54 |
|
#include "math/Vector3.hpp" |
55 |
|
#include "primitives/Molecule.hpp" |
56 |
|
#include "primitives/StuntDouble.hpp" |
57 |
– |
#include "UseTheForce/fCutoffPolicy.h" |
58 |
– |
#include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" |
59 |
– |
#include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h" |
60 |
– |
#include "UseTheForce/DarkSide/fSwitchingFunctionType.h" |
61 |
– |
#include "UseTheForce/doForces_interface.h" |
57 |
|
#include "UseTheForce/DarkSide/neighborLists_interface.h" |
58 |
< |
#include "UseTheForce/DarkSide/electrostatic_interface.h" |
64 |
< |
#include "UseTheForce/DarkSide/switcheroo_interface.h" |
58 |
> |
#include "UseTheForce/doForces_interface.h" |
59 |
|
#include "utils/MemoryUtils.hpp" |
60 |
|
#include "utils/simError.h" |
61 |
|
#include "selection/SelectionManager.hpp" |
62 |
|
#include "io/ForceFieldOptions.hpp" |
63 |
|
#include "UseTheForce/ForceField.hpp" |
64 |
+ |
#include "nonbonded/SwitchingFunction.hpp" |
65 |
|
|
71 |
– |
|
66 |
|
#ifdef IS_MPI |
67 |
|
#include "UseTheForce/mpiComponentPlan.h" |
68 |
|
#include "UseTheForce/DarkSide/simParallel_interface.h" |
69 |
|
#endif |
70 |
|
|
71 |
+ |
using namespace std; |
72 |
|
namespace OpenMD { |
78 |
– |
std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) { |
79 |
– |
std::map<int, std::set<int> >::iterator i = container.find(index); |
80 |
– |
std::set<int> result; |
81 |
– |
if (i != container.end()) { |
82 |
– |
result = i->second; |
83 |
– |
} |
84 |
– |
|
85 |
– |
return result; |
86 |
– |
} |
73 |
|
|
74 |
|
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
75 |
|
forceField_(ff), simParams_(simParams), |
79 |
|
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
80 |
|
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
81 |
|
nConstraints_(0), sman_(NULL), fortranInitialized_(false), |
82 |
< |
calcBoxDipole_(false), useAtomicVirial_(true) { |
83 |
< |
|
84 |
< |
|
85 |
< |
MoleculeStamp* molStamp; |
86 |
< |
int nMolWithSameStamp; |
87 |
< |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
88 |
< |
int nGroups = 0; //total cutoff groups defined in meta-data file |
89 |
< |
CutoffGroupStamp* cgStamp; |
90 |
< |
RigidBodyStamp* rbStamp; |
91 |
< |
int nRigidAtoms = 0; |
92 |
< |
|
93 |
< |
std::vector<Component*> components = simParams->getComponents(); |
82 |
> |
calcBoxDipole_(false), useAtomicVirial_(true) { |
83 |
> |
|
84 |
> |
MoleculeStamp* molStamp; |
85 |
> |
int nMolWithSameStamp; |
86 |
> |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
87 |
> |
int nGroups = 0; //total cutoff groups defined in meta-data file |
88 |
> |
CutoffGroupStamp* cgStamp; |
89 |
> |
RigidBodyStamp* rbStamp; |
90 |
> |
int nRigidAtoms = 0; |
91 |
> |
|
92 |
> |
vector<Component*> components = simParams->getComponents(); |
93 |
> |
|
94 |
> |
for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
95 |
> |
molStamp = (*i)->getMoleculeStamp(); |
96 |
> |
nMolWithSameStamp = (*i)->getNMol(); |
97 |
|
|
98 |
< |
for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
99 |
< |
molStamp = (*i)->getMoleculeStamp(); |
100 |
< |
nMolWithSameStamp = (*i)->getNMol(); |
101 |
< |
|
102 |
< |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
103 |
< |
|
104 |
< |
//calculate atoms in molecules |
105 |
< |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
106 |
< |
|
107 |
< |
//calculate atoms in cutoff groups |
108 |
< |
int nAtomsInGroups = 0; |
109 |
< |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
121 |
< |
|
122 |
< |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
123 |
< |
cgStamp = molStamp->getCutoffGroupStamp(j); |
124 |
< |
nAtomsInGroups += cgStamp->getNMembers(); |
125 |
< |
} |
126 |
< |
|
127 |
< |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
128 |
< |
|
129 |
< |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
130 |
< |
|
131 |
< |
//calculate atoms in rigid bodies |
132 |
< |
int nAtomsInRigidBodies = 0; |
133 |
< |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
134 |
< |
|
135 |
< |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
136 |
< |
rbStamp = molStamp->getRigidBodyStamp(j); |
137 |
< |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
138 |
< |
} |
139 |
< |
|
140 |
< |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
141 |
< |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
142 |
< |
|
98 |
> |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
99 |
> |
|
100 |
> |
//calculate atoms in molecules |
101 |
> |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
102 |
> |
|
103 |
> |
//calculate atoms in cutoff groups |
104 |
> |
int nAtomsInGroups = 0; |
105 |
> |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
106 |
> |
|
107 |
> |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
108 |
> |
cgStamp = molStamp->getCutoffGroupStamp(j); |
109 |
> |
nAtomsInGroups += cgStamp->getNMembers(); |
110 |
|
} |
111 |
< |
|
112 |
< |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
113 |
< |
//group therefore the total number of cutoff groups in the system is |
114 |
< |
//equal to the total number of atoms minus number of atoms belong to |
115 |
< |
//cutoff group defined in meta-data file plus the number of cutoff |
116 |
< |
//groups defined in meta-data file |
117 |
< |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
118 |
< |
|
119 |
< |
//every free atom (atom does not belong to rigid bodies) is an |
120 |
< |
//integrable object therefore the total number of integrable objects |
121 |
< |
//in the system is equal to the total number of atoms minus number of |
122 |
< |
//atoms belong to rigid body defined in meta-data file plus the number |
123 |
< |
//of rigid bodies defined in meta-data file |
124 |
< |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
125 |
< |
+ nGlobalRigidBodies_; |
126 |
< |
|
127 |
< |
nGlobalMols_ = molStampIds_.size(); |
128 |
< |
molToProcMap_.resize(nGlobalMols_); |
129 |
< |
} |
130 |
< |
|
111 |
> |
|
112 |
> |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
113 |
> |
|
114 |
> |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
115 |
> |
|
116 |
> |
//calculate atoms in rigid bodies |
117 |
> |
int nAtomsInRigidBodies = 0; |
118 |
> |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
119 |
> |
|
120 |
> |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
121 |
> |
rbStamp = molStamp->getRigidBodyStamp(j); |
122 |
> |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
123 |
> |
} |
124 |
> |
|
125 |
> |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
126 |
> |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
127 |
> |
|
128 |
> |
} |
129 |
> |
|
130 |
> |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
131 |
> |
//group therefore the total number of cutoff groups in the system is |
132 |
> |
//equal to the total number of atoms minus number of atoms belong to |
133 |
> |
//cutoff group defined in meta-data file plus the number of cutoff |
134 |
> |
//groups defined in meta-data file |
135 |
> |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
136 |
> |
|
137 |
> |
//every free atom (atom does not belong to rigid bodies) is an |
138 |
> |
//integrable object therefore the total number of integrable objects |
139 |
> |
//in the system is equal to the total number of atoms minus number of |
140 |
> |
//atoms belong to rigid body defined in meta-data file plus the number |
141 |
> |
//of rigid bodies defined in meta-data file |
142 |
> |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
143 |
> |
+ nGlobalRigidBodies_; |
144 |
> |
|
145 |
> |
nGlobalMols_ = molStampIds_.size(); |
146 |
> |
molToProcMap_.resize(nGlobalMols_); |
147 |
> |
} |
148 |
> |
|
149 |
|
SimInfo::~SimInfo() { |
150 |
< |
std::map<int, Molecule*>::iterator i; |
150 |
> |
map<int, Molecule*>::iterator i; |
151 |
|
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
152 |
|
delete i->second; |
153 |
|
} |
158 |
|
delete forceField_; |
159 |
|
} |
160 |
|
|
176 |
– |
int SimInfo::getNGlobalConstraints() { |
177 |
– |
int nGlobalConstraints; |
178 |
– |
#ifdef IS_MPI |
179 |
– |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
180 |
– |
MPI_COMM_WORLD); |
181 |
– |
#else |
182 |
– |
nGlobalConstraints = nConstraints_; |
183 |
– |
#endif |
184 |
– |
return nGlobalConstraints; |
185 |
– |
} |
161 |
|
|
162 |
|
bool SimInfo::addMolecule(Molecule* mol) { |
163 |
|
MoleculeIterator i; |
164 |
< |
|
164 |
> |
|
165 |
|
i = molecules_.find(mol->getGlobalIndex()); |
166 |
|
if (i == molecules_.end() ) { |
167 |
< |
|
168 |
< |
molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol)); |
169 |
< |
|
167 |
> |
|
168 |
> |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
169 |
> |
|
170 |
|
nAtoms_ += mol->getNAtoms(); |
171 |
|
nBonds_ += mol->getNBonds(); |
172 |
|
nBends_ += mol->getNBends(); |
176 |
|
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
177 |
|
nCutoffGroups_ += mol->getNCutoffGroups(); |
178 |
|
nConstraints_ += mol->getNConstraintPairs(); |
179 |
< |
|
179 |
> |
|
180 |
|
addInteractionPairs(mol); |
181 |
< |
|
181 |
> |
|
182 |
|
return true; |
183 |
|
} else { |
184 |
|
return false; |
185 |
|
} |
186 |
|
} |
187 |
< |
|
187 |
> |
|
188 |
|
bool SimInfo::removeMolecule(Molecule* mol) { |
189 |
|
MoleculeIterator i; |
190 |
|
i = molecules_.find(mol->getGlobalIndex()); |
212 |
|
} else { |
213 |
|
return false; |
214 |
|
} |
240 |
– |
|
241 |
– |
|
215 |
|
} |
216 |
|
|
217 |
|
|
229 |
|
void SimInfo::calcNdf() { |
230 |
|
int ndf_local; |
231 |
|
MoleculeIterator i; |
232 |
< |
std::vector<StuntDouble*>::iterator j; |
232 |
> |
vector<StuntDouble*>::iterator j; |
233 |
|
Molecule* mol; |
234 |
|
StuntDouble* integrableObject; |
235 |
|
|
280 |
|
int ndfRaw_local; |
281 |
|
|
282 |
|
MoleculeIterator i; |
283 |
< |
std::vector<StuntDouble*>::iterator j; |
283 |
> |
vector<StuntDouble*>::iterator j; |
284 |
|
Molecule* mol; |
285 |
|
StuntDouble* integrableObject; |
286 |
|
|
329 |
|
|
330 |
|
void SimInfo::addInteractionPairs(Molecule* mol) { |
331 |
|
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
332 |
< |
std::vector<Bond*>::iterator bondIter; |
333 |
< |
std::vector<Bend*>::iterator bendIter; |
334 |
< |
std::vector<Torsion*>::iterator torsionIter; |
335 |
< |
std::vector<Inversion*>::iterator inversionIter; |
332 |
> |
vector<Bond*>::iterator bondIter; |
333 |
> |
vector<Bend*>::iterator bendIter; |
334 |
> |
vector<Torsion*>::iterator torsionIter; |
335 |
> |
vector<Inversion*>::iterator inversionIter; |
336 |
|
Bond* bond; |
337 |
|
Bend* bend; |
338 |
|
Torsion* torsion; |
350 |
|
// always be excluded. These are done at the bottom of this |
351 |
|
// function. |
352 |
|
|
353 |
< |
std::map<int, std::set<int> > atomGroups; |
353 |
> |
map<int, set<int> > atomGroups; |
354 |
|
Molecule::RigidBodyIterator rbIter; |
355 |
|
RigidBody* rb; |
356 |
|
Molecule::IntegrableObjectIterator ii; |
362 |
|
|
363 |
|
if (integrableObject->isRigidBody()) { |
364 |
|
rb = static_cast<RigidBody*>(integrableObject); |
365 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
366 |
< |
std::set<int> rigidAtoms; |
365 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
366 |
> |
set<int> rigidAtoms; |
367 |
|
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
368 |
|
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
369 |
|
} |
370 |
|
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
371 |
< |
atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
371 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
372 |
|
} |
373 |
|
} else { |
374 |
< |
std::set<int> oneAtomSet; |
374 |
> |
set<int> oneAtomSet; |
375 |
|
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
376 |
< |
atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
376 |
> |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
377 |
|
} |
378 |
|
} |
379 |
|
|
476 |
|
|
477 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
478 |
|
rb = mol->nextRigidBody(rbIter)) { |
479 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
479 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
480 |
|
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
481 |
|
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
482 |
|
a = atoms[i]->getGlobalIndex(); |
490 |
|
|
491 |
|
void SimInfo::removeInteractionPairs(Molecule* mol) { |
492 |
|
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
493 |
< |
std::vector<Bond*>::iterator bondIter; |
494 |
< |
std::vector<Bend*>::iterator bendIter; |
495 |
< |
std::vector<Torsion*>::iterator torsionIter; |
496 |
< |
std::vector<Inversion*>::iterator inversionIter; |
493 |
> |
vector<Bond*>::iterator bondIter; |
494 |
> |
vector<Bend*>::iterator bendIter; |
495 |
> |
vector<Torsion*>::iterator torsionIter; |
496 |
> |
vector<Inversion*>::iterator inversionIter; |
497 |
|
Bond* bond; |
498 |
|
Bend* bend; |
499 |
|
Torsion* torsion; |
503 |
|
int c; |
504 |
|
int d; |
505 |
|
|
506 |
< |
std::map<int, std::set<int> > atomGroups; |
506 |
> |
map<int, set<int> > atomGroups; |
507 |
|
Molecule::RigidBodyIterator rbIter; |
508 |
|
RigidBody* rb; |
509 |
|
Molecule::IntegrableObjectIterator ii; |
515 |
|
|
516 |
|
if (integrableObject->isRigidBody()) { |
517 |
|
rb = static_cast<RigidBody*>(integrableObject); |
518 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
519 |
< |
std::set<int> rigidAtoms; |
518 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
519 |
> |
set<int> rigidAtoms; |
520 |
|
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
521 |
|
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
522 |
|
} |
523 |
|
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
524 |
< |
atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
524 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
525 |
|
} |
526 |
|
} else { |
527 |
< |
std::set<int> oneAtomSet; |
527 |
> |
set<int> oneAtomSet; |
528 |
|
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
529 |
< |
atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
529 |
> |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
530 |
|
} |
531 |
|
} |
532 |
|
|
629 |
|
|
630 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
631 |
|
rb = mol->nextRigidBody(rbIter)) { |
632 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
632 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
633 |
|
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
634 |
|
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
635 |
|
a = atoms[i]->getGlobalIndex(); |
652 |
|
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
653 |
|
} |
654 |
|
|
682 |
– |
void SimInfo::update() { |
655 |
|
|
656 |
< |
setupSimType(); |
657 |
< |
|
658 |
< |
#ifdef IS_MPI |
659 |
< |
setupFortranParallel(); |
660 |
< |
#endif |
661 |
< |
|
662 |
< |
setupFortranSim(); |
663 |
< |
|
664 |
< |
//setup fortran force field |
693 |
< |
/** @deprecate */ |
694 |
< |
int isError = 0; |
695 |
< |
|
696 |
< |
setupCutoff(); |
697 |
< |
|
698 |
< |
setupElectrostaticSummationMethod( isError ); |
699 |
< |
setupSwitchingFunction(); |
700 |
< |
setupAccumulateBoxDipole(); |
701 |
< |
|
702 |
< |
if(isError){ |
703 |
< |
sprintf( painCave.errMsg, |
704 |
< |
"ForceField error: There was an error initializing the forceField in fortran.\n" ); |
705 |
< |
painCave.isFatal = 1; |
706 |
< |
simError(); |
707 |
< |
} |
708 |
< |
|
656 |
> |
/** |
657 |
> |
* update |
658 |
> |
* |
659 |
> |
* Performs the global checks and variable settings after the |
660 |
> |
* objects have been created. |
661 |
> |
* |
662 |
> |
*/ |
663 |
> |
void SimInfo::update() { |
664 |
> |
setupSimVariables(); |
665 |
|
calcNdf(); |
666 |
|
calcNdfRaw(); |
667 |
|
calcNdfTrans(); |
712 |
– |
|
713 |
– |
fortranInitialized_ = true; |
668 |
|
} |
669 |
< |
|
670 |
< |
std::set<AtomType*> SimInfo::getUniqueAtomTypes() { |
669 |
> |
|
670 |
> |
/** |
671 |
> |
* getSimulatedAtomTypes |
672 |
> |
* |
673 |
> |
* Returns an STL set of AtomType* that are actually present in this |
674 |
> |
* simulation. Must query all processors to assemble this information. |
675 |
> |
* |
676 |
> |
*/ |
677 |
> |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
678 |
|
SimInfo::MoleculeIterator mi; |
679 |
|
Molecule* mol; |
680 |
|
Molecule::AtomIterator ai; |
681 |
|
Atom* atom; |
682 |
< |
std::set<AtomType*> atomTypes; |
683 |
< |
|
684 |
< |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
724 |
< |
|
682 |
> |
set<AtomType*> atomTypes; |
683 |
> |
|
684 |
> |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
685 |
|
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
686 |
|
atomTypes.insert(atom->getAtomType()); |
687 |
< |
} |
688 |
< |
|
729 |
< |
} |
687 |
> |
} |
688 |
> |
} |
689 |
|
|
690 |
< |
return atomTypes; |
732 |
< |
} |
690 |
> |
#ifdef IS_MPI |
691 |
|
|
692 |
< |
void SimInfo::setupSimType() { |
693 |
< |
std::set<AtomType*>::iterator i; |
736 |
< |
std::set<AtomType*> atomTypes; |
737 |
< |
atomTypes = getUniqueAtomTypes(); |
738 |
< |
|
739 |
< |
int useLennardJones = 0; |
740 |
< |
int useElectrostatic = 0; |
741 |
< |
int useEAM = 0; |
742 |
< |
int useSC = 0; |
743 |
< |
int useCharge = 0; |
744 |
< |
int useDirectional = 0; |
745 |
< |
int useDipole = 0; |
746 |
< |
int useGayBerne = 0; |
747 |
< |
int useSticky = 0; |
748 |
< |
int useStickyPower = 0; |
749 |
< |
int useShape = 0; |
750 |
< |
int useFLARB = 0; //it is not in AtomType yet |
751 |
< |
int useDirectionalAtom = 0; |
752 |
< |
int useElectrostatics = 0; |
753 |
< |
//usePBC and useRF are from simParams |
754 |
< |
int usePBC = simParams_->getUsePeriodicBoundaryConditions(); |
755 |
< |
int useRF; |
756 |
< |
int useSF; |
757 |
< |
int useSP; |
758 |
< |
int useBoxDipole; |
692 |
> |
// loop over the found atom types on this processor, and add their |
693 |
> |
// numerical idents to a vector: |
694 |
|
|
695 |
< |
std::string myMethod; |
695 |
> |
vector<int> foundTypes; |
696 |
> |
set<AtomType*>::iterator i; |
697 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
698 |
> |
foundTypes.push_back( (*i)->getIdent() ); |
699 |
|
|
700 |
< |
// set the useRF logical |
701 |
< |
useRF = 0; |
764 |
< |
useSF = 0; |
765 |
< |
useSP = 0; |
766 |
< |
useBoxDipole = 0; |
700 |
> |
// count_local holds the number of found types on this processor |
701 |
> |
int count_local = foundTypes.size(); |
702 |
|
|
703 |
+ |
// count holds the total number of found types on all processors |
704 |
+ |
// (some will be redundant with the ones found locally): |
705 |
+ |
int count; |
706 |
+ |
MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM); |
707 |
|
|
708 |
< |
if (simParams_->haveElectrostaticSummationMethod()) { |
709 |
< |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
710 |
< |
toUpper(myMethod); |
711 |
< |
if (myMethod == "REACTION_FIELD"){ |
712 |
< |
useRF = 1; |
713 |
< |
} else if (myMethod == "SHIFTED_FORCE"){ |
714 |
< |
useSF = 1; |
715 |
< |
} else if (myMethod == "SHIFTED_POTENTIAL"){ |
716 |
< |
useSP = 1; |
717 |
< |
} |
718 |
< |
} |
708 |
> |
// create a vector to hold the globally found types, and resize it: |
709 |
> |
vector<int> ftGlobal; |
710 |
> |
ftGlobal.resize(count); |
711 |
> |
vector<int> counts; |
712 |
> |
|
713 |
> |
int nproc = MPI::COMM_WORLD.Get_size(); |
714 |
> |
counts.resize(nproc); |
715 |
> |
vector<int> disps; |
716 |
> |
disps.resize(nproc); |
717 |
> |
|
718 |
> |
// now spray out the foundTypes to all the other processors: |
719 |
|
|
720 |
< |
if (simParams_->haveAccumulateBoxDipole()) |
721 |
< |
if (simParams_->getAccumulateBoxDipole()) |
783 |
< |
useBoxDipole = 1; |
720 |
> |
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
721 |
> |
&ftGlobal[0], &counts[0], &disps[0], MPI::INT); |
722 |
|
|
723 |
+ |
// foundIdents is a stl set, so inserting an already found ident |
724 |
+ |
// will have no effect. |
725 |
+ |
set<int> foundIdents; |
726 |
+ |
vector<int>::iterator j; |
727 |
+ |
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
728 |
+ |
foundIdents.insert((*j)); |
729 |
+ |
|
730 |
+ |
// now iterate over the foundIdents and get the actual atom types |
731 |
+ |
// that correspond to these: |
732 |
+ |
set<int>::iterator it; |
733 |
+ |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
734 |
+ |
atomTypes.insert( forceField_->getAtomType((*it)) ); |
735 |
+ |
|
736 |
+ |
#endif |
737 |
+ |
|
738 |
+ |
return atomTypes; |
739 |
+ |
} |
740 |
+ |
|
741 |
+ |
void SimInfo::setupSimVariables() { |
742 |
|
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
743 |
+ |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
744 |
+ |
calcBoxDipole_ = false; |
745 |
+ |
if ( simParams_->haveAccumulateBoxDipole() ) |
746 |
+ |
if ( simParams_->getAccumulateBoxDipole() ) { |
747 |
+ |
calcBoxDipole_ = true; |
748 |
+ |
} |
749 |
|
|
750 |
+ |
set<AtomType*>::iterator i; |
751 |
+ |
set<AtomType*> atomTypes; |
752 |
+ |
atomTypes = getSimulatedAtomTypes(); |
753 |
+ |
int usesElectrostatic = 0; |
754 |
+ |
int usesMetallic = 0; |
755 |
+ |
int usesDirectional = 0; |
756 |
|
//loop over all of the atom types |
757 |
|
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
758 |
< |
useLennardJones |= (*i)->isLennardJones(); |
759 |
< |
useElectrostatic |= (*i)->isElectrostatic(); |
760 |
< |
useEAM |= (*i)->isEAM(); |
792 |
< |
useSC |= (*i)->isSC(); |
793 |
< |
useCharge |= (*i)->isCharge(); |
794 |
< |
useDirectional |= (*i)->isDirectional(); |
795 |
< |
useDipole |= (*i)->isDipole(); |
796 |
< |
useGayBerne |= (*i)->isGayBerne(); |
797 |
< |
useSticky |= (*i)->isSticky(); |
798 |
< |
useStickyPower |= (*i)->isStickyPower(); |
799 |
< |
useShape |= (*i)->isShape(); |
758 |
> |
usesElectrostatic |= (*i)->isElectrostatic(); |
759 |
> |
usesMetallic |= (*i)->isMetal(); |
760 |
> |
usesDirectional |= (*i)->isDirectional(); |
761 |
|
} |
762 |
|
|
802 |
– |
if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) { |
803 |
– |
useDirectionalAtom = 1; |
804 |
– |
} |
805 |
– |
|
806 |
– |
if (useCharge || useDipole) { |
807 |
– |
useElectrostatics = 1; |
808 |
– |
} |
809 |
– |
|
763 |
|
#ifdef IS_MPI |
764 |
|
int temp; |
765 |
< |
|
766 |
< |
temp = usePBC; |
814 |
< |
MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
815 |
< |
|
816 |
< |
temp = useDirectionalAtom; |
817 |
< |
MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
818 |
< |
|
819 |
< |
temp = useLennardJones; |
820 |
< |
MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
821 |
< |
|
822 |
< |
temp = useElectrostatics; |
823 |
< |
MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
765 |
> |
temp = usesDirectional; |
766 |
> |
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
767 |
|
|
768 |
< |
temp = useCharge; |
769 |
< |
MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
768 |
> |
temp = usesMetallic; |
769 |
> |
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
770 |
|
|
771 |
< |
temp = useDipole; |
772 |
< |
MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
830 |
< |
|
831 |
< |
temp = useSticky; |
832 |
< |
MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
833 |
< |
|
834 |
< |
temp = useStickyPower; |
835 |
< |
MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
836 |
< |
|
837 |
< |
temp = useGayBerne; |
838 |
< |
MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
839 |
< |
|
840 |
< |
temp = useEAM; |
841 |
< |
MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
842 |
< |
|
843 |
< |
temp = useSC; |
844 |
< |
MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
845 |
< |
|
846 |
< |
temp = useShape; |
847 |
< |
MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
848 |
< |
|
849 |
< |
temp = useFLARB; |
850 |
< |
MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
851 |
< |
|
852 |
< |
temp = useRF; |
853 |
< |
MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
854 |
< |
|
855 |
< |
temp = useSF; |
856 |
< |
MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
857 |
< |
|
858 |
< |
temp = useSP; |
859 |
< |
MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
860 |
< |
|
861 |
< |
temp = useBoxDipole; |
862 |
< |
MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
863 |
< |
|
864 |
< |
temp = useAtomicVirial_; |
865 |
< |
MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
866 |
< |
|
771 |
> |
temp = usesElectrostatic; |
772 |
> |
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
773 |
|
#endif |
774 |
< |
|
775 |
< |
fInfo_.SIM_uses_PBC = usePBC; |
776 |
< |
fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom; |
777 |
< |
fInfo_.SIM_uses_LennardJones = useLennardJones; |
778 |
< |
fInfo_.SIM_uses_Electrostatics = useElectrostatics; |
779 |
< |
fInfo_.SIM_uses_Charges = useCharge; |
874 |
< |
fInfo_.SIM_uses_Dipoles = useDipole; |
875 |
< |
fInfo_.SIM_uses_Sticky = useSticky; |
876 |
< |
fInfo_.SIM_uses_StickyPower = useStickyPower; |
877 |
< |
fInfo_.SIM_uses_GayBerne = useGayBerne; |
878 |
< |
fInfo_.SIM_uses_EAM = useEAM; |
879 |
< |
fInfo_.SIM_uses_SC = useSC; |
880 |
< |
fInfo_.SIM_uses_Shapes = useShape; |
881 |
< |
fInfo_.SIM_uses_FLARB = useFLARB; |
882 |
< |
fInfo_.SIM_uses_RF = useRF; |
883 |
< |
fInfo_.SIM_uses_SF = useSF; |
884 |
< |
fInfo_.SIM_uses_SP = useSP; |
885 |
< |
fInfo_.SIM_uses_BoxDipole = useBoxDipole; |
886 |
< |
fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_; |
774 |
> |
fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_; |
775 |
> |
fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_; |
776 |
> |
fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_; |
777 |
> |
fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_; |
778 |
> |
fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_; |
779 |
> |
fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_; |
780 |
|
} |
781 |
|
|
782 |
< |
void SimInfo::setupFortranSim() { |
782 |
> |
void SimInfo::setupFortran() { |
783 |
|
int isError; |
784 |
|
int nExclude, nOneTwo, nOneThree, nOneFour; |
785 |
< |
std::vector<int> fortranGlobalGroupMembership; |
785 |
> |
vector<int> fortranGlobalGroupMembership; |
786 |
|
|
787 |
|
isError = 0; |
788 |
|
|
792 |
|
} |
793 |
|
|
794 |
|
//calculate mass ratio of cutoff group |
795 |
< |
std::vector<RealType> mfact; |
795 |
> |
vector<RealType> mfact; |
796 |
|
SimInfo::MoleculeIterator mi; |
797 |
|
Molecule* mol; |
798 |
|
Molecule::CutoffGroupIterator ci; |
818 |
|
} |
819 |
|
} |
820 |
|
|
821 |
< |
//fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) |
822 |
< |
std::vector<int> identArray; |
821 |
> |
//fill ident array of local atoms (it is actually ident of |
822 |
> |
//AtomType, it is so confusing !!!) |
823 |
> |
vector<int> identArray; |
824 |
|
|
825 |
|
//to avoid memory reallocation, reserve enough space identArray |
826 |
|
identArray.reserve(getNAtoms()); |
833 |
|
|
834 |
|
//fill molMembershipArray |
835 |
|
//molMembershipArray is filled by SimCreator |
836 |
< |
std::vector<int> molMembershipArray(nGlobalAtoms_); |
836 |
> |
vector<int> molMembershipArray(nGlobalAtoms_); |
837 |
|
for (int i = 0; i < nGlobalAtoms_; i++) { |
838 |
|
molMembershipArray[i] = globalMolMembership_[i] + 1; |
839 |
|
} |
879 |
|
setNeighbors(&nlistNeighbors); |
880 |
|
} |
881 |
|
|
988 |
– |
|
989 |
– |
} |
990 |
– |
|
991 |
– |
|
992 |
– |
void SimInfo::setupFortranParallel() { |
882 |
|
#ifdef IS_MPI |
883 |
< |
//SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
884 |
< |
std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
885 |
< |
std::vector<int> localToGlobalCutoffGroupIndex; |
886 |
< |
SimInfo::MoleculeIterator mi; |
998 |
< |
Molecule::AtomIterator ai; |
999 |
< |
Molecule::CutoffGroupIterator ci; |
1000 |
< |
Molecule* mol; |
1001 |
< |
Atom* atom; |
1002 |
< |
CutoffGroup* cg; |
883 |
> |
//SimInfo is responsible for creating localToGlobalAtomIndex and |
884 |
> |
//localToGlobalGroupIndex |
885 |
> |
vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
886 |
> |
vector<int> localToGlobalCutoffGroupIndex; |
887 |
|
mpiSimData parallelData; |
1004 |
– |
int isError; |
888 |
|
|
889 |
|
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
890 |
|
|
924 |
|
|
925 |
|
sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
926 |
|
errorCheckPoint(); |
1044 |
– |
|
927 |
|
#endif |
1046 |
– |
} |
928 |
|
|
929 |
< |
void SimInfo::setupCutoff() { |
930 |
< |
|
931 |
< |
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
932 |
< |
|
933 |
< |
// Check the cutoff policy |
934 |
< |
int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default |
1054 |
< |
|
1055 |
< |
// Set LJ shifting bools to false |
1056 |
< |
ljsp_ = 0; |
1057 |
< |
ljsf_ = 0; |
1058 |
< |
|
1059 |
< |
std::string myPolicy; |
1060 |
< |
if (forceFieldOptions_.haveCutoffPolicy()){ |
1061 |
< |
myPolicy = forceFieldOptions_.getCutoffPolicy(); |
1062 |
< |
}else if (simParams_->haveCutoffPolicy()) { |
1063 |
< |
myPolicy = simParams_->getCutoffPolicy(); |
929 |
> |
initFortranFF(&isError); |
930 |
> |
if (isError) { |
931 |
> |
sprintf(painCave.errMsg, |
932 |
> |
"initFortranFF errror: fortran didn't like something we gave it.\n"); |
933 |
> |
painCave.isFatal = 1; |
934 |
> |
simError(); |
935 |
|
} |
936 |
< |
|
1066 |
< |
if (!myPolicy.empty()){ |
1067 |
< |
toUpper(myPolicy); |
1068 |
< |
if (myPolicy == "MIX") { |
1069 |
< |
cp = MIX_CUTOFF_POLICY; |
1070 |
< |
} else { |
1071 |
< |
if (myPolicy == "MAX") { |
1072 |
< |
cp = MAX_CUTOFF_POLICY; |
1073 |
< |
} else { |
1074 |
< |
if (myPolicy == "TRADITIONAL") { |
1075 |
< |
cp = TRADITIONAL_CUTOFF_POLICY; |
1076 |
< |
} else { |
1077 |
< |
// throw error |
1078 |
< |
sprintf( painCave.errMsg, |
1079 |
< |
"SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() ); |
1080 |
< |
painCave.isFatal = 1; |
1081 |
< |
simError(); |
1082 |
< |
} |
1083 |
< |
} |
1084 |
< |
} |
1085 |
< |
} |
1086 |
< |
notifyFortranCutoffPolicy(&cp); |
1087 |
< |
|
1088 |
< |
// Check the Skin Thickness for neighborlists |
1089 |
< |
RealType skin; |
1090 |
< |
if (simParams_->haveSkinThickness()) { |
1091 |
< |
skin = simParams_->getSkinThickness(); |
1092 |
< |
notifyFortranSkinThickness(&skin); |
1093 |
< |
} |
1094 |
< |
|
1095 |
< |
// Check if the cutoff was set explicitly: |
1096 |
< |
if (simParams_->haveCutoffRadius()) { |
1097 |
< |
rcut_ = simParams_->getCutoffRadius(); |
1098 |
< |
if (simParams_->haveSwitchingRadius()) { |
1099 |
< |
rsw_ = simParams_->getSwitchingRadius(); |
1100 |
< |
} else { |
1101 |
< |
if (fInfo_.SIM_uses_Charges | |
1102 |
< |
fInfo_.SIM_uses_Dipoles | |
1103 |
< |
fInfo_.SIM_uses_RF) { |
1104 |
< |
|
1105 |
< |
rsw_ = 0.85 * rcut_; |
1106 |
< |
sprintf(painCave.errMsg, |
1107 |
< |
"SimCreator Warning: No value was set for the switchingRadius.\n" |
1108 |
< |
"\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
1109 |
< |
"\tswitchingRadius = %f. for this simulation\n", rsw_); |
1110 |
< |
painCave.isFatal = 0; |
1111 |
< |
simError(); |
1112 |
< |
} else { |
1113 |
< |
rsw_ = rcut_; |
1114 |
< |
sprintf(painCave.errMsg, |
1115 |
< |
"SimCreator Warning: No value was set for the switchingRadius.\n" |
1116 |
< |
"\tOpenMD will use the same value as the cutoffRadius.\n" |
1117 |
< |
"\tswitchingRadius = %f. for this simulation\n", rsw_); |
1118 |
< |
painCave.isFatal = 0; |
1119 |
< |
simError(); |
1120 |
< |
} |
1121 |
< |
} |
1122 |
< |
|
1123 |
< |
if (simParams_->haveElectrostaticSummationMethod()) { |
1124 |
< |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1125 |
< |
toUpper(myMethod); |
1126 |
< |
|
1127 |
< |
if (myMethod == "SHIFTED_POTENTIAL") { |
1128 |
< |
ljsp_ = 1; |
1129 |
< |
} else if (myMethod == "SHIFTED_FORCE") { |
1130 |
< |
ljsf_ = 1; |
1131 |
< |
} |
1132 |
< |
} |
1133 |
< |
|
1134 |
< |
notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); |
1135 |
< |
|
1136 |
< |
} else { |
1137 |
< |
|
1138 |
< |
// For electrostatic atoms, we'll assume a large safe value: |
1139 |
< |
if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { |
1140 |
< |
sprintf(painCave.errMsg, |
1141 |
< |
"SimCreator Warning: No value was set for the cutoffRadius.\n" |
1142 |
< |
"\tOpenMD will use a default value of 15.0 angstroms" |
1143 |
< |
"\tfor the cutoffRadius.\n"); |
1144 |
< |
painCave.isFatal = 0; |
1145 |
< |
simError(); |
1146 |
< |
rcut_ = 15.0; |
1147 |
< |
|
1148 |
< |
if (simParams_->haveElectrostaticSummationMethod()) { |
1149 |
< |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1150 |
< |
toUpper(myMethod); |
1151 |
< |
|
1152 |
< |
// For the time being, we're tethering the LJ shifted behavior to the |
1153 |
< |
// electrostaticSummationMethod keyword options |
1154 |
< |
if (myMethod == "SHIFTED_POTENTIAL") { |
1155 |
< |
ljsp_ = 1; |
1156 |
< |
} else if (myMethod == "SHIFTED_FORCE") { |
1157 |
< |
ljsf_ = 1; |
1158 |
< |
} |
1159 |
< |
if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") { |
1160 |
< |
if (simParams_->haveSwitchingRadius()){ |
1161 |
< |
sprintf(painCave.errMsg, |
1162 |
< |
"SimInfo Warning: A value was set for the switchingRadius\n" |
1163 |
< |
"\teven though the electrostaticSummationMethod was\n" |
1164 |
< |
"\tset to %s\n", myMethod.c_str()); |
1165 |
< |
painCave.isFatal = 1; |
1166 |
< |
simError(); |
1167 |
< |
} |
1168 |
< |
} |
1169 |
< |
} |
1170 |
< |
|
1171 |
< |
if (simParams_->haveSwitchingRadius()){ |
1172 |
< |
rsw_ = simParams_->getSwitchingRadius(); |
1173 |
< |
} else { |
1174 |
< |
sprintf(painCave.errMsg, |
1175 |
< |
"SimCreator Warning: No value was set for switchingRadius.\n" |
1176 |
< |
"\tOpenMD will use a default value of\n" |
1177 |
< |
"\t0.85 * cutoffRadius for the switchingRadius\n"); |
1178 |
< |
painCave.isFatal = 0; |
1179 |
< |
simError(); |
1180 |
< |
rsw_ = 0.85 * rcut_; |
1181 |
< |
} |
1182 |
< |
|
1183 |
< |
notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); |
1184 |
< |
|
1185 |
< |
} else { |
1186 |
< |
// We didn't set rcut explicitly, and we don't have electrostatic atoms, so |
1187 |
< |
// We'll punt and let fortran figure out the cutoffs later. |
1188 |
< |
|
1189 |
< |
notifyFortranYouAreOnYourOwn(); |
1190 |
< |
|
1191 |
< |
} |
1192 |
< |
} |
1193 |
< |
} |
1194 |
< |
|
1195 |
< |
void SimInfo::setupElectrostaticSummationMethod( int isError ) { |
1196 |
< |
|
1197 |
< |
int errorOut; |
1198 |
< |
int esm = NONE; |
1199 |
< |
int sm = UNDAMPED; |
1200 |
< |
RealType alphaVal; |
1201 |
< |
RealType dielectric; |
1202 |
< |
|
1203 |
< |
errorOut = isError; |
1204 |
< |
|
1205 |
< |
if (simParams_->haveElectrostaticSummationMethod()) { |
1206 |
< |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1207 |
< |
toUpper(myMethod); |
1208 |
< |
if (myMethod == "NONE") { |
1209 |
< |
esm = NONE; |
1210 |
< |
} else { |
1211 |
< |
if (myMethod == "SWITCHING_FUNCTION") { |
1212 |
< |
esm = SWITCHING_FUNCTION; |
1213 |
< |
} else { |
1214 |
< |
if (myMethod == "SHIFTED_POTENTIAL") { |
1215 |
< |
esm = SHIFTED_POTENTIAL; |
1216 |
< |
} else { |
1217 |
< |
if (myMethod == "SHIFTED_FORCE") { |
1218 |
< |
esm = SHIFTED_FORCE; |
1219 |
< |
} else { |
1220 |
< |
if (myMethod == "REACTION_FIELD") { |
1221 |
< |
esm = REACTION_FIELD; |
1222 |
< |
dielectric = simParams_->getDielectric(); |
1223 |
< |
if (!simParams_->haveDielectric()) { |
1224 |
< |
// throw warning |
1225 |
< |
sprintf( painCave.errMsg, |
1226 |
< |
"SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n" |
1227 |
< |
"\tA default value of %f will be used for the dielectric.\n", dielectric); |
1228 |
< |
painCave.isFatal = 0; |
1229 |
< |
simError(); |
1230 |
< |
} |
1231 |
< |
} else { |
1232 |
< |
// throw error |
1233 |
< |
sprintf( painCave.errMsg, |
1234 |
< |
"SimInfo error: Unknown electrostaticSummationMethod.\n" |
1235 |
< |
"\t(Input file specified %s .)\n" |
1236 |
< |
"\telectrostaticSummationMethod must be one of: \"none\",\n" |
1237 |
< |
"\t\"shifted_potential\", \"shifted_force\", or \n" |
1238 |
< |
"\t\"reaction_field\".\n", myMethod.c_str() ); |
1239 |
< |
painCave.isFatal = 1; |
1240 |
< |
simError(); |
1241 |
< |
} |
1242 |
< |
} |
1243 |
< |
} |
1244 |
< |
} |
1245 |
< |
} |
1246 |
< |
} |
1247 |
< |
|
1248 |
< |
if (simParams_->haveElectrostaticScreeningMethod()) { |
1249 |
< |
std::string myScreen = simParams_->getElectrostaticScreeningMethod(); |
1250 |
< |
toUpper(myScreen); |
1251 |
< |
if (myScreen == "UNDAMPED") { |
1252 |
< |
sm = UNDAMPED; |
1253 |
< |
} else { |
1254 |
< |
if (myScreen == "DAMPED") { |
1255 |
< |
sm = DAMPED; |
1256 |
< |
if (!simParams_->haveDampingAlpha()) { |
1257 |
< |
// first set a cutoff dependent alpha value |
1258 |
< |
// we assume alpha depends linearly with rcut from 0 to 20.5 ang |
1259 |
< |
alphaVal = 0.5125 - rcut_* 0.025; |
1260 |
< |
// for values rcut > 20.5, alpha is zero |
1261 |
< |
if (alphaVal < 0) alphaVal = 0; |
1262 |
< |
|
1263 |
< |
// throw warning |
1264 |
< |
sprintf( painCave.errMsg, |
1265 |
< |
"SimInfo warning: dampingAlpha was not specified in the input file.\n" |
1266 |
< |
"\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_); |
1267 |
< |
painCave.isFatal = 0; |
1268 |
< |
simError(); |
1269 |
< |
} else { |
1270 |
< |
alphaVal = simParams_->getDampingAlpha(); |
1271 |
< |
} |
1272 |
< |
|
1273 |
< |
} else { |
1274 |
< |
// throw error |
1275 |
< |
sprintf( painCave.errMsg, |
1276 |
< |
"SimInfo error: Unknown electrostaticScreeningMethod.\n" |
1277 |
< |
"\t(Input file specified %s .)\n" |
1278 |
< |
"\telectrostaticScreeningMethod must be one of: \"undamped\"\n" |
1279 |
< |
"or \"damped\".\n", myScreen.c_str() ); |
1280 |
< |
painCave.isFatal = 1; |
1281 |
< |
simError(); |
1282 |
< |
} |
1283 |
< |
} |
1284 |
< |
} |
1285 |
< |
|
1286 |
< |
// let's pass some summation method variables to fortran |
1287 |
< |
setElectrostaticSummationMethod( &esm ); |
1288 |
< |
setFortranElectrostaticMethod( &esm ); |
1289 |
< |
setScreeningMethod( &sm ); |
1290 |
< |
setDampingAlpha( &alphaVal ); |
1291 |
< |
setReactionFieldDielectric( &dielectric ); |
1292 |
< |
initFortranFF( &errorOut ); |
1293 |
< |
} |
1294 |
< |
|
1295 |
< |
void SimInfo::setupSwitchingFunction() { |
1296 |
< |
int ft = CUBIC; |
1297 |
< |
|
1298 |
< |
if (simParams_->haveSwitchingFunctionType()) { |
1299 |
< |
std::string funcType = simParams_->getSwitchingFunctionType(); |
1300 |
< |
toUpper(funcType); |
1301 |
< |
if (funcType == "CUBIC") { |
1302 |
< |
ft = CUBIC; |
1303 |
< |
} else { |
1304 |
< |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
1305 |
< |
ft = FIFTH_ORDER_POLY; |
1306 |
< |
} else { |
1307 |
< |
// throw error |
1308 |
< |
sprintf( painCave.errMsg, |
1309 |
< |
"SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() ); |
1310 |
< |
painCave.isFatal = 1; |
1311 |
< |
simError(); |
1312 |
< |
} |
1313 |
< |
} |
1314 |
< |
} |
1315 |
< |
|
1316 |
< |
// send switching function notification to switcheroo |
1317 |
< |
setFunctionType(&ft); |
1318 |
< |
|
936 |
> |
fortranInitialized_ = true; |
937 |
|
} |
938 |
|
|
1321 |
– |
void SimInfo::setupAccumulateBoxDipole() { |
1322 |
– |
|
1323 |
– |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
1324 |
– |
if ( simParams_->haveAccumulateBoxDipole() ) |
1325 |
– |
if ( simParams_->getAccumulateBoxDipole() ) { |
1326 |
– |
setAccumulateBoxDipole(); |
1327 |
– |
calcBoxDipole_ = true; |
1328 |
– |
} |
1329 |
– |
|
1330 |
– |
} |
1331 |
– |
|
939 |
|
void SimInfo::addProperty(GenericData* genData) { |
940 |
|
properties_.addProperty(genData); |
941 |
|
} |
942 |
|
|
943 |
< |
void SimInfo::removeProperty(const std::string& propName) { |
943 |
> |
void SimInfo::removeProperty(const string& propName) { |
944 |
|
properties_.removeProperty(propName); |
945 |
|
} |
946 |
|
|
948 |
|
properties_.clearProperties(); |
949 |
|
} |
950 |
|
|
951 |
< |
std::vector<std::string> SimInfo::getPropertyNames() { |
951 |
> |
vector<string> SimInfo::getPropertyNames() { |
952 |
|
return properties_.getPropertyNames(); |
953 |
|
} |
954 |
|
|
955 |
< |
std::vector<GenericData*> SimInfo::getProperties() { |
955 |
> |
vector<GenericData*> SimInfo::getProperties() { |
956 |
|
return properties_.getProperties(); |
957 |
|
} |
958 |
|
|
959 |
< |
GenericData* SimInfo::getPropertyByName(const std::string& propName) { |
959 |
> |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
960 |
|
return properties_.getPropertyByName(propName); |
961 |
|
} |
962 |
|
|
1039 |
|
|
1040 |
|
} |
1041 |
|
|
1042 |
< |
std::ostream& operator <<(std::ostream& o, SimInfo& info) { |
1042 |
> |
ostream& operator <<(ostream& o, SimInfo& info) { |
1043 |
|
|
1044 |
|
return o; |
1045 |
|
} |
1082 |
|
|
1083 |
|
|
1084 |
|
[ Ixx -Ixy -Ixz ] |
1085 |
< |
J =| -Iyx Iyy -Iyz | |
1085 |
> |
J =| -Iyx Iyy -Iyz | |
1086 |
|
[ -Izx -Iyz Izz ] |
1087 |
|
*/ |
1088 |
|
|
1189 |
|
return IOIndexToIntegrableObject.at(index); |
1190 |
|
} |
1191 |
|
|
1192 |
< |
void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) { |
1192 |
> |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1193 |
|
IOIndexToIntegrableObject= v; |
1194 |
|
} |
1195 |
|
|
1231 |
|
return; |
1232 |
|
} |
1233 |
|
/* |
1234 |
< |
void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) { |
1234 |
> |
void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1235 |
|
assert( v.size() == nAtoms_ + nRigidBodies_); |
1236 |
|
sdByGlobalIndex_ = v; |
1237 |
|
} |
1241 |
|
return sdByGlobalIndex_.at(index); |
1242 |
|
} |
1243 |
|
*/ |
1244 |
+ |
int SimInfo::getNGlobalConstraints() { |
1245 |
+ |
int nGlobalConstraints; |
1246 |
+ |
#ifdef IS_MPI |
1247 |
+ |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
1248 |
+ |
MPI_COMM_WORLD); |
1249 |
+ |
#else |
1250 |
+ |
nGlobalConstraints = nConstraints_; |
1251 |
+ |
#endif |
1252 |
+ |
return nGlobalConstraints; |
1253 |
+ |
} |
1254 |
+ |
|
1255 |
|
}//end namespace OpenMD |
1256 |
|
|