ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 1390 by gezelter, Wed Nov 25 20:02:06 2009 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1547 by gezelter, Mon Apr 11 18:44:16 2011 UTC

# Line 54 | Line 54
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 #include "UseTheForce/doForces_interface.h"
57   #include "UseTheForce/DarkSide/neighborLists_interface.h"
58 < #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 < #include "UseTheForce/DarkSide/switcheroo_interface.h"
58 > #include "UseTheForce/doForces_interface.h"
59   #include "utils/MemoryUtils.hpp"
60   #include "utils/simError.h"
61   #include "selection/SelectionManager.hpp"
62   #include "io/ForceFieldOptions.hpp"
63   #include "UseTheForce/ForceField.hpp"
64 + #include "nonbonded/SwitchingFunction.hpp"
65  
71
66   #ifdef IS_MPI
67   #include "UseTheForce/mpiComponentPlan.h"
68   #include "UseTheForce/DarkSide/simParallel_interface.h"
69   #endif
70  
71 + using namespace std;
72   namespace OpenMD {
78  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79    std::map<int, std::set<int> >::iterator i = container.find(index);
80    std::set<int> result;
81    if (i != container.end()) {
82        result = i->second;
83    }
84
85    return result;
86  }
73    
74    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
75      forceField_(ff), simParams_(simParams),
# Line 93 | Line 79 | namespace OpenMD {
79      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
80      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
81      nConstraints_(0), sman_(NULL), fortranInitialized_(false),
82 <    calcBoxDipole_(false), useAtomicVirial_(true) {
83 <
84 <
85 <      MoleculeStamp* molStamp;
86 <      int nMolWithSameStamp;
87 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
88 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
89 <      CutoffGroupStamp* cgStamp;    
90 <      RigidBodyStamp* rbStamp;
91 <      int nRigidAtoms = 0;
92 <
93 <      std::vector<Component*> components = simParams->getComponents();
82 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
83 >    
84 >    MoleculeStamp* molStamp;
85 >    int nMolWithSameStamp;
86 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
88 >    CutoffGroupStamp* cgStamp;    
89 >    RigidBodyStamp* rbStamp;
90 >    int nRigidAtoms = 0;
91 >    
92 >    vector<Component*> components = simParams->getComponents();
93 >    
94 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
95 >      molStamp = (*i)->getMoleculeStamp();
96 >      nMolWithSameStamp = (*i)->getNMol();
97        
98 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
99 <        molStamp = (*i)->getMoleculeStamp();
100 <        nMolWithSameStamp = (*i)->getNMol();
101 <        
102 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
103 <
104 <        //calculate atoms in molecules
105 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
106 <
107 <        //calculate atoms in cutoff groups
108 <        int nAtomsInGroups = 0;
109 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
121 <        
122 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
123 <          cgStamp = molStamp->getCutoffGroupStamp(j);
124 <          nAtomsInGroups += cgStamp->getNMembers();
125 <        }
126 <
127 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
128 <
129 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
130 <
131 <        //calculate atoms in rigid bodies
132 <        int nAtomsInRigidBodies = 0;
133 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
134 <        
135 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
136 <          rbStamp = molStamp->getRigidBodyStamp(j);
137 <          nAtomsInRigidBodies += rbStamp->getNMembers();
138 <        }
139 <
140 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
141 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
142 <        
98 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
99 >      
100 >      //calculate atoms in molecules
101 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
102 >      
103 >      //calculate atoms in cutoff groups
104 >      int nAtomsInGroups = 0;
105 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
106 >      
107 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
108 >        cgStamp = molStamp->getCutoffGroupStamp(j);
109 >        nAtomsInGroups += cgStamp->getNMembers();
110        }
111 <
112 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
113 <      //group therefore the total number of cutoff groups in the system is
114 <      //equal to the total number of atoms minus number of atoms belong to
115 <      //cutoff group defined in meta-data file plus the number of cutoff
116 <      //groups defined in meta-data file
117 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
118 <
119 <      //every free atom (atom does not belong to rigid bodies) is an
120 <      //integrable object therefore the total number of integrable objects
121 <      //in the system is equal to the total number of atoms minus number of
122 <      //atoms belong to rigid body defined in meta-data file plus the number
123 <      //of rigid bodies defined in meta-data file
124 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
125 <                                                + nGlobalRigidBodies_;
126 <  
127 <      nGlobalMols_ = molStampIds_.size();
161 <      molToProcMap_.resize(nGlobalMols_);
111 >      
112 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
113 >      
114 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
115 >      
116 >      //calculate atoms in rigid bodies
117 >      int nAtomsInRigidBodies = 0;
118 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
119 >      
120 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
121 >        rbStamp = molStamp->getRigidBodyStamp(j);
122 >        nAtomsInRigidBodies += rbStamp->getNMembers();
123 >      }
124 >      
125 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
126 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
127 >      
128      }
129 +    
130 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
131 +    //group therefore the total number of cutoff groups in the system is
132 +    //equal to the total number of atoms minus number of atoms belong to
133 +    //cutoff group defined in meta-data file plus the number of cutoff
134 +    //groups defined in meta-data file
135 +    std::cerr << "nGA = " << nGlobalAtoms_ << "\n";
136 +    std::cerr << "nCA = " << nCutoffAtoms << "\n";
137 +    std::cerr << "nG = " << nGroups << "\n";
138  
139 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
140 +
141 +    std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n";
142 +    
143 +    //every free atom (atom does not belong to rigid bodies) is an
144 +    //integrable object therefore the total number of integrable objects
145 +    //in the system is equal to the total number of atoms minus number of
146 +    //atoms belong to rigid body defined in meta-data file plus the number
147 +    //of rigid bodies defined in meta-data file
148 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
149 +      + nGlobalRigidBodies_;
150 +    
151 +    nGlobalMols_ = molStampIds_.size();
152 +    molToProcMap_.resize(nGlobalMols_);
153 +  }
154 +  
155    SimInfo::~SimInfo() {
156 <    std::map<int, Molecule*>::iterator i;
156 >    map<int, Molecule*>::iterator i;
157      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
158        delete i->second;
159      }
# Line 173 | Line 164 | namespace OpenMD {
164      delete forceField_;
165    }
166  
176  int SimInfo::getNGlobalConstraints() {
177    int nGlobalConstraints;
178 #ifdef IS_MPI
179    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
180                  MPI_COMM_WORLD);    
181 #else
182    nGlobalConstraints =  nConstraints_;
183 #endif
184    return nGlobalConstraints;
185  }
167  
168    bool SimInfo::addMolecule(Molecule* mol) {
169      MoleculeIterator i;
170 <
170 >    
171      i = molecules_.find(mol->getGlobalIndex());
172      if (i == molecules_.end() ) {
173 <
174 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
175 <        
173 >      
174 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
175 >      
176        nAtoms_ += mol->getNAtoms();
177        nBonds_ += mol->getNBonds();
178        nBends_ += mol->getNBends();
# Line 201 | Line 182 | namespace OpenMD {
182        nIntegrableObjects_ += mol->getNIntegrableObjects();
183        nCutoffGroups_ += mol->getNCutoffGroups();
184        nConstraints_ += mol->getNConstraintPairs();
185 <
185 >      
186        addInteractionPairs(mol);
187 <  
187 >      
188        return true;
189      } else {
190        return false;
191      }
192    }
193 <
193 >  
194    bool SimInfo::removeMolecule(Molecule* mol) {
195      MoleculeIterator i;
196      i = molecules_.find(mol->getGlobalIndex());
# Line 237 | Line 218 | namespace OpenMD {
218      } else {
219        return false;
220      }
240
241
221    }    
222  
223          
# Line 256 | Line 235 | namespace OpenMD {
235    void SimInfo::calcNdf() {
236      int ndf_local;
237      MoleculeIterator i;
238 <    std::vector<StuntDouble*>::iterator j;
238 >    vector<StuntDouble*>::iterator j;
239      Molecule* mol;
240      StuntDouble* integrableObject;
241  
# Line 307 | Line 286 | namespace OpenMD {
286      int ndfRaw_local;
287  
288      MoleculeIterator i;
289 <    std::vector<StuntDouble*>::iterator j;
289 >    vector<StuntDouble*>::iterator j;
290      Molecule* mol;
291      StuntDouble* integrableObject;
292  
# Line 356 | Line 335 | namespace OpenMD {
335  
336    void SimInfo::addInteractionPairs(Molecule* mol) {
337      ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
338 <    std::vector<Bond*>::iterator bondIter;
339 <    std::vector<Bend*>::iterator bendIter;
340 <    std::vector<Torsion*>::iterator torsionIter;
341 <    std::vector<Inversion*>::iterator inversionIter;
338 >    vector<Bond*>::iterator bondIter;
339 >    vector<Bend*>::iterator bendIter;
340 >    vector<Torsion*>::iterator torsionIter;
341 >    vector<Inversion*>::iterator inversionIter;
342      Bond* bond;
343      Bend* bend;
344      Torsion* torsion;
# Line 377 | Line 356 | namespace OpenMD {
356      // always be excluded.  These are done at the bottom of this
357      // function.
358  
359 <    std::map<int, std::set<int> > atomGroups;
359 >    map<int, set<int> > atomGroups;
360      Molecule::RigidBodyIterator rbIter;
361      RigidBody* rb;
362      Molecule::IntegrableObjectIterator ii;
# Line 389 | Line 368 | namespace OpenMD {
368        
369        if (integrableObject->isRigidBody()) {
370          rb = static_cast<RigidBody*>(integrableObject);
371 <        std::vector<Atom*> atoms = rb->getAtoms();
372 <        std::set<int> rigidAtoms;
371 >        vector<Atom*> atoms = rb->getAtoms();
372 >        set<int> rigidAtoms;
373          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
374            rigidAtoms.insert(atoms[i]->getGlobalIndex());
375          }
376          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
377 <          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
377 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
378          }      
379        } else {
380 <        std::set<int> oneAtomSet;
380 >        set<int> oneAtomSet;
381          oneAtomSet.insert(integrableObject->getGlobalIndex());
382 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
382 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
383        }
384      }  
385            
# Line 503 | Line 482 | namespace OpenMD {
482  
483      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
484           rb = mol->nextRigidBody(rbIter)) {
485 <      std::vector<Atom*> atoms = rb->getAtoms();
485 >      vector<Atom*> atoms = rb->getAtoms();
486        for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
487          for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
488            a = atoms[i]->getGlobalIndex();
# Line 517 | Line 496 | namespace OpenMD {
496  
497    void SimInfo::removeInteractionPairs(Molecule* mol) {
498      ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
499 <    std::vector<Bond*>::iterator bondIter;
500 <    std::vector<Bend*>::iterator bendIter;
501 <    std::vector<Torsion*>::iterator torsionIter;
502 <    std::vector<Inversion*>::iterator inversionIter;
499 >    vector<Bond*>::iterator bondIter;
500 >    vector<Bend*>::iterator bendIter;
501 >    vector<Torsion*>::iterator torsionIter;
502 >    vector<Inversion*>::iterator inversionIter;
503      Bond* bond;
504      Bend* bend;
505      Torsion* torsion;
# Line 530 | Line 509 | namespace OpenMD {
509      int c;
510      int d;
511  
512 <    std::map<int, std::set<int> > atomGroups;
512 >    map<int, set<int> > atomGroups;
513      Molecule::RigidBodyIterator rbIter;
514      RigidBody* rb;
515      Molecule::IntegrableObjectIterator ii;
# Line 542 | Line 521 | namespace OpenMD {
521        
522        if (integrableObject->isRigidBody()) {
523          rb = static_cast<RigidBody*>(integrableObject);
524 <        std::vector<Atom*> atoms = rb->getAtoms();
525 <        std::set<int> rigidAtoms;
524 >        vector<Atom*> atoms = rb->getAtoms();
525 >        set<int> rigidAtoms;
526          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
527            rigidAtoms.insert(atoms[i]->getGlobalIndex());
528          }
529          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
530 <          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
530 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
531          }      
532        } else {
533 <        std::set<int> oneAtomSet;
533 >        set<int> oneAtomSet;
534          oneAtomSet.insert(integrableObject->getGlobalIndex());
535 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
535 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
536        }
537      }  
538  
# Line 656 | Line 635 | namespace OpenMD {
635  
636      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
637           rb = mol->nextRigidBody(rbIter)) {
638 <      std::vector<Atom*> atoms = rb->getAtoms();
638 >      vector<Atom*> atoms = rb->getAtoms();
639        for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
640          for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
641            a = atoms[i]->getGlobalIndex();
# Line 679 | Line 658 | namespace OpenMD {
658      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
659    }
660  
661 <  void SimInfo::update() {
662 <
663 <    setupSimType();
664 <
665 < #ifdef IS_MPI
666 <    setupFortranParallel();
667 < #endif
668 <
669 <    setupFortranSim();
670 <
692 <    //setup fortran force field
693 <    /** @deprecate */    
694 <    int isError = 0;
695 <    
696 <    setupCutoff();
697 <    
698 <    setupElectrostaticSummationMethod( isError );
699 <    setupSwitchingFunction();
700 <    setupAccumulateBoxDipole();
701 <
702 <    if(isError){
703 <      sprintf( painCave.errMsg,
704 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
705 <      painCave.isFatal = 1;
706 <      simError();
707 <    }
708 <
661 >
662 >  /**
663 >   * update
664 >   *
665 >   *  Performs the global checks and variable settings after the
666 >   *  objects have been created.
667 >   *
668 >   */
669 >  void SimInfo::update() {  
670 >    setupSimVariables();
671      calcNdf();
672      calcNdfRaw();
673      calcNdfTrans();
712
713    fortranInitialized_ = true;
674    }
675 <
676 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
675 >  
676 >  /**
677 >   * getSimulatedAtomTypes
678 >   *
679 >   * Returns an STL set of AtomType* that are actually present in this
680 >   * simulation.  Must query all processors to assemble this information.
681 >   *
682 >   */
683 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
684      SimInfo::MoleculeIterator mi;
685      Molecule* mol;
686      Molecule::AtomIterator ai;
687      Atom* atom;
688 <    std::set<AtomType*> atomTypes;
689 <
690 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
724 <
688 >    set<AtomType*> atomTypes;
689 >    
690 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
691        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
692          atomTypes.insert(atom->getAtomType());
693 <      }
694 <        
729 <    }
693 >      }      
694 >    }    
695  
696 <    return atomTypes;        
732 <  }
696 > #ifdef IS_MPI
697  
698 <  void SimInfo::setupSimType() {
699 <    std::set<AtomType*>::iterator i;
736 <    std::set<AtomType*> atomTypes;
737 <    atomTypes = getUniqueAtomTypes();
738 <    
739 <    int useLennardJones = 0;
740 <    int useElectrostatic = 0;
741 <    int useEAM = 0;
742 <    int useSC = 0;
743 <    int useCharge = 0;
744 <    int useDirectional = 0;
745 <    int useDipole = 0;
746 <    int useGayBerne = 0;
747 <    int useSticky = 0;
748 <    int useStickyPower = 0;
749 <    int useShape = 0;
750 <    int useFLARB = 0; //it is not in AtomType yet
751 <    int useDirectionalAtom = 0;    
752 <    int useElectrostatics = 0;
753 <    //usePBC and useRF are from simParams
754 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
755 <    int useRF;
756 <    int useSF;
757 <    int useSP;
758 <    int useBoxDipole;
698 >    // loop over the found atom types on this processor, and add their
699 >    // numerical idents to a vector:
700  
701 <    std::string myMethod;
701 >    vector<int> foundTypes;
702 >    set<AtomType*>::iterator i;
703 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
704 >      foundTypes.push_back( (*i)->getIdent() );
705  
706 <    // set the useRF logical
707 <    useRF = 0;
764 <    useSF = 0;
765 <    useSP = 0;
766 <    useBoxDipole = 0;
706 >    // count_local holds the number of found types on this processor
707 >    int count_local = foundTypes.size();
708  
709 +    // count holds the total number of found types on all processors
710 +    // (some will be redundant with the ones found locally):
711 +    int count;
712 +    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
713  
714 <    if (simParams_->haveElectrostaticSummationMethod()) {
715 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
716 <      toUpper(myMethod);
717 <      if (myMethod == "REACTION_FIELD"){
718 <        useRF = 1;
719 <      } else if (myMethod == "SHIFTED_FORCE"){
720 <        useSF = 1;
721 <      } else if (myMethod == "SHIFTED_POTENTIAL"){
722 <        useSP = 1;
723 <      }
724 <    }
714 >    // create a vector to hold the globally found types, and resize it:
715 >    vector<int> ftGlobal;
716 >    ftGlobal.resize(count);
717 >    vector<int> counts;
718 >
719 >    int nproc = MPI::COMM_WORLD.Get_size();
720 >    counts.resize(nproc);
721 >    vector<int> disps;
722 >    disps.resize(nproc);
723 >
724 >    // now spray out the foundTypes to all the other processors:
725      
726 <    if (simParams_->haveAccumulateBoxDipole())
727 <      if (simParams_->getAccumulateBoxDipole())
783 <        useBoxDipole = 1;
726 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
727 >                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
728  
729 +    // foundIdents is a stl set, so inserting an already found ident
730 +    // will have no effect.
731 +    set<int> foundIdents;
732 +    vector<int>::iterator j;
733 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
734 +      foundIdents.insert((*j));
735 +    
736 +    // now iterate over the foundIdents and get the actual atom types
737 +    // that correspond to these:
738 +    set<int>::iterator it;
739 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
740 +      atomTypes.insert( forceField_->getAtomType((*it)) );
741 +
742 + #endif
743 +    
744 +    return atomTypes;        
745 +  }
746 +
747 +  void SimInfo::setupSimVariables() {
748      useAtomicVirial_ = simParams_->getUseAtomicVirial();
749 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
750 +    calcBoxDipole_ = false;
751 +    if ( simParams_->haveAccumulateBoxDipole() )
752 +      if ( simParams_->getAccumulateBoxDipole() ) {
753 +        calcBoxDipole_ = true;      
754 +      }
755  
756 +    set<AtomType*>::iterator i;
757 +    set<AtomType*> atomTypes;
758 +    atomTypes = getSimulatedAtomTypes();    
759 +    int usesElectrostatic = 0;
760 +    int usesMetallic = 0;
761 +    int usesDirectional = 0;
762      //loop over all of the atom types
763      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
764 <      useLennardJones |= (*i)->isLennardJones();
765 <      useElectrostatic |= (*i)->isElectrostatic();
766 <      useEAM |= (*i)->isEAM();
792 <      useSC |= (*i)->isSC();
793 <      useCharge |= (*i)->isCharge();
794 <      useDirectional |= (*i)->isDirectional();
795 <      useDipole |= (*i)->isDipole();
796 <      useGayBerne |= (*i)->isGayBerne();
797 <      useSticky |= (*i)->isSticky();
798 <      useStickyPower |= (*i)->isStickyPower();
799 <      useShape |= (*i)->isShape();
764 >      usesElectrostatic |= (*i)->isElectrostatic();
765 >      usesMetallic |= (*i)->isMetal();
766 >      usesDirectional |= (*i)->isDirectional();
767      }
768  
802    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
803      useDirectionalAtom = 1;
804    }
805
806    if (useCharge || useDipole) {
807      useElectrostatics = 1;
808    }
809
769   #ifdef IS_MPI    
770      int temp;
771 <
772 <    temp = usePBC;
814 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
815 <
816 <    temp = useDirectionalAtom;
817 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
818 <
819 <    temp = useLennardJones;
820 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
821 <
822 <    temp = useElectrostatics;
823 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
824 <
825 <    temp = useCharge;
826 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
827 <
828 <    temp = useDipole;
829 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
830 <
831 <    temp = useSticky;
832 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
771 >    temp = usesDirectional;
772 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
773  
774 <    temp = useStickyPower;
775 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
836 <    
837 <    temp = useGayBerne;
838 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
774 >    temp = usesMetallic;
775 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
776  
777 <    temp = useEAM;
778 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
842 <
843 <    temp = useSC;
844 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
845 <    
846 <    temp = useShape;
847 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
848 <
849 <    temp = useFLARB;
850 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
851 <
852 <    temp = useRF;
853 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
854 <
855 <    temp = useSF;
856 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
857 <
858 <    temp = useSP;
859 <    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
860 <
861 <    temp = useBoxDipole;
862 <    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
863 <
864 <    temp = useAtomicVirial_;
865 <    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
866 <
777 >    temp = usesElectrostatic;
778 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
779   #endif
780 <
781 <    fInfo_.SIM_uses_PBC = usePBC;    
782 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
783 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
784 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
785 <    fInfo_.SIM_uses_Charges = useCharge;
874 <    fInfo_.SIM_uses_Dipoles = useDipole;
875 <    fInfo_.SIM_uses_Sticky = useSticky;
876 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
877 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
878 <    fInfo_.SIM_uses_EAM = useEAM;
879 <    fInfo_.SIM_uses_SC = useSC;
880 <    fInfo_.SIM_uses_Shapes = useShape;
881 <    fInfo_.SIM_uses_FLARB = useFLARB;
882 <    fInfo_.SIM_uses_RF = useRF;
883 <    fInfo_.SIM_uses_SF = useSF;
884 <    fInfo_.SIM_uses_SP = useSP;
885 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
886 <    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
780 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
781 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
782 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
783 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
784 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
785 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
786    }
787  
788 <  void SimInfo::setupFortranSim() {
788 >  void SimInfo::setupFortran() {
789      int isError;
790      int nExclude, nOneTwo, nOneThree, nOneFour;
791 <    std::vector<int> fortranGlobalGroupMembership;
791 >    vector<int> fortranGlobalGroupMembership;
792      
793      isError = 0;
794  
# Line 899 | Line 798 | namespace OpenMD {
798      }
799  
800      //calculate mass ratio of cutoff group
801 <    std::vector<RealType> mfact;
801 >    vector<RealType> mfact;
802      SimInfo::MoleculeIterator mi;
803      Molecule* mol;
804      Molecule::CutoffGroupIterator ci;
# Line 925 | Line 824 | namespace OpenMD {
824        }      
825      }
826  
827 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
929 <    std::vector<int> identArray;
827 >    // Build the identArray_
828  
829 <    //to avoid memory reallocation, reserve enough space identArray
830 <    identArray.reserve(getNAtoms());
933 <    
829 >    identArray_.clear();
830 >    identArray_.reserve(getNAtoms());    
831      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
832        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
833 <        identArray.push_back(atom->getIdent());
833 >        identArray_.push_back(atom->getIdent());
834        }
835      }    
836  
837      //fill molMembershipArray
838      //molMembershipArray is filled by SimCreator    
839 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
839 >    vector<int> molMembershipArray(nGlobalAtoms_);
840      for (int i = 0; i < nGlobalAtoms_; i++) {
841        molMembershipArray[i] = globalMolMembership_[i] + 1;
842      }
# Line 956 | Line 853 | namespace OpenMD {
853      int* oneThreeList = oneThreeInteractions_.getPairList();
854      int* oneFourList = oneFourInteractions_.getPairList();
855  
856 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
856 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0],
857                     &nExclude, excludeList,
858                     &nOneTwo, oneTwoList,
859                     &nOneThree, oneThreeList,
# Line 985 | Line 882 | namespace OpenMD {
882        setNeighbors(&nlistNeighbors);
883      }
884    
988
989  }
990
991
992  void SimInfo::setupFortranParallel() {
885   #ifdef IS_MPI    
886 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
887 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
888 <    std::vector<int> localToGlobalCutoffGroupIndex;
889 <    SimInfo::MoleculeIterator mi;
998 <    Molecule::AtomIterator ai;
999 <    Molecule::CutoffGroupIterator ci;
1000 <    Molecule* mol;
1001 <    Atom* atom;
1002 <    CutoffGroup* cg;
886 >    //SimInfo is responsible for creating localToGlobalAtomIndex and
887 >    //localToGlobalGroupIndex
888 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
889 >    vector<int> localToGlobalCutoffGroupIndex;
890      mpiSimData parallelData;
1004    int isError;
891  
892      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
893  
# Line 1041 | Line 927 | namespace OpenMD {
927  
928      sprintf(checkPointMsg, " mpiRefresh successful.\n");
929      errorCheckPoint();
1044
930   #endif
1046  }
931  
932 <  void SimInfo::setupCutoff() {          
933 <    
934 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
935 <
936 <    // Check the cutoff policy
937 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1054 <
1055 <    // Set LJ shifting bools to false
1056 <    ljsp_ = 0;
1057 <    ljsf_ = 0;
1058 <
1059 <    std::string myPolicy;
1060 <    if (forceFieldOptions_.haveCutoffPolicy()){
1061 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
1062 <    }else if (simParams_->haveCutoffPolicy()) {
1063 <      myPolicy = simParams_->getCutoffPolicy();
932 >    initFortranFF(&isError);
933 >    if (isError) {
934 >      sprintf(painCave.errMsg,
935 >              "initFortranFF errror: fortran didn't like something we gave it.\n");
936 >      painCave.isFatal = 1;
937 >      simError();
938      }
939 <
1066 <    if (!myPolicy.empty()){
1067 <      toUpper(myPolicy);
1068 <      if (myPolicy == "MIX") {
1069 <        cp = MIX_CUTOFF_POLICY;
1070 <      } else {
1071 <        if (myPolicy == "MAX") {
1072 <          cp = MAX_CUTOFF_POLICY;
1073 <        } else {
1074 <          if (myPolicy == "TRADITIONAL") {            
1075 <            cp = TRADITIONAL_CUTOFF_POLICY;
1076 <          } else {
1077 <            // throw error        
1078 <            sprintf( painCave.errMsg,
1079 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1080 <            painCave.isFatal = 1;
1081 <            simError();
1082 <          }    
1083 <        }          
1084 <      }
1085 <    }          
1086 <    notifyFortranCutoffPolicy(&cp);
1087 <
1088 <    // Check the Skin Thickness for neighborlists
1089 <    RealType skin;
1090 <    if (simParams_->haveSkinThickness()) {
1091 <      skin = simParams_->getSkinThickness();
1092 <      notifyFortranSkinThickness(&skin);
1093 <    }            
1094 <        
1095 <    // Check if the cutoff was set explicitly:
1096 <    if (simParams_->haveCutoffRadius()) {
1097 <      rcut_ = simParams_->getCutoffRadius();
1098 <      if (simParams_->haveSwitchingRadius()) {
1099 <        rsw_  = simParams_->getSwitchingRadius();
1100 <      } else {
1101 <        if (fInfo_.SIM_uses_Charges |
1102 <            fInfo_.SIM_uses_Dipoles |
1103 <            fInfo_.SIM_uses_RF) {
1104 <          
1105 <          rsw_ = 0.85 * rcut_;
1106 <          sprintf(painCave.errMsg,
1107 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1108 <                  "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
1109 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1110 <        painCave.isFatal = 0;
1111 <        simError();
1112 <        } else {
1113 <          rsw_ = rcut_;
1114 <          sprintf(painCave.errMsg,
1115 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1116 <                  "\tOpenMD will use the same value as the cutoffRadius.\n"
1117 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1118 <          painCave.isFatal = 0;
1119 <          simError();
1120 <        }
1121 <      }
1122 <
1123 <      if (simParams_->haveElectrostaticSummationMethod()) {
1124 <        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1125 <        toUpper(myMethod);
1126 <        
1127 <        if (myMethod == "SHIFTED_POTENTIAL") {
1128 <          ljsp_ = 1;
1129 <        } else if (myMethod == "SHIFTED_FORCE") {
1130 <          ljsf_ = 1;
1131 <        }
1132 <      }
1133 <
1134 <      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1135 <      
1136 <    } else {
1137 <      
1138 <      // For electrostatic atoms, we'll assume a large safe value:
1139 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1140 <        sprintf(painCave.errMsg,
1141 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1142 <                "\tOpenMD will use a default value of 15.0 angstroms"
1143 <                "\tfor the cutoffRadius.\n");
1144 <        painCave.isFatal = 0;
1145 <        simError();
1146 <        rcut_ = 15.0;
1147 <      
1148 <        if (simParams_->haveElectrostaticSummationMethod()) {
1149 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1150 <          toUpper(myMethod);
1151 <      
1152 <      // For the time being, we're tethering the LJ shifted behavior to the
1153 <      // electrostaticSummationMethod keyword options
1154 <          if (myMethod == "SHIFTED_POTENTIAL") {
1155 <            ljsp_ = 1;
1156 <          } else if (myMethod == "SHIFTED_FORCE") {
1157 <            ljsf_ = 1;
1158 <          }
1159 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1160 <            if (simParams_->haveSwitchingRadius()){
1161 <              sprintf(painCave.errMsg,
1162 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1163 <                      "\teven though the electrostaticSummationMethod was\n"
1164 <                      "\tset to %s\n", myMethod.c_str());
1165 <              painCave.isFatal = 1;
1166 <              simError();            
1167 <            }
1168 <          }
1169 <        }
1170 <      
1171 <        if (simParams_->haveSwitchingRadius()){
1172 <          rsw_ = simParams_->getSwitchingRadius();
1173 <        } else {        
1174 <          sprintf(painCave.errMsg,
1175 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1176 <                  "\tOpenMD will use a default value of\n"
1177 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1178 <          painCave.isFatal = 0;
1179 <          simError();
1180 <          rsw_ = 0.85 * rcut_;
1181 <        }
1182 <
1183 <        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1184 <
1185 <      } else {
1186 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1187 <        // We'll punt and let fortran figure out the cutoffs later.
1188 <        
1189 <        notifyFortranYouAreOnYourOwn();
1190 <
1191 <      }
1192 <    }
1193 <  }
1194 <
1195 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1196 <    
1197 <    int errorOut;
1198 <    int esm =  NONE;
1199 <    int sm = UNDAMPED;
1200 <    RealType alphaVal;
1201 <    RealType dielectric;
1202 <    
1203 <    errorOut = isError;
1204 <
1205 <    if (simParams_->haveElectrostaticSummationMethod()) {
1206 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1207 <      toUpper(myMethod);
1208 <      if (myMethod == "NONE") {
1209 <        esm = NONE;
1210 <      } else {
1211 <        if (myMethod == "SWITCHING_FUNCTION") {
1212 <          esm = SWITCHING_FUNCTION;
1213 <        } else {
1214 <          if (myMethod == "SHIFTED_POTENTIAL") {
1215 <            esm = SHIFTED_POTENTIAL;
1216 <          } else {
1217 <            if (myMethod == "SHIFTED_FORCE") {            
1218 <              esm = SHIFTED_FORCE;
1219 <            } else {
1220 <              if (myMethod == "REACTION_FIELD") {
1221 <                esm = REACTION_FIELD;
1222 <                dielectric = simParams_->getDielectric();
1223 <                if (!simParams_->haveDielectric()) {
1224 <                  // throw warning
1225 <                  sprintf( painCave.errMsg,
1226 <                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1227 <                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1228 <                  painCave.isFatal = 0;
1229 <                  simError();
1230 <                }
1231 <              } else {
1232 <                // throw error        
1233 <                sprintf( painCave.errMsg,
1234 <                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1235 <                         "\t(Input file specified %s .)\n"
1236 <                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1237 <                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1238 <                         "\t\"reaction_field\".\n", myMethod.c_str() );
1239 <                painCave.isFatal = 1;
1240 <                simError();
1241 <              }    
1242 <            }          
1243 <          }
1244 <        }
1245 <      }
1246 <    }
1247 <    
1248 <    if (simParams_->haveElectrostaticScreeningMethod()) {
1249 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1250 <      toUpper(myScreen);
1251 <      if (myScreen == "UNDAMPED") {
1252 <        sm = UNDAMPED;
1253 <      } else {
1254 <        if (myScreen == "DAMPED") {
1255 <          sm = DAMPED;
1256 <          if (!simParams_->haveDampingAlpha()) {
1257 <            // first set a cutoff dependent alpha value
1258 <            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1259 <            alphaVal = 0.5125 - rcut_* 0.025;
1260 <            // for values rcut > 20.5, alpha is zero
1261 <            if (alphaVal < 0) alphaVal = 0;
1262 <
1263 <            // throw warning
1264 <            sprintf( painCave.errMsg,
1265 <                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1266 <                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1267 <            painCave.isFatal = 0;
1268 <            simError();
1269 <          } else {
1270 <            alphaVal = simParams_->getDampingAlpha();
1271 <          }
1272 <          
1273 <        } else {
1274 <          // throw error        
1275 <          sprintf( painCave.errMsg,
1276 <                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1277 <                   "\t(Input file specified %s .)\n"
1278 <                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1279 <                   "or \"damped\".\n", myScreen.c_str() );
1280 <          painCave.isFatal = 1;
1281 <          simError();
1282 <        }
1283 <      }
1284 <    }
1285 <    
1286 <    // let's pass some summation method variables to fortran
1287 <    setElectrostaticSummationMethod( &esm );
1288 <    setFortranElectrostaticMethod( &esm );
1289 <    setScreeningMethod( &sm );
1290 <    setDampingAlpha( &alphaVal );
1291 <    setReactionFieldDielectric( &dielectric );
1292 <    initFortranFF( &errorOut );
939 >    fortranInitialized_ = true;
940    }
941  
1295  void SimInfo::setupSwitchingFunction() {    
1296    int ft = CUBIC;
1297
1298    if (simParams_->haveSwitchingFunctionType()) {
1299      std::string funcType = simParams_->getSwitchingFunctionType();
1300      toUpper(funcType);
1301      if (funcType == "CUBIC") {
1302        ft = CUBIC;
1303      } else {
1304        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1305          ft = FIFTH_ORDER_POLY;
1306        } else {
1307          // throw error        
1308          sprintf( painCave.errMsg,
1309                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1310          painCave.isFatal = 1;
1311          simError();
1312        }          
1313      }
1314    }
1315
1316    // send switching function notification to switcheroo
1317    setFunctionType(&ft);
1318
1319  }
1320
1321  void SimInfo::setupAccumulateBoxDipole() {    
1322
1323    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1324    if ( simParams_->haveAccumulateBoxDipole() )
1325      if ( simParams_->getAccumulateBoxDipole() ) {
1326        setAccumulateBoxDipole();
1327        calcBoxDipole_ = true;
1328      }
1329
1330  }
1331
942    void SimInfo::addProperty(GenericData* genData) {
943      properties_.addProperty(genData);  
944    }
945  
946 <  void SimInfo::removeProperty(const std::string& propName) {
946 >  void SimInfo::removeProperty(const string& propName) {
947      properties_.removeProperty(propName);  
948    }
949  
# Line 1341 | Line 951 | namespace OpenMD {
951      properties_.clearProperties();
952    }
953  
954 <  std::vector<std::string> SimInfo::getPropertyNames() {
954 >  vector<string> SimInfo::getPropertyNames() {
955      return properties_.getPropertyNames();  
956    }
957        
958 <  std::vector<GenericData*> SimInfo::getProperties() {
958 >  vector<GenericData*> SimInfo::getProperties() {
959      return properties_.getProperties();
960    }
961  
962 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
962 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
963      return properties_.getPropertyByName(propName);
964    }
965  
# Line 1363 | Line 973 | namespace OpenMD {
973      Molecule* mol;
974      RigidBody* rb;
975      Atom* atom;
976 +    CutoffGroup* cg;
977      SimInfo::MoleculeIterator mi;
978      Molecule::RigidBodyIterator rbIter;
979 <    Molecule::AtomIterator atomIter;;
979 >    Molecule::AtomIterator atomIter;
980 >    Molecule::CutoffGroupIterator cgIter;
981  
982      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
983          
# Line 1376 | Line 988 | namespace OpenMD {
988        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
989          rb->setSnapshotManager(sman_);
990        }
991 +
992 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
993 +        cg->setSnapshotManager(sman_);
994 +      }
995      }    
996      
997    }
# Line 1432 | Line 1048 | namespace OpenMD {
1048  
1049    }        
1050  
1051 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1051 >  ostream& operator <<(ostream& o, SimInfo& info) {
1052  
1053      return o;
1054    }
# Line 1475 | Line 1091 | namespace OpenMD {
1091  
1092  
1093         [  Ixx -Ixy  -Ixz ]
1094 <  J =| -Iyx  Iyy  -Iyz |
1094 >    J =| -Iyx  Iyy  -Iyz |
1095         [ -Izx -Iyz   Izz ]
1096      */
1097  
# Line 1582 | Line 1198 | namespace OpenMD {
1198      return IOIndexToIntegrableObject.at(index);
1199    }
1200    
1201 <  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1201 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1202      IOIndexToIntegrableObject= v;
1203    }
1204  
# Line 1624 | Line 1240 | namespace OpenMD {
1240      return;
1241    }
1242   /*
1243 <   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1243 >   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1244        assert( v.size() == nAtoms_ + nRigidBodies_);
1245        sdByGlobalIndex_ = v;
1246      }
# Line 1634 | Line 1250 | namespace OpenMD {
1250        return sdByGlobalIndex_.at(index);
1251      }  
1252   */  
1253 +  int SimInfo::getNGlobalConstraints() {
1254 +    int nGlobalConstraints;
1255 + #ifdef IS_MPI
1256 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1257 +                  MPI_COMM_WORLD);    
1258 + #else
1259 +    nGlobalConstraints =  nConstraints_;
1260 + #endif
1261 +    return nGlobalConstraints;
1262 +  }
1263 +
1264   }//end namespace OpenMD
1265  

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 1390 by gezelter, Wed Nov 25 20:02:06 2009 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1547 by gezelter, Mon Apr 11 18:44:16 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines