
485  
486    
487    setupCutoff();
488
675      calcNdf();
676      calcNdfRaw();
677      calcNdfTrans();
492
493    fortranInitialized_ = true;
678    }
679 <
680 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
679 >  
680 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
681      SimInfo::MoleculeIterator mi;
682      Molecule* mol;
683      Molecule::AtomIterator ai;
684      Atom* atom;
685 <    std::set<AtomType*> atomTypes;
686 <
685 >    set<AtomType*> atomTypes;
686 >    
687      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
688 <
688 >      
689        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
690          atomTypes.insert(atom->getAtomType());
691        }
692 <        
692 >      
693      }
694 <
694 >    
695      return atomTypes;        
696    }
697  
698 <  void SimInfo::setupSimType() {
699 <    std::set<AtomType*>::iterator i;
700 <    std::set<AtomType*> atomTypes;
701 <    atomTypes = getUniqueAtomTypes();
698 >  /**
699 >   * setupCutoffRadius
700 >   *
701 >   *  If the cutoffRadius was explicitly set, use that value.
702 >   *  If the cutoffRadius was not explicitly set:
703 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
704 >   *      No electrostatic atoms?  Poll the atom types present in the
705 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
706 >   *      Use the maximum suggested value that was found.
707 >   */
708 >  void SimInfo::setupCutoffRadius() {
709      
710 <    int useLennardJones = 0;
711 <    int useElectrostatic = 0;
712 <    int useEAM = 0;
713 <    int useCharge = 0;
714 <    int useDirectional = 0;
715 <    int useDipole = 0;
716 <    int useGayBerne = 0;
717 <    int useSticky = 0;
718 <    int useStickyPower = 0;
719 <    int useShape = 0;
720 <    int useFLARB = 0; //it is not in AtomType yet
721 <    int useDirectionalAtom = 0;    
722 <    int useElectrostatics = 0;
723 <    //usePBC and useRF are from simParams
724 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
725 <    int useRF;
726 <    int useSF;
727 <    std::string myMethod;
728 <
729 <    // set the useRF logical
730 <    useRF = 0;
731 <    useSF = 0;
710 >    if (simParams_->haveCutoffRadius()) {
711 >      cutoffRadius_ = simParams_->getCutoffRadius();
712 >    } else {      
713 >      if (usesElectrostaticAtoms_) {
714 >        sprintf(painCave.errMsg,
715 >                "SimInfo Warning: No value was set for the cutoffRadius.\n"
716 >                "\tOpenMD will use a default value of 12.0 angstroms"
717 >                "\tfor the cutoffRadius.\n");
718 >        painCave.isFatal = 0;
719 >        simError();
720 >        cutoffRadius_ = 12.0;
721 >      } else {
722 >        RealType thisCut;
723 >        set<AtomType*>::iterator i;
724 >        set<AtomType*> atomTypes;
725 >        atomTypes = getSimulatedAtomTypes();        
726 >        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
727 >          thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i));
728 >          cutoffRadius_ = max(thisCut, cutoffRadius_);
729 >        }
730 >        sprintf(painCave.errMsg,
731 >                "SimInfo Warning: No value was set for the cutoffRadius.\n"
732 >                "\tOpenMD will use %lf angstroms.\n",
733 >                cutoffRadius_);
734 >        painCave.isFatal = 0;
735 >        simError();
736 >      }            
737 >    }
738  
739 +    InteractionManager::Instance()->setCutoffRadius(cutoffRadius_);
740 +  }
741 +  
742 +  /**
743 +   * setupSwitchingRadius
744 +   *
745 +   *  If the switchingRadius was explicitly set, use that value (but check it)
746 +   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
747 +   */
748 +  void SimInfo::setupSwitchingRadius() {
749 +    
750 +    if (simParams_->haveSwitchingRadius()) {
751 +      switchingRadius_ = simParams_->getSwitchingRadius();
752 +      if (switchingRadius_ > cutoffRadius_) {        
753 +        sprintf(painCave.errMsg,
754 +                "SimInfo Error: switchingRadius (%f) is larger than cutoffRadius(%f)\n",
755 +                switchingRadius_, cutoffRadius_);
756 +        painCave.isFatal = 1;
757 +        simError();
758  
543    if (simParams_->haveElectrostaticSummationMethod()) {
544      std::string myMethod = simParams_->getElectrostaticSummationMethod();
545      toUpper(myMethod);
546      if (myMethod == "REACTION_FIELD") {
547        useRF=1;
548      } else {
549        if (myMethod == "SHIFTED_FORCE") {
550          useSF = 1;
551        }
759        }
760 <    }
760 >    } else {      
761 >      switchingRadius_ = 0.85 * cutoffRadius_;
762 >      sprintf(painCave.errMsg,
763 >              "SimInfo Warning: No value was set for the switchingRadius.\n"
764 >              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
765 >              "\tswitchingRadius = %f. for this simulation\n", switchingRadius_);
766 >      painCave.isFatal = 0;
767 >      simError();
768 >    }            
769 >    InteractionManager::Instance()->setSwitchingRadius(switchingRadius_);
770 >  }
771  
772 +  /**
773 +   * setupSkinThickness
774 +   *
775 +   *  If the skinThickness was explicitly set, use that value (but check it)
776 +   *  If the skinThickness was not explicitly set: use 1.0 angstroms
777 +   */
778 +  void SimInfo::setupSkinThickness() {    
779 +    if (simParams_->haveSkinThickness()) {
780 +      skinThickness_ = simParams_->getSkinThickness();
781 +    } else {      
782 +      skinThickness_ = 1.0;
783 +      sprintf(painCave.errMsg,
784 +              "SimInfo Warning: No value was set for the skinThickness.\n"
785 +              "\tOpenMD will use a default value of %f Angstroms\n"
786 +              "\tfor this simulation\n", skinThickness_);
787 +      painCave.isFatal = 0;
788 +      simError();
789 +    }            
790 +  }
791 +
792 +  void SimInfo::setupSimType() {
793 +    set<AtomType*>::iterator i;
794 +    set<AtomType*> atomTypes;
795 +    atomTypes = getSimulatedAtomTypes();
796 +
797 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
798 +
799 +    int usesElectrostatic = 0;
800 +    int usesMetallic = 0;
801 +    int usesDirectional = 0;
802      //loop over all of the atom types
803      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
804 <      useLennardJones |= (*i)->isLennardJones();
805 <      useElectrostatic |= (*i)->isElectrostatic();
806 <      useEAM |= (*i)->isEAM();
560 <      useCharge |= (*i)->isCharge();
561 <      useDirectional |= (*i)->isDirectional();
562 <      useDipole |= (*i)->isDipole();
563 <      useGayBerne |= (*i)->isGayBerne();
564 <      useSticky |= (*i)->isSticky();
565 <      useStickyPower |= (*i)->isStickyPower();
566 <      useShape |= (*i)->isShape();
804 >      usesElectrostatic |= (*i)->isElectrostatic();
805 >      usesMetallic |= (*i)->isMetal();
806 >      usesDirectional |= (*i)->isDirectional();
807      }
808  
569    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
570      useDirectionalAtom = 1;
571    }
572
573    if (useCharge || useDipole) {
574      useElectrostatics = 1;
575    }
576
809   #ifdef IS_MPI    
810      int temp;
811 <
812 <    temp = usePBC;
581 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
582 <
583 <    temp = useDirectionalAtom;
584 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
585 <
586 <    temp = useLennardJones;
587 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
588 <
589 <    temp = useElectrostatics;
590 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
591 <
592 <    temp = useCharge;
593 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
594 <
595 <    temp = useDipole;
596 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
597 <
598 <    temp = useSticky;
599 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
600 <
601 <    temp = useStickyPower;
602 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
603 <    
604 <    temp = useGayBerne;
605 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
606 <
607 <    temp = useEAM;
608 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
609 <
610 <    temp = useShape;
611 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
612 <
613 <    temp = useFLARB;
614 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
615 <
616 <    temp = useRF;
617 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
811 >    temp = usesDirectional;
812 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
813  
814 <    temp = useSF;
815 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
814 >    temp = usesMetallic;
815 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
816  
817 +    temp = usesElectrostatic;
818 +    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
819   #endif
820 <
821 <    fInfo_.SIM_uses_PBC = usePBC;    
822 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
823 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
824 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
825 <    fInfo_.SIM_uses_Charges = useCharge;
629 <    fInfo_.SIM_uses_Dipoles = useDipole;
630 <    fInfo_.SIM_uses_Sticky = useSticky;
631 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
632 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
633 <    fInfo_.SIM_uses_EAM = useEAM;
634 <    fInfo_.SIM_uses_Shapes = useShape;
635 <    fInfo_.SIM_uses_FLARB = useFLARB;
636 <    fInfo_.SIM_uses_RF = useRF;
637 <    fInfo_.SIM_uses_SF = useSF;
638 <
639 <    if( myMethod == "REACTION_FIELD") {
640 <      
641 <      if (simParams_->haveDielectric()) {
642 <        fInfo_.dielect = simParams_->getDielectric();
643 <      } else {
644 <        sprintf(painCave.errMsg,
645 <                "SimSetup Error: No Dielectric constant was set.\n"
646 <                "\tYou are trying to use Reaction Field without"
647 <                "\tsetting a dielectric constant!\n");
648 <        painCave.isFatal = 1;
649 <        simError();
650 <      }      
651 <    }
652 <
820 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
821 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
822 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
823 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
824 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
825 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
826    }
827  
828    void SimInfo::setupFortranSim() {
829      int isError;
830 <    int nExclude;
831 <    std::vector<int> fortranGlobalGroupMembership;
830 >    int nExclude, nOneTwo, nOneThree, nOneFour;
831 >    vector<int> fortranGlobalGroupMembership;
832      
833 <    nExclude = exclude_.getSize();
833 >    notifyFortranSkinThickness(&skinThickness_);
834 >
835 >    int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0;
836 >    int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0;
837 >    notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf);
838 >
839      isError = 0;
840  
841      //globalGroupMembership_ is filled by SimCreator    
# Line 666 | Line 844 | namespace oopse {
844      }
845  
846      //calculate mass ratio of cutoff group
847 <    std::vector<double> mfact;
847 >    vector<RealType> mfact;
848      SimInfo::MoleculeIterator mi;
849      Molecule* mol;
850      Molecule::CutoffGroupIterator ci;
851      CutoffGroup* cg;
852      Molecule::AtomIterator ai;
853      Atom* atom;
854 <    double totalMass;
854 >    RealType totalMass;
855  
856      //to avoid memory reallocation, reserve enough space for mfact
857      mfact.reserve(getNCutoffGroups());
# Line 689 | Line 867 | namespace oopse {
867            else
868              mfact.push_back( 1.0 );
869          }
692
870        }      
871      }
872  
873      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
874 <    std::vector<int> identArray;
874 >    vector<int> identArray;
875  
876      //to avoid memory reallocation, reserve enough space identArray
877      identArray.reserve(getNAtoms());
# Line 707 | Line 884 | namespace oopse {
884  
885      //fill molMembershipArray
886      //molMembershipArray is filled by SimCreator    
887 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
887 >    vector<int> molMembershipArray(nGlobalAtoms_);
888      for (int i = 0; i < nGlobalAtoms_; i++) {
889        molMembershipArray[i] = globalMolMembership_[i] + 1;
890      }
891      
892      //setup fortran simulation
716    int nGlobalExcludes = 0;
717    int* globalExcludes = NULL;
718    int* excludeList = exclude_.getExcludeList();
719    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
720                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
721                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
893  
894 <    if( isError ){
894 >    nExclude = excludedInteractions_.getSize();
895 >    nOneTwo = oneTwoInteractions_.getSize();
896 >    nOneThree = oneThreeInteractions_.getSize();
897 >    nOneFour = oneFourInteractions_.getSize();
898  
899 +    int* excludeList = excludedInteractions_.getPairList();
900 +    int* oneTwoList = oneTwoInteractions_.getPairList();
901 +    int* oneThreeList = oneThreeInteractions_.getPairList();
902 +    int* oneFourList = oneFourInteractions_.getPairList();
903 +
904 +    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
905 +                   &nExclude, excludeList,
906 +                   &nOneTwo, oneTwoList,
907 +                   &nOneThree, oneThreeList,
908 +                   &nOneFour, oneFourList,
909 +                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
910 +                   &fortranGlobalGroupMembership[0], &isError);
911 +    
912 +    if( isError ){
913 +      
914        sprintf( painCave.errMsg,
915                 "There was an error setting the simulation information in fortran.\n" );
916        painCave.isFatal = 1;
917 <      painCave.severity = OOPSE_ERROR;
917 >      painCave.severity = OPENMD_ERROR;
918        simError();
919      }
920 <
921 < #ifdef IS_MPI
920 >    
921 >    
922      sprintf( checkPointMsg,
923               "succesfully sent the simulation information to fortran.\n");
924 <    MPIcheckPoint();
925 < #endif // is_mpi
924 >    
925 >    errorCheckPoint();
926 >    
927 >    // Setup number of neighbors in neighbor list if present
928 >    if (simParams_->haveNeighborListNeighbors()) {
929 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
930 >      setNeighbors(&nlistNeighbors);
931 >    }
932 >  
933 >
934    }
935  
936  
740 #ifdef IS_MPI
937    void SimInfo::setupFortranParallel() {
938 <    
938 > #ifdef IS_MPI    
939      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
940 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
941 <    std::vector<int> localToGlobalCutoffGroupIndex;
940 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
941 >    vector<int> localToGlobalCutoffGroupIndex;
942      SimInfo::MoleculeIterator mi;
943      Molecule::AtomIterator ai;
944      Molecule::CutoffGroupIterator ci;
# Line 789 | Line 985 | namespace oopse {
985      }
986  
987      sprintf(checkPointMsg, " mpiRefresh successful.\n");
988 <    MPIcheckPoint();
988 >    errorCheckPoint();
989  
794
795  }
796
990   #endif
798
799  double SimInfo::calcMaxCutoffRadius() {
800
801
802    std::set<AtomType*> atomTypes;
803    std::set<AtomType*>::iterator i;
804    std::vector<double> cutoffRadius;
805
806    //get the unique atom types
807    atomTypes = getUniqueAtomTypes();
808
809    //query the max cutoff radius among these atom types
810    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
811      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
812    }
813
814    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
815 #ifdef IS_MPI
816    //pick the max cutoff radius among the processors
817 #endif
818
819    return maxCutoffRadius;
991    }
992  
822  void SimInfo::getCutoff(double& rcut, double& rsw) {
823    
824    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
825        
826      if (!simParams_->haveCutoffRadius()){
827        sprintf(painCave.errMsg,
828                "SimCreator Warning: No value was set for the cutoffRadius.\n"
829                "\tOOPSE will use a default value of 15.0 angstroms"
830                "\tfor the cutoffRadius.\n");
831        painCave.isFatal = 0;
832        simError();
833        rcut = 15.0;
834      } else{
835        rcut = simParams_->getCutoffRadius();
836      }
993  
838      if (!simParams_->haveSwitchingRadius()){
839        sprintf(painCave.errMsg,
840                "SimCreator Warning: No value was set for switchingRadius.\n"
841                "\tOOPSE will use a default value of\n"
842                "\t0.85 * cutoffRadius for the switchingRadius\n");
843        painCave.isFatal = 0;
844        simError();
845        rsw = 0.85 * rcut;
846      } else{
847        rsw = simParams_->getSwitchingRadius();
848      }
849
850    } else {
851      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
852      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
853        
854      if (simParams_->haveCutoffRadius()) {
855        rcut = simParams_->getCutoffRadius();
856      } else {
857        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
858        rcut = calcMaxCutoffRadius();
859      }
860
861      if (simParams_->haveSwitchingRadius()) {
862        rsw  = simParams_->getSwitchingRadius();
863      } else {
864        rsw = rcut;
865      }
866    
867    }
868  }
869
870  void SimInfo::setupCutoff() {    
871    getCutoff(rcut_, rsw_);    
872    double rnblist = rcut_ + 1; // skin of neighbor list
873
874    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
875    
876    int cp =  TRADITIONAL_CUTOFF_POLICY;
877    if (simParams_->haveCutoffPolicy()) {
878      std::string myPolicy = simParams_->getCutoffPolicy();
879      toUpper(myPolicy);
880      if (myPolicy == "MIX") {
881        cp = MIX_CUTOFF_POLICY;
882      } else {
883        if (myPolicy == "MAX") {
884          cp = MAX_CUTOFF_POLICY;
885        } else {
886          if (myPolicy == "TRADITIONAL") {            
887            cp = TRADITIONAL_CUTOFF_POLICY;
888          } else {
889            // throw error        
890            sprintf( painCave.errMsg,
891                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
892            painCave.isFatal = 1;
893            simError();
894          }    
895        }          
896      }
897    }
898
899
900    if (simParams_->haveSkinThickness()) {
901      double skinThickness = simParams_->getSkinThickness();
902    }
903
904    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
905    // also send cutoff notification to electrostatics
906    setElectrostaticCutoffRadius(&rcut_, &rsw_);
907  }
908
909  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
910    
911    int errorOut;
912    int esm =  NONE;
913    int sm = UNDAMPED;
914    double alphaVal;
915    double dielectric;
916
917    errorOut = isError;
918    alphaVal = simParams_->getDampingAlpha();
919    dielectric = simParams_->getDielectric();
920
921    if (simParams_->haveElectrostaticSummationMethod()) {
922      std::string myMethod = simParams_->getElectrostaticSummationMethod();
923      toUpper(myMethod);
924      if (myMethod == "NONE") {
925        esm = NONE;
926      } else {
927        if (myMethod == "SWITCHING_FUNCTION") {
928          esm = SWITCHING_FUNCTION;
929        } else {
930          if (myMethod == "SHIFTED_POTENTIAL") {
931            esm = SHIFTED_POTENTIAL;
932          } else {
933            if (myMethod == "SHIFTED_FORCE") {            
934              esm = SHIFTED_FORCE;
935            } else {
936              if (myMethod == "REACTION_FIELD") {            
937                esm = REACTION_FIELD;
938              } else {
939                // throw error        
940                sprintf( painCave.errMsg,
941                         "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"shifted_potential\", \"shifted_force\", or \"reaction_field\".", myMethod.c_str() );
942                painCave.isFatal = 1;
943                simError();
944              }    
945            }          
946          }
947        }
948      }
949    }
950    
951    if (simParams_->haveElectrostaticScreeningMethod()) {
952      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
953      toUpper(myScreen);
954      if (myScreen == "UNDAMPED") {
955        sm = UNDAMPED;
956      } else {
957        if (myScreen == "DAMPED") {
958          sm = DAMPED;
959          if (!simParams_->haveDampingAlpha()) {
960            //throw error
961            sprintf( painCave.errMsg,
962                     "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used.", alphaVal);
963            painCave.isFatal = 0;
964            simError();
965          }
966        } else {
967          // throw error        
968          sprintf( painCave.errMsg,
969                   "SimInfo error: Unknown electrostaticScreeningMethod. (Input file specified %s .)\n\telectrostaticScreeningMethod must be one of: \"undamped\" or \"damped\".", myScreen.c_str() );
970          painCave.isFatal = 1;
971          simError();
972        }
973      }
974    }
975    
976    // let's pass some summation method variables to fortran
977    setElectrostaticSummationMethod( &esm );
978    setScreeningMethod( &sm );
979    setDampingAlpha( &alphaVal );
980    setReactionFieldDielectric( &dielectric );
981    initFortranFF( &esm, &errorOut );
982  }
983
994    void SimInfo::setupSwitchingFunction() {    
995      int ft = CUBIC;
996 <
996 >    
997      if (simParams_->haveSwitchingFunctionType()) {
998 <      std::string funcType = simParams_->getSwitchingFunctionType();
998 >      string funcType = simParams_->getSwitchingFunctionType();
999        toUpper(funcType);
1000        if (funcType == "CUBIC") {
1001          ft = CUBIC;
# Line 1007 | Line 1017 | namespace oopse {
1017  
1018    }
1019  
1020 +  void SimInfo::setupAccumulateBoxDipole() {    
1021 +
1022 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1023 +    if ( simParams_->haveAccumulateBoxDipole() )
1024 +      if ( simParams_->getAccumulateBoxDipole() ) {
1025 +        calcBoxDipole_ = true;
1026 +      }
1027 +
1028 +  }
1029 +
1030    void SimInfo::addProperty(GenericData* genData) {
1031      properties_.addProperty(genData);  
1032    }
1033  
1034 <  void SimInfo::removeProperty(const std::string& propName) {
1034 >  void SimInfo::removeProperty(const string& propName) {
1035      properties_.removeProperty(propName);  
1036    }
1037  
# Line 1019 | Line 1039 | namespace oopse {
1039      properties_.clearProperties();
1040    }
1041  
1042 <  std::vector<std::string> SimInfo::getPropertyNames() {
1042 >  vector<string> SimInfo::getPropertyNames() {
1043      return properties_.getPropertyNames();  
1044    }
1045        
1046 <  std::vector<GenericData*> SimInfo::getProperties() {
1046 >  vector<GenericData*> SimInfo::getProperties() {
1047      return properties_.getProperties();
1048    }
1049  
1050 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1050 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
1051      return properties_.getPropertyByName(propName);
1052    }
1053  
# Line 1063 | Line 1083 | namespace oopse {
1083      Molecule* mol;
1084  
1085      Vector3d comVel(0.0);
1086 <    double totalMass = 0.0;
1086 >    RealType totalMass = 0.0;
1087      
1088  
1089      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1090 <      double mass = mol->getMass();
1090 >      RealType mass = mol->getMass();
1091        totalMass += mass;
1092        comVel += mass * mol->getComVel();
1093      }  
1094  
1095   #ifdef IS_MPI
1096 <    double tmpMass = totalMass;
1096 >    RealType tmpMass = totalMass;
1097      Vector3d tmpComVel(comVel);    
1098 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1099 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1098 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1099 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1100   #endif
1101  
1102      comVel /= totalMass;
# Line 1089 | Line 1109 | namespace oopse {
1109      Molecule* mol;
1110  
1111      Vector3d com(0.0);
1112 <    double totalMass = 0.0;
1112 >    RealType totalMass = 0.0;
1113      
1114      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1115 <      double mass = mol->getMass();
1115 >      RealType mass = mol->getMass();
1116        totalMass += mass;
1117        com += mass * mol->getCom();
1118      }  
1119  
1120   #ifdef IS_MPI
1121 <    double tmpMass = totalMass;
1121 >    RealType tmpMass = totalMass;
1122      Vector3d tmpCom(com);    
1123 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1124 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1123 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1124 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1125   #endif
1126  
1127      com /= totalMass;
# Line 1110 | Line 1130 | namespace oopse {
1130  
1131    }        
1132  
1133 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1133 >  ostream& operator <<(ostream& o, SimInfo& info) {
1134  
1135      return o;
1136    }
# Line 1125 | Line 1145 | namespace oopse {
1145        Molecule* mol;
1146        
1147      
1148 <      double totalMass = 0.0;
1148 >      RealType totalMass = 0.0;
1149      
1150  
1151        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1152 <         double mass = mol->getMass();
1152 >         RealType mass = mol->getMass();
1153           totalMass += mass;
1154           com += mass * mol->getCom();
1155           comVel += mass * mol->getComVel();          
1156        }  
1157        
1158   #ifdef IS_MPI
1159 <      double tmpMass = totalMass;
1159 >      RealType tmpMass = totalMass;
1160        Vector3d tmpCom(com);  
1161        Vector3d tmpComVel(comVel);
1162 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1163 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1164 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1162 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1163 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1164 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1165   #endif
1166        
1167        com /= totalMass;
# Line 1153 | Line 1173 | namespace oopse {
1173  
1174  
1175         [  Ixx -Ixy  -Ixz ]
1176 <  J =| -Iyx  Iyy  -Iyz |
1176 >    J =| -Iyx  Iyy  -Iyz |
1177         [ -Izx -Iyz   Izz ]
1178      */
1179  
1180     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1181        
1182  
1183 <      double xx = 0.0;
1184 <      double yy = 0.0;
1185 <      double zz = 0.0;
1186 <      double xy = 0.0;
1187 <      double xz = 0.0;
1188 <      double yz = 0.0;
1183 >      RealType xx = 0.0;
1184 >      RealType yy = 0.0;
1185 >      RealType zz = 0.0;
1186 >      RealType xy = 0.0;
1187 >      RealType xz = 0.0;
1188 >      RealType yz = 0.0;
1189        Vector3d com(0.0);
1190        Vector3d comVel(0.0);
1191        
# Line 1177 | Line 1197 | namespace oopse {
1197        Vector3d thisq(0.0);
1198        Vector3d thisv(0.0);
1199  
1200 <      double thisMass = 0.0;
1200 >      RealType thisMass = 0.0;
1201      
1202        
1203        
# Line 1215 | Line 1235 | namespace oopse {
1235   #ifdef IS_MPI
1236        Mat3x3d tmpI(inertiaTensor);
1237        Vector3d tmpAngMom;
1238 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1239 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1238 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1239 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1240   #endif
1241                
1242        return;
# Line 1237 | Line 1257 | namespace oopse {
1257        Vector3d thisr(0.0);
1258        Vector3d thisp(0.0);
1259        
1260 <      double thisMass;
1260 >      RealType thisMass;
1261        
1262        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1263          thisMass = mol->getMass();
# Line 1250 | Line 1270 | namespace oopse {
1270        
1271   #ifdef IS_MPI
1272        Vector3d tmpAngMom;
1273 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1273 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1274   #endif
1275        
1276        return angularMomentum;
1277     }
1278    
1279 <  
1280 < }//end namespace oopse
1279 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1280 >    return IOIndexToIntegrableObject.at(index);
1281 >  }
1282 >  
1283 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1284 >    IOIndexToIntegrableObject= v;
1285 >  }
1286  
1287 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1288 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1289 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1290 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1291 +  */
1292 +  void SimInfo::getGyrationalVolume(RealType &volume){
1293 +    Mat3x3d intTensor;
1294 +    RealType det;
1295 +    Vector3d dummyAngMom;
1296 +    RealType sysconstants;
1297 +    RealType geomCnst;
1298 +
1299 +    geomCnst = 3.0/2.0;
1300 +    /* Get the inertial tensor and angular momentum for free*/
1301 +    getInertiaTensor(intTensor,dummyAngMom);
1302 +    
1303 +    det = intTensor.determinant();
1304 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1305 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1306 +    return;
1307 +  }
1308 +
1309 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1310 +    Mat3x3d intTensor;
1311 +    Vector3d dummyAngMom;
1312 +    RealType sysconstants;
1313 +    RealType geomCnst;
1314 +
1315 +    geomCnst = 3.0/2.0;
1316 +    /* Get the inertial tensor and angular momentum for free*/
1317 +    getInertiaTensor(intTensor,dummyAngMom);
1318 +    
1319 +    detI = intTensor.determinant();
1320 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1321 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1322 +    return;
1323 +  }
1324 + /*
1325 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1326 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1327 +      sdByGlobalIndex_ = v;
1328 +    }
1329 +
1330 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1331 +      //assert(index < nAtoms_ + nRigidBodies_);
1332 +      return sdByGlobalIndex_.at(index);
1333 +    }  
1334 + */  
1335 +  int SimInfo::getNGlobalConstraints() {
1336 +    int nGlobalConstraints;
1337 + #ifdef IS_MPI
1338 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1339 +                  MPI_COMM_WORLD);    
1340 + #else
1341 +    nGlobalConstraints =  nConstraints_;
1342 + #endif
1343 +    return nGlobalConstraints;
1344 +  }
1345 +
1346 + }//end namespace OpenMD
1347 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 726 by chrisfen, Fri Nov 11 15:22:11 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1528 by gezelter, Fri Dec 17 20:11:05 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines