ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing branches/development/src/brains/SimInfo.cpp (file contents):
Revision 1503 by gezelter, Sat Oct 2 19:54:41 2010 UTC vs.
Revision 1553 by gezelter, Fri Apr 29 17:25:12 2011 UTC

# Line 54 | Line 54
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
59 #include "UseTheForce/doForces_interface.h"
60 #include "UseTheForce/DarkSide/neighborLists_interface.h"
61 #include "UseTheForce/DarkSide/switcheroo_interface.h"
57   #include "utils/MemoryUtils.hpp"
58   #include "utils/simError.h"
59   #include "selection/SelectionManager.hpp"
60   #include "io/ForceFieldOptions.hpp"
61   #include "UseTheForce/ForceField.hpp"
62 + #include "nonbonded/SwitchingFunction.hpp"
63  
64 <
69 < #ifdef IS_MPI
70 < #include "UseTheForce/mpiComponentPlan.h"
71 < #include "UseTheForce/DarkSide/simParallel_interface.h"
72 < #endif
73 <
64 > using namespace std;
65   namespace OpenMD {
75  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
76    std::map<int, std::set<int> >::iterator i = container.find(index);
77    std::set<int> result;
78    if (i != container.end()) {
79        result = i->second;
80    }
81
82    return result;
83  }
66    
67    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
68      forceField_(ff), simParams_(simParams),
# Line 90 | Line 72 | namespace OpenMD {
72      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
73      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
74      nConstraints_(0), sman_(NULL), fortranInitialized_(false),
75 <    calcBoxDipole_(false), useAtomicVirial_(true) {
76 <
77 <
78 <      MoleculeStamp* molStamp;
79 <      int nMolWithSameStamp;
80 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
81 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
82 <      CutoffGroupStamp* cgStamp;    
83 <      RigidBodyStamp* rbStamp;
84 <      int nRigidAtoms = 0;
85 <
86 <      std::vector<Component*> components = simParams->getComponents();
75 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
76 >    
77 >    MoleculeStamp* molStamp;
78 >    int nMolWithSameStamp;
79 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
80 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
81 >    CutoffGroupStamp* cgStamp;    
82 >    RigidBodyStamp* rbStamp;
83 >    int nRigidAtoms = 0;
84 >    
85 >    vector<Component*> components = simParams->getComponents();
86 >    
87 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
88 >      molStamp = (*i)->getMoleculeStamp();
89 >      nMolWithSameStamp = (*i)->getNMol();
90        
91 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
92 <        molStamp = (*i)->getMoleculeStamp();
93 <        nMolWithSameStamp = (*i)->getNMol();
94 <        
95 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
96 <
97 <        //calculate atoms in molecules
98 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
99 <
100 <        //calculate atoms in cutoff groups
101 <        int nAtomsInGroups = 0;
102 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
118 <        
119 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
120 <          cgStamp = molStamp->getCutoffGroupStamp(j);
121 <          nAtomsInGroups += cgStamp->getNMembers();
122 <        }
123 <
124 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
125 <
126 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
127 <
128 <        //calculate atoms in rigid bodies
129 <        int nAtomsInRigidBodies = 0;
130 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
131 <        
132 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
133 <          rbStamp = molStamp->getRigidBodyStamp(j);
134 <          nAtomsInRigidBodies += rbStamp->getNMembers();
135 <        }
136 <
137 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
138 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
139 <        
91 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
92 >      
93 >      //calculate atoms in molecules
94 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
95 >      
96 >      //calculate atoms in cutoff groups
97 >      int nAtomsInGroups = 0;
98 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
99 >      
100 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
101 >        cgStamp = molStamp->getCutoffGroupStamp(j);
102 >        nAtomsInGroups += cgStamp->getNMembers();
103        }
104 <
105 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
106 <      //group therefore the total number of cutoff groups in the system is
107 <      //equal to the total number of atoms minus number of atoms belong to
108 <      //cutoff group defined in meta-data file plus the number of cutoff
109 <      //groups defined in meta-data file
110 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
111 <
112 <      //every free atom (atom does not belong to rigid bodies) is an
113 <      //integrable object therefore the total number of integrable objects
114 <      //in the system is equal to the total number of atoms minus number of
115 <      //atoms belong to rigid body defined in meta-data file plus the number
116 <      //of rigid bodies defined in meta-data file
117 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
118 <                                                + nGlobalRigidBodies_;
119 <  
120 <      nGlobalMols_ = molStampIds_.size();
158 <      molToProcMap_.resize(nGlobalMols_);
104 >      
105 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
106 >      
107 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
108 >      
109 >      //calculate atoms in rigid bodies
110 >      int nAtomsInRigidBodies = 0;
111 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
112 >      
113 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
114 >        rbStamp = molStamp->getRigidBodyStamp(j);
115 >        nAtomsInRigidBodies += rbStamp->getNMembers();
116 >      }
117 >      
118 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
119 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
120 >      
121      }
122 +    
123 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
124 +    //group therefore the total number of cutoff groups in the system is
125 +    //equal to the total number of atoms minus number of atoms belong to
126 +    //cutoff group defined in meta-data file plus the number of cutoff
127 +    //groups defined in meta-data file
128 +    std::cerr << "nGA = " << nGlobalAtoms_ << "\n";
129 +    std::cerr << "nCA = " << nCutoffAtoms << "\n";
130 +    std::cerr << "nG = " << nGroups << "\n";
131  
132 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
133 +
134 +    std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n";
135 +    
136 +    //every free atom (atom does not belong to rigid bodies) is an
137 +    //integrable object therefore the total number of integrable objects
138 +    //in the system is equal to the total number of atoms minus number of
139 +    //atoms belong to rigid body defined in meta-data file plus the number
140 +    //of rigid bodies defined in meta-data file
141 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
142 +      + nGlobalRigidBodies_;
143 +    
144 +    nGlobalMols_ = molStampIds_.size();
145 +    molToProcMap_.resize(nGlobalMols_);
146 +  }
147 +  
148    SimInfo::~SimInfo() {
149 <    std::map<int, Molecule*>::iterator i;
149 >    map<int, Molecule*>::iterator i;
150      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
151        delete i->second;
152      }
# Line 170 | Line 157 | namespace OpenMD {
157      delete forceField_;
158    }
159  
173  int SimInfo::getNGlobalConstraints() {
174    int nGlobalConstraints;
175 #ifdef IS_MPI
176    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
177                  MPI_COMM_WORLD);    
178 #else
179    nGlobalConstraints =  nConstraints_;
180 #endif
181    return nGlobalConstraints;
182  }
160  
161    bool SimInfo::addMolecule(Molecule* mol) {
162      MoleculeIterator i;
163 <
163 >    
164      i = molecules_.find(mol->getGlobalIndex());
165      if (i == molecules_.end() ) {
166 <
167 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
168 <        
166 >      
167 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
168 >      
169        nAtoms_ += mol->getNAtoms();
170        nBonds_ += mol->getNBonds();
171        nBends_ += mol->getNBends();
# Line 198 | Line 175 | namespace OpenMD {
175        nIntegrableObjects_ += mol->getNIntegrableObjects();
176        nCutoffGroups_ += mol->getNCutoffGroups();
177        nConstraints_ += mol->getNConstraintPairs();
178 <
178 >      
179        addInteractionPairs(mol);
180 <  
180 >      
181        return true;
182      } else {
183        return false;
184      }
185    }
186 <
186 >  
187    bool SimInfo::removeMolecule(Molecule* mol) {
188      MoleculeIterator i;
189      i = molecules_.find(mol->getGlobalIndex());
# Line 234 | Line 211 | namespace OpenMD {
211      } else {
212        return false;
213      }
237
238
214    }    
215  
216          
# Line 253 | Line 228 | namespace OpenMD {
228    void SimInfo::calcNdf() {
229      int ndf_local;
230      MoleculeIterator i;
231 <    std::vector<StuntDouble*>::iterator j;
231 >    vector<StuntDouble*>::iterator j;
232      Molecule* mol;
233      StuntDouble* integrableObject;
234  
# Line 304 | Line 279 | namespace OpenMD {
279      int ndfRaw_local;
280  
281      MoleculeIterator i;
282 <    std::vector<StuntDouble*>::iterator j;
282 >    vector<StuntDouble*>::iterator j;
283      Molecule* mol;
284      StuntDouble* integrableObject;
285  
# Line 353 | Line 328 | namespace OpenMD {
328  
329    void SimInfo::addInteractionPairs(Molecule* mol) {
330      ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
331 <    std::vector<Bond*>::iterator bondIter;
332 <    std::vector<Bend*>::iterator bendIter;
333 <    std::vector<Torsion*>::iterator torsionIter;
334 <    std::vector<Inversion*>::iterator inversionIter;
331 >    vector<Bond*>::iterator bondIter;
332 >    vector<Bend*>::iterator bendIter;
333 >    vector<Torsion*>::iterator torsionIter;
334 >    vector<Inversion*>::iterator inversionIter;
335      Bond* bond;
336      Bend* bend;
337      Torsion* torsion;
# Line 374 | Line 349 | namespace OpenMD {
349      // always be excluded.  These are done at the bottom of this
350      // function.
351  
352 <    std::map<int, std::set<int> > atomGroups;
352 >    map<int, set<int> > atomGroups;
353      Molecule::RigidBodyIterator rbIter;
354      RigidBody* rb;
355      Molecule::IntegrableObjectIterator ii;
# Line 386 | Line 361 | namespace OpenMD {
361        
362        if (integrableObject->isRigidBody()) {
363          rb = static_cast<RigidBody*>(integrableObject);
364 <        std::vector<Atom*> atoms = rb->getAtoms();
365 <        std::set<int> rigidAtoms;
364 >        vector<Atom*> atoms = rb->getAtoms();
365 >        set<int> rigidAtoms;
366          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
367            rigidAtoms.insert(atoms[i]->getGlobalIndex());
368          }
369          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
370 <          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
370 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
371          }      
372        } else {
373 <        std::set<int> oneAtomSet;
373 >        set<int> oneAtomSet;
374          oneAtomSet.insert(integrableObject->getGlobalIndex());
375 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
375 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
376        }
377      }  
378            
# Line 500 | Line 475 | namespace OpenMD {
475  
476      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
477           rb = mol->nextRigidBody(rbIter)) {
478 <      std::vector<Atom*> atoms = rb->getAtoms();
478 >      vector<Atom*> atoms = rb->getAtoms();
479        for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
480          for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
481            a = atoms[i]->getGlobalIndex();
# Line 514 | Line 489 | namespace OpenMD {
489  
490    void SimInfo::removeInteractionPairs(Molecule* mol) {
491      ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
492 <    std::vector<Bond*>::iterator bondIter;
493 <    std::vector<Bend*>::iterator bendIter;
494 <    std::vector<Torsion*>::iterator torsionIter;
495 <    std::vector<Inversion*>::iterator inversionIter;
492 >    vector<Bond*>::iterator bondIter;
493 >    vector<Bend*>::iterator bendIter;
494 >    vector<Torsion*>::iterator torsionIter;
495 >    vector<Inversion*>::iterator inversionIter;
496      Bond* bond;
497      Bend* bend;
498      Torsion* torsion;
# Line 527 | Line 502 | namespace OpenMD {
502      int c;
503      int d;
504  
505 <    std::map<int, std::set<int> > atomGroups;
505 >    map<int, set<int> > atomGroups;
506      Molecule::RigidBodyIterator rbIter;
507      RigidBody* rb;
508      Molecule::IntegrableObjectIterator ii;
# Line 539 | Line 514 | namespace OpenMD {
514        
515        if (integrableObject->isRigidBody()) {
516          rb = static_cast<RigidBody*>(integrableObject);
517 <        std::vector<Atom*> atoms = rb->getAtoms();
518 <        std::set<int> rigidAtoms;
517 >        vector<Atom*> atoms = rb->getAtoms();
518 >        set<int> rigidAtoms;
519          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
520            rigidAtoms.insert(atoms[i]->getGlobalIndex());
521          }
522          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
523 <          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
523 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
524          }      
525        } else {
526 <        std::set<int> oneAtomSet;
526 >        set<int> oneAtomSet;
527          oneAtomSet.insert(integrableObject->getGlobalIndex());
528 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
528 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
529        }
530      }  
531  
# Line 653 | Line 628 | namespace OpenMD {
628  
629      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
630           rb = mol->nextRigidBody(rbIter)) {
631 <      std::vector<Atom*> atoms = rb->getAtoms();
631 >      vector<Atom*> atoms = rb->getAtoms();
632        for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
633          for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
634            a = atoms[i]->getGlobalIndex();
# Line 676 | Line 651 | namespace OpenMD {
651      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
652    }
653  
679  void SimInfo::update() {
680
681    setupSimType();
682
683 #ifdef IS_MPI
684    setupFortranParallel();
685 #endif
654  
655 <    setupFortranSim();
656 <
657 <    //setup fortran force field
658 <    /** @deprecate */    
659 <    int isError = 0;
660 <    
661 <    setupCutoff();
662 <    
663 <    setupElectrostaticSummationMethod( isError );
696 <    setupSwitchingFunction();
697 <    setupAccumulateBoxDipole();
698 <
699 <    if(isError){
700 <      sprintf( painCave.errMsg,
701 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
702 <      painCave.isFatal = 1;
703 <      simError();
704 <    }
705 <
655 >  /**
656 >   * update
657 >   *
658 >   *  Performs the global checks and variable settings after the
659 >   *  objects have been created.
660 >   *
661 >   */
662 >  void SimInfo::update() {  
663 >    setupSimVariables();
664      calcNdf();
665      calcNdfRaw();
666      calcNdfTrans();
709
710    fortranInitialized_ = true;
667    }
668 <
669 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
668 >  
669 >  /**
670 >   * getSimulatedAtomTypes
671 >   *
672 >   * Returns an STL set of AtomType* that are actually present in this
673 >   * simulation.  Must query all processors to assemble this information.
674 >   *
675 >   */
676 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
677      SimInfo::MoleculeIterator mi;
678      Molecule* mol;
679      Molecule::AtomIterator ai;
680      Atom* atom;
681 <    std::set<AtomType*> atomTypes;
682 <
683 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
721 <
681 >    set<AtomType*> atomTypes;
682 >    
683 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
684        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
685          atomTypes.insert(atom->getAtomType());
686 <      }
687 <        
726 <    }
686 >      }      
687 >    }    
688  
689 <    return atomTypes;        
729 <  }
689 > #ifdef IS_MPI
690  
691 <  void SimInfo::setupSimType() {
692 <    std::set<AtomType*>::iterator i;
733 <    std::set<AtomType*> atomTypes;
734 <    atomTypes = getUniqueAtomTypes();
735 <    
736 <    int useLennardJones = 0;
737 <    int useElectrostatic = 0;
738 <    int useEAM = 0;
739 <    int useSC = 0;
740 <    int useCharge = 0;
741 <    int useDirectional = 0;
742 <    int useDipole = 0;
743 <    int useGayBerne = 0;
744 <    int useSticky = 0;
745 <    int useStickyPower = 0;
746 <    int useShape = 0;
747 <    int useFLARB = 0; //it is not in AtomType yet
748 <    int useDirectionalAtom = 0;    
749 <    int useElectrostatics = 0;
750 <    //usePBC and useRF are from simParams
751 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
752 <    int useRF;
753 <    int useSF;
754 <    int useSP;
755 <    int useBoxDipole;
691 >    // loop over the found atom types on this processor, and add their
692 >    // numerical idents to a vector:
693  
694 <    std::string myMethod;
694 >    vector<int> foundTypes;
695 >    set<AtomType*>::iterator i;
696 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
697 >      foundTypes.push_back( (*i)->getIdent() );
698  
699 <    // set the useRF logical
700 <    useRF = 0;
761 <    useSF = 0;
762 <    useSP = 0;
763 <    useBoxDipole = 0;
699 >    // count_local holds the number of found types on this processor
700 >    int count_local = foundTypes.size();
701  
702 +    // count holds the total number of found types on all processors
703 +    // (some will be redundant with the ones found locally):
704 +    int count;
705 +    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
706  
707 <    if (simParams_->haveElectrostaticSummationMethod()) {
708 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
709 <      toUpper(myMethod);
710 <      if (myMethod == "REACTION_FIELD"){
711 <        useRF = 1;
712 <      } else if (myMethod == "SHIFTED_FORCE"){
713 <        useSF = 1;
714 <      } else if (myMethod == "SHIFTED_POTENTIAL"){
715 <        useSP = 1;
716 <      }
717 <    }
707 >    // create a vector to hold the globally found types, and resize it:
708 >    vector<int> ftGlobal;
709 >    ftGlobal.resize(count);
710 >    vector<int> counts;
711 >
712 >    int nproc = MPI::COMM_WORLD.Get_size();
713 >    counts.resize(nproc);
714 >    vector<int> disps;
715 >    disps.resize(nproc);
716 >
717 >    // now spray out the foundTypes to all the other processors:
718      
719 <    if (simParams_->haveAccumulateBoxDipole())
720 <      if (simParams_->getAccumulateBoxDipole())
780 <        useBoxDipole = 1;
719 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
720 >                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
721  
722 +    // foundIdents is a stl set, so inserting an already found ident
723 +    // will have no effect.
724 +    set<int> foundIdents;
725 +    vector<int>::iterator j;
726 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
727 +      foundIdents.insert((*j));
728 +    
729 +    // now iterate over the foundIdents and get the actual atom types
730 +    // that correspond to these:
731 +    set<int>::iterator it;
732 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
733 +      atomTypes.insert( forceField_->getAtomType((*it)) );
734 +
735 + #endif
736 +    
737 +    return atomTypes;        
738 +  }
739 +
740 +  void SimInfo::setupSimVariables() {
741      useAtomicVirial_ = simParams_->getUseAtomicVirial();
742 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
743 +    calcBoxDipole_ = false;
744 +    if ( simParams_->haveAccumulateBoxDipole() )
745 +      if ( simParams_->getAccumulateBoxDipole() ) {
746 +        calcBoxDipole_ = true;      
747 +      }
748  
749 +    set<AtomType*>::iterator i;
750 +    set<AtomType*> atomTypes;
751 +    atomTypes = getSimulatedAtomTypes();    
752 +    int usesElectrostatic = 0;
753 +    int usesMetallic = 0;
754 +    int usesDirectional = 0;
755      //loop over all of the atom types
756      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
757 <      useLennardJones |= (*i)->isLennardJones();
758 <      useElectrostatic |= (*i)->isElectrostatic();
759 <      useEAM |= (*i)->isEAM();
789 <      useSC |= (*i)->isSC();
790 <      useCharge |= (*i)->isCharge();
791 <      useDirectional |= (*i)->isDirectional();
792 <      useDipole |= (*i)->isDipole();
793 <      useGayBerne |= (*i)->isGayBerne();
794 <      useSticky |= (*i)->isSticky();
795 <      useStickyPower |= (*i)->isStickyPower();
796 <      useShape |= (*i)->isShape();
757 >      usesElectrostatic |= (*i)->isElectrostatic();
758 >      usesMetallic |= (*i)->isMetal();
759 >      usesDirectional |= (*i)->isDirectional();
760      }
761  
799    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
800      useDirectionalAtom = 1;
801    }
802
803    if (useCharge || useDipole) {
804      useElectrostatics = 1;
805    }
806
762   #ifdef IS_MPI    
763      int temp;
764 +    temp = usesDirectional;
765 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
766  
767 <    temp = usePBC;
768 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
767 >    temp = usesMetallic;
768 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
769  
770 <    temp = useDirectionalAtom;
771 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
770 >    temp = usesElectrostatic;
771 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
772 > #endif
773 >  }
774  
816    temp = useLennardJones;
817    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
775  
776 <    temp = useElectrostatics;
777 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
776 >  vector<int> SimInfo::getGlobalAtomIndices() {
777 >    SimInfo::MoleculeIterator mi;
778 >    Molecule* mol;
779 >    Molecule::AtomIterator ai;
780 >    Atom* atom;
781  
782 <    temp = useCharge;
823 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
824 <
825 <    temp = useDipole;
826 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
827 <
828 <    temp = useSticky;
829 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
830 <
831 <    temp = useStickyPower;
832 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
782 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
783      
784 <    temp = useGayBerne;
785 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
784 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
785 >      
786 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
787 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
788 >      }
789 >    }
790 >    return GlobalAtomIndices;
791 >  }
792  
837    temp = useEAM;
838    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
793  
794 <    temp = useSC;
795 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
796 <    
797 <    temp = useShape;
798 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
794 >  vector<int> SimInfo::getGlobalGroupIndices() {
795 >    SimInfo::MoleculeIterator mi;
796 >    Molecule* mol;
797 >    Molecule::CutoffGroupIterator ci;
798 >    CutoffGroup* cg;
799  
800 <    temp = useFLARB;
801 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
802 <
803 <    temp = useRF;
804 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
805 <
806 <    temp = useSF;
807 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
808 <
809 <    temp = useSP;
810 <    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
811 <
858 <    temp = useBoxDipole;
859 <    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
860 <
861 <    temp = useAtomicVirial_;
862 <    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
863 <
864 < #endif
865 <
866 <    fInfo_.SIM_uses_PBC = usePBC;    
867 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
868 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
869 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
870 <    fInfo_.SIM_uses_Charges = useCharge;
871 <    fInfo_.SIM_uses_Dipoles = useDipole;
872 <    fInfo_.SIM_uses_Sticky = useSticky;
873 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
874 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
875 <    fInfo_.SIM_uses_EAM = useEAM;
876 <    fInfo_.SIM_uses_SC = useSC;
877 <    fInfo_.SIM_uses_Shapes = useShape;
878 <    fInfo_.SIM_uses_FLARB = useFLARB;
879 <    fInfo_.SIM_uses_RF = useRF;
880 <    fInfo_.SIM_uses_SF = useSF;
881 <    fInfo_.SIM_uses_SP = useSP;
882 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
883 <    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
800 >    vector<int> GlobalGroupIndices;
801 >    
802 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
803 >      
804 >      //local index of cutoff group is trivial, it only depends on the
805 >      //order of travesing
806 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
807 >           cg = mol->nextCutoffGroup(ci)) {
808 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
809 >      }        
810 >    }
811 >    return GlobalGroupIndices;
812    }
813  
814 <  void SimInfo::setupFortranSim() {
814 >
815 >  void SimInfo::setupFortran() {
816      int isError;
817      int nExclude, nOneTwo, nOneThree, nOneFour;
818 <    std::vector<int> fortranGlobalGroupMembership;
818 >    vector<int> fortranGlobalGroupMembership;
819      
820      isError = 0;
821  
# Line 896 | Line 825 | namespace OpenMD {
825      }
826  
827      //calculate mass ratio of cutoff group
828 <    std::vector<RealType> mfact;
828 >    vector<RealType> mfact;
829      SimInfo::MoleculeIterator mi;
830      Molecule* mol;
831      Molecule::CutoffGroupIterator ci;
# Line 922 | Line 851 | namespace OpenMD {
851        }      
852      }
853  
854 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
926 <    std::vector<int> identArray;
854 >    // Build the identArray_
855  
856 <    //to avoid memory reallocation, reserve enough space identArray
857 <    identArray.reserve(getNAtoms());
930 <    
856 >    identArray_.clear();
857 >    identArray_.reserve(getNAtoms());    
858      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
859        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
860 <        identArray.push_back(atom->getIdent());
860 >        identArray_.push_back(atom->getIdent());
861        }
862      }    
863  
864      //fill molMembershipArray
865      //molMembershipArray is filled by SimCreator    
866 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
866 >    vector<int> molMembershipArray(nGlobalAtoms_);
867      for (int i = 0; i < nGlobalAtoms_; i++) {
868        molMembershipArray[i] = globalMolMembership_[i] + 1;
869      }
# Line 953 | Line 880 | namespace OpenMD {
880      int* oneThreeList = oneThreeInteractions_.getPairList();
881      int* oneFourList = oneFourInteractions_.getPairList();
882  
883 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
884 <                   &nExclude, excludeList,
885 <                   &nOneTwo, oneTwoList,
886 <                   &nOneThree, oneThreeList,
887 <                   &nOneFour, oneFourList,
888 <                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
889 <                   &fortranGlobalGroupMembership[0], &isError);
883 >    //setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0],
884 >    //               &nExclude, excludeList,
885 >    //               &nOneTwo, oneTwoList,
886 >    //               &nOneThree, oneThreeList,
887 >    //               &nOneFour, oneFourList,
888 >    //               &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
889 >    //               &fortranGlobalGroupMembership[0], &isError);
890      
891 <    if( isError ){
892 <      
893 <      sprintf( painCave.errMsg,
894 <               "There was an error setting the simulation information in fortran.\n" );
895 <      painCave.isFatal = 1;
896 <      painCave.severity = OPENMD_ERROR;
897 <      simError();
898 <    }
891 >    // if( isError ){
892 >    //  
893 >    //  sprintf( painCave.errMsg,
894 >    //         "There was an error setting the simulation information in fortran.\n" );
895 >    //  painCave.isFatal = 1;
896 >    //  painCave.severity = OPENMD_ERROR;
897 >    //  simError();
898 >    //}
899      
900      
901 <    sprintf( checkPointMsg,
902 <             "succesfully sent the simulation information to fortran.\n");
901 >    // sprintf( checkPointMsg,
902 >    //          "succesfully sent the simulation information to fortran.\n");
903      
904 <    errorCheckPoint();
904 >    // errorCheckPoint();
905      
906      // Setup number of neighbors in neighbor list if present
907 <    if (simParams_->haveNeighborListNeighbors()) {
908 <      int nlistNeighbors = simParams_->getNeighborListNeighbors();
909 <      setNeighbors(&nlistNeighbors);
910 <    }
907 >    //if (simParams_->haveNeighborListNeighbors()) {
908 >    //  int nlistNeighbors = simParams_->getNeighborListNeighbors();
909 >    //  setNeighbors(&nlistNeighbors);
910 >    //}
911    
985
986  }
987
988
989  void SimInfo::setupFortranParallel() {
912   #ifdef IS_MPI    
913 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
992 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
993 <    std::vector<int> localToGlobalCutoffGroupIndex;
994 <    SimInfo::MoleculeIterator mi;
995 <    Molecule::AtomIterator ai;
996 <    Molecule::CutoffGroupIterator ci;
997 <    Molecule* mol;
998 <    Atom* atom;
999 <    CutoffGroup* cg;
1000 <    mpiSimData parallelData;
1001 <    int isError;
913 >    // mpiSimData parallelData;
914  
1003    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
1004
1005      //local index(index in DataStorge) of atom is important
1006      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1007        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1008      }
1009
1010      //local index of cutoff group is trivial, it only depends on the order of travesing
1011      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1012        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1013      }        
1014        
1015    }
1016
915      //fill up mpiSimData struct
916 <    parallelData.nMolGlobal = getNGlobalMolecules();
917 <    parallelData.nMolLocal = getNMolecules();
918 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
919 <    parallelData.nAtomsLocal = getNAtoms();
920 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
921 <    parallelData.nGroupsLocal = getNCutoffGroups();
922 <    parallelData.myNode = worldRank;
923 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
916 >    // parallelData.nMolGlobal = getNGlobalMolecules();
917 >    // parallelData.nMolLocal = getNMolecules();
918 >    // parallelData.nAtomsGlobal = getNGlobalAtoms();
919 >    // parallelData.nAtomsLocal = getNAtoms();
920 >    // parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
921 >    // parallelData.nGroupsLocal = getNCutoffGroups();
922 >    // parallelData.myNode = worldRank;
923 >    // MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
924  
925      //pass mpiSimData struct and index arrays to fortran
926 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
927 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
928 <                    &localToGlobalCutoffGroupIndex[0], &isError);
926 >    //setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
927 >    //                &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
928 >    //                &localToGlobalCutoffGroupIndex[0], &isError);
929  
930 <    if (isError) {
931 <      sprintf(painCave.errMsg,
932 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
933 <      painCave.isFatal = 1;
934 <      simError();
935 <    }
930 >    // if (isError) {
931 >    //   sprintf(painCave.errMsg,
932 >    //           "mpiRefresh errror: fortran didn't like something we gave it.\n");
933 >    //   painCave.isFatal = 1;
934 >    //   simError();
935 >    // }
936  
937 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
938 <    errorCheckPoint();
1041 <
937 >    // sprintf(checkPointMsg, " mpiRefresh successful.\n");
938 >    // errorCheckPoint();
939   #endif
1043  }
940  
941 <  void SimInfo::setupCutoff() {          
942 <    
943 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
944 <
945 <    // Check the cutoff policy
946 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
947 <
948 <    // Set LJ shifting bools to false
1053 <    ljsp_ = 0;
1054 <    ljsf_ = 0;
1055 <
1056 <    std::string myPolicy;
1057 <    if (forceFieldOptions_.haveCutoffPolicy()){
1058 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
1059 <    }else if (simParams_->haveCutoffPolicy()) {
1060 <      myPolicy = simParams_->getCutoffPolicy();
1061 <    }
1062 <
1063 <    if (!myPolicy.empty()){
1064 <      toUpper(myPolicy);
1065 <      if (myPolicy == "MIX") {
1066 <        cp = MIX_CUTOFF_POLICY;
1067 <      } else {
1068 <        if (myPolicy == "MAX") {
1069 <          cp = MAX_CUTOFF_POLICY;
1070 <        } else {
1071 <          if (myPolicy == "TRADITIONAL") {            
1072 <            cp = TRADITIONAL_CUTOFF_POLICY;
1073 <          } else {
1074 <            // throw error        
1075 <            sprintf( painCave.errMsg,
1076 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1077 <            painCave.isFatal = 1;
1078 <            simError();
1079 <          }    
1080 <        }          
1081 <      }
1082 <    }          
1083 <    notifyFortranCutoffPolicy(&cp);
1084 <
1085 <    // Check the Skin Thickness for neighborlists
1086 <    RealType skin;
1087 <    if (simParams_->haveSkinThickness()) {
1088 <      skin = simParams_->getSkinThickness();
1089 <      notifyFortranSkinThickness(&skin);
1090 <    }            
1091 <        
1092 <    // Check if the cutoff was set explicitly:
1093 <    if (simParams_->haveCutoffRadius()) {
1094 <      rcut_ = simParams_->getCutoffRadius();
1095 <      if (simParams_->haveSwitchingRadius()) {
1096 <        rsw_  = simParams_->getSwitchingRadius();
1097 <      } else {
1098 <        if (fInfo_.SIM_uses_Charges |
1099 <            fInfo_.SIM_uses_Dipoles |
1100 <            fInfo_.SIM_uses_RF) {
1101 <          
1102 <          rsw_ = 0.85 * rcut_;
1103 <          sprintf(painCave.errMsg,
1104 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1105 <                  "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
1106 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1107 <        painCave.isFatal = 0;
1108 <        simError();
1109 <        } else {
1110 <          rsw_ = rcut_;
1111 <          sprintf(painCave.errMsg,
1112 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1113 <                  "\tOpenMD will use the same value as the cutoffRadius.\n"
1114 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1115 <          painCave.isFatal = 0;
1116 <          simError();
1117 <        }
1118 <      }
1119 <
1120 <      if (simParams_->haveElectrostaticSummationMethod()) {
1121 <        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1122 <        toUpper(myMethod);
1123 <        
1124 <        if (myMethod == "SHIFTED_POTENTIAL") {
1125 <          ljsp_ = 1;
1126 <        } else if (myMethod == "SHIFTED_FORCE") {
1127 <          ljsf_ = 1;
1128 <        }
1129 <      }
1130 <
1131 <      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1132 <      
1133 <    } else {
1134 <      
1135 <      // For electrostatic atoms, we'll assume a large safe value:
1136 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1137 <        sprintf(painCave.errMsg,
1138 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1139 <                "\tOpenMD will use a default value of 15.0 angstroms"
1140 <                "\tfor the cutoffRadius.\n");
1141 <        painCave.isFatal = 0;
1142 <        simError();
1143 <        rcut_ = 15.0;
1144 <      
1145 <        if (simParams_->haveElectrostaticSummationMethod()) {
1146 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1147 <          toUpper(myMethod);
1148 <          
1149 <          // For the time being, we're tethering the LJ shifted behavior to the
1150 <          // electrostaticSummationMethod keyword options
1151 <          if (myMethod == "SHIFTED_POTENTIAL") {
1152 <            ljsp_ = 1;
1153 <          } else if (myMethod == "SHIFTED_FORCE") {
1154 <            ljsf_ = 1;
1155 <          }
1156 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1157 <            if (simParams_->haveSwitchingRadius()){
1158 <              sprintf(painCave.errMsg,
1159 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1160 <                      "\teven though the electrostaticSummationMethod was\n"
1161 <                      "\tset to %s\n", myMethod.c_str());
1162 <              painCave.isFatal = 1;
1163 <              simError();            
1164 <            }
1165 <          }
1166 <        }
1167 <      
1168 <        if (simParams_->haveSwitchingRadius()){
1169 <          rsw_ = simParams_->getSwitchingRadius();
1170 <        } else {        
1171 <          sprintf(painCave.errMsg,
1172 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1173 <                  "\tOpenMD will use a default value of\n"
1174 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1175 <          painCave.isFatal = 0;
1176 <          simError();
1177 <          rsw_ = 0.85 * rcut_;
1178 <        }
1179 <
1180 <        Electrostatic::setElectrostaticCutoffRadius(rcut_, rsw_);
1181 <        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1182 <
1183 <      } else {
1184 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1185 <        // We'll punt and let fortran figure out the cutoffs later.
1186 <        
1187 <        notifyFortranYouAreOnYourOwn();
1188 <
1189 <      }
1190 <    }
1191 <  }
1192 <
1193 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1194 <    
1195 <    int errorOut;
1196 <    ElectrostaticSummationMethod esm = NONE;
1197 <    ElectrostaticScreeningMethod sm = UNDAMPED;
1198 <    RealType alphaVal;
1199 <    RealType dielectric;
1200 <    
1201 <    errorOut = isError;
1202 <
1203 <    if (simParams_->haveElectrostaticSummationMethod()) {
1204 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1205 <      toUpper(myMethod);
1206 <      if (myMethod == "NONE") {
1207 <        esm = NONE;
1208 <      } else {
1209 <        if (myMethod == "SWITCHING_FUNCTION") {
1210 <          esm = SWITCHING_FUNCTION;
1211 <        } else {
1212 <          if (myMethod == "SHIFTED_POTENTIAL") {
1213 <            esm = SHIFTED_POTENTIAL;
1214 <          } else {
1215 <            if (myMethod == "SHIFTED_FORCE") {            
1216 <              esm = SHIFTED_FORCE;
1217 <            } else {
1218 <              if (myMethod == "REACTION_FIELD") {
1219 <                esm = REACTION_FIELD;
1220 <                dielectric = simParams_->getDielectric();
1221 <                if (!simParams_->haveDielectric()) {
1222 <                  // throw warning
1223 <                  sprintf( painCave.errMsg,
1224 <                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1225 <                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1226 <                  painCave.isFatal = 0;
1227 <                  simError();
1228 <                }
1229 <              } else {
1230 <                // throw error        
1231 <                sprintf( painCave.errMsg,
1232 <                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1233 <                         "\t(Input file specified %s .)\n"
1234 <                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1235 <                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1236 <                         "\t\"reaction_field\".\n", myMethod.c_str() );
1237 <                painCave.isFatal = 1;
1238 <                simError();
1239 <              }    
1240 <            }          
1241 <          }
1242 <        }
1243 <      }
1244 <    }
1245 <    
1246 <    if (simParams_->haveElectrostaticScreeningMethod()) {
1247 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1248 <      toUpper(myScreen);
1249 <      if (myScreen == "UNDAMPED") {
1250 <        sm = UNDAMPED;
1251 <      } else {
1252 <        if (myScreen == "DAMPED") {
1253 <          sm = DAMPED;
1254 <          if (!simParams_->haveDampingAlpha()) {
1255 <            // first set a cutoff dependent alpha value
1256 <            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1257 <            alphaVal = 0.5125 - rcut_* 0.025;
1258 <            // for values rcut > 20.5, alpha is zero
1259 <            if (alphaVal < 0) alphaVal = 0;
1260 <
1261 <            // throw warning
1262 <            sprintf( painCave.errMsg,
1263 <                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1264 <                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1265 <            painCave.isFatal = 0;
1266 <            simError();
1267 <          } else {
1268 <            alphaVal = simParams_->getDampingAlpha();
1269 <          }
1270 <          
1271 <        } else {
1272 <          // throw error        
1273 <          sprintf( painCave.errMsg,
1274 <                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1275 <                   "\t(Input file specified %s .)\n"
1276 <                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1277 <                   "or \"damped\".\n", myScreen.c_str() );
1278 <          painCave.isFatal = 1;
1279 <          simError();
1280 <        }
1281 <      }
1282 <    }
1283 <    
1284 <
1285 <    Electrostatic::setElectrostaticSummationMethod( esm );
1286 <    Electrostatic::setElectrostaticScreeningMethod( sm );
1287 <    Electrostatic::setDampingAlpha( alphaVal );
1288 <    Electrostatic::setReactionFieldDielectric( dielectric );
1289 <    initFortranFF( &errorOut );
1290 <  }
1291 <
1292 <  void SimInfo::setupSwitchingFunction() {    
1293 <    int ft = CUBIC;
1294 <
1295 <    if (simParams_->haveSwitchingFunctionType()) {
1296 <      std::string funcType = simParams_->getSwitchingFunctionType();
1297 <      toUpper(funcType);
1298 <      if (funcType == "CUBIC") {
1299 <        ft = CUBIC;
1300 <      } else {
1301 <        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1302 <          ft = FIFTH_ORDER_POLY;
1303 <        } else {
1304 <          // throw error        
1305 <          sprintf( painCave.errMsg,
1306 <                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1307 <          painCave.isFatal = 1;
1308 <          simError();
1309 <        }          
1310 <      }
1311 <    }
1312 <
1313 <    // send switching function notification to switcheroo
1314 <    setFunctionType(&ft);
1315 <
941 >    // initFortranFF(&isError);
942 >    // if (isError) {
943 >    //   sprintf(painCave.errMsg,
944 >    //           "initFortranFF errror: fortran didn't like something we gave it.\n");
945 >    //   painCave.isFatal = 1;
946 >    //   simError();
947 >    // }
948 >    // fortranInitialized_ = true;
949    }
950  
1318  void SimInfo::setupAccumulateBoxDipole() {    
1319
1320    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1321    if ( simParams_->haveAccumulateBoxDipole() )
1322      if ( simParams_->getAccumulateBoxDipole() ) {
1323        setAccumulateBoxDipole();
1324        calcBoxDipole_ = true;
1325      }
1326
1327  }
1328
951    void SimInfo::addProperty(GenericData* genData) {
952      properties_.addProperty(genData);  
953    }
954  
955 <  void SimInfo::removeProperty(const std::string& propName) {
955 >  void SimInfo::removeProperty(const string& propName) {
956      properties_.removeProperty(propName);  
957    }
958  
# Line 1338 | Line 960 | namespace OpenMD {
960      properties_.clearProperties();
961    }
962  
963 <  std::vector<std::string> SimInfo::getPropertyNames() {
963 >  vector<string> SimInfo::getPropertyNames() {
964      return properties_.getPropertyNames();  
965    }
966        
967 <  std::vector<GenericData*> SimInfo::getProperties() {
967 >  vector<GenericData*> SimInfo::getProperties() {
968      return properties_.getProperties();
969    }
970  
971 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
971 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
972      return properties_.getPropertyByName(propName);
973    }
974  
# Line 1360 | Line 982 | namespace OpenMD {
982      Molecule* mol;
983      RigidBody* rb;
984      Atom* atom;
985 +    CutoffGroup* cg;
986      SimInfo::MoleculeIterator mi;
987      Molecule::RigidBodyIterator rbIter;
988 <    Molecule::AtomIterator atomIter;;
988 >    Molecule::AtomIterator atomIter;
989 >    Molecule::CutoffGroupIterator cgIter;
990  
991      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
992          
# Line 1373 | Line 997 | namespace OpenMD {
997        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
998          rb->setSnapshotManager(sman_);
999        }
1000 +
1001 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
1002 +        cg->setSnapshotManager(sman_);
1003 +      }
1004      }    
1005      
1006    }
# Line 1429 | Line 1057 | namespace OpenMD {
1057  
1058    }        
1059  
1060 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1060 >  ostream& operator <<(ostream& o, SimInfo& info) {
1061  
1062      return o;
1063    }
# Line 1472 | Line 1100 | namespace OpenMD {
1100  
1101  
1102         [  Ixx -Ixy  -Ixz ]
1103 <  J =| -Iyx  Iyy  -Iyz |
1103 >    J =| -Iyx  Iyy  -Iyz |
1104         [ -Izx -Iyz   Izz ]
1105      */
1106  
# Line 1579 | Line 1207 | namespace OpenMD {
1207      return IOIndexToIntegrableObject.at(index);
1208    }
1209    
1210 <  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1210 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1211      IOIndexToIntegrableObject= v;
1212    }
1213  
# Line 1621 | Line 1249 | namespace OpenMD {
1249      return;
1250    }
1251   /*
1252 <   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1252 >   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1253        assert( v.size() == nAtoms_ + nRigidBodies_);
1254        sdByGlobalIndex_ = v;
1255      }
# Line 1631 | Line 1259 | namespace OpenMD {
1259        return sdByGlobalIndex_.at(index);
1260      }  
1261   */  
1262 +  int SimInfo::getNGlobalConstraints() {
1263 +    int nGlobalConstraints;
1264 + #ifdef IS_MPI
1265 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1266 +                  MPI_COMM_WORLD);    
1267 + #else
1268 +    nGlobalConstraints =  nConstraints_;
1269 + #endif
1270 +    return nGlobalConstraints;
1271 +  }
1272 +
1273   }//end namespace OpenMD
1274  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines