ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 326 by tim, Sun Feb 13 20:05:42 2005 UTC vs.
Revision 1277 by gezelter, Mon Jul 14 12:35:58 2008 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57 + #include "UseTheForce/fCutoffPolicy.h"
58 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 + #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61   #include "UseTheForce/doForces_interface.h"
62 < #include "UseTheForce/notifyCutoffs_interface.h"
62 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
65   #include "utils/MemoryUtils.hpp"
66   #include "utils/simError.h"
67   #include "selection/SelectionManager.hpp"
68 + #include "io/ForceFieldOptions.hpp"
69 + #include "UseTheForce/ForceField.hpp"
70  
71 +
72   #ifdef IS_MPI
73   #include "UseTheForce/mpiComponentPlan.h"
74   #include "UseTheForce/DarkSide/simParallel_interface.h"
75   #endif
76  
77   namespace oopse {
78 +  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 +    std::map<int, std::set<int> >::iterator i = container.find(index);
80 +    std::set<int> result;
81 +    if (i != container.end()) {
82 +        result = i->second;
83 +    }
84  
85 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
86 <                                ForceField* ff, Globals* simParams) :
87 <                                forceField_(ff), simParams_(simParams),
88 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
89 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
90 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
91 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
92 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
93 <                                sman_(NULL), fortranInitialized_(false), selectMan_(NULL) {
85 >    return result;
86 >  }
87 >  
88 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
89 >    forceField_(ff), simParams_(simParams),
90 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
94 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
95 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
96 >    calcBoxDipole_(false), useAtomicVirial_(true) {
97  
98 <            
99 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
100 <    MoleculeStamp* molStamp;
101 <    int nMolWithSameStamp;
102 <    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
103 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
104 <    CutoffGroupStamp* cgStamp;    
105 <    RigidBodyStamp* rbStamp;
106 <    int nRigidAtoms = 0;
107 <    
108 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
109 <        molStamp = i->first;
110 <        nMolWithSameStamp = i->second;
98 >
99 >      MoleculeStamp* molStamp;
100 >      int nMolWithSameStamp;
101 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
102 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
103 >      CutoffGroupStamp* cgStamp;    
104 >      RigidBodyStamp* rbStamp;
105 >      int nRigidAtoms = 0;
106 >
107 >      std::vector<Component*> components = simParams->getComponents();
108 >      
109 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
110 >        molStamp = (*i)->getMoleculeStamp();
111 >        nMolWithSameStamp = (*i)->getNMol();
112          
113          addMoleculeStamp(molStamp, nMolWithSameStamp);
114  
115          //calculate atoms in molecules
116          nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
117  
97
118          //calculate atoms in cutoff groups
119          int nAtomsInGroups = 0;
120          int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
121          
122          for (int j=0; j < nCutoffGroupsInStamp; j++) {
123 <            cgStamp = molStamp->getCutoffGroup(j);
124 <            nAtomsInGroups += cgStamp->getNMembers();
123 >          cgStamp = molStamp->getCutoffGroupStamp(j);
124 >          nAtomsInGroups += cgStamp->getNMembers();
125          }
126  
127          nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
128 +
129          nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
130  
131          //calculate atoms in rigid bodies
# Line 112 | Line 133 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
133          int nRigidBodiesInStamp = molStamp->getNRigidBodies();
134          
135          for (int j=0; j < nRigidBodiesInStamp; j++) {
136 <            rbStamp = molStamp->getRigidBody(j);
137 <            nAtomsInRigidBodies += rbStamp->getNMembers();
136 >          rbStamp = molStamp->getRigidBodyStamp(j);
137 >          nAtomsInRigidBodies += rbStamp->getNMembers();
138          }
139  
140          nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
141          nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
142          
143 <    }
143 >      }
144  
145 <    //every free atom (atom does not belong to cutoff groups) is a cutoff group
146 <    //therefore the total number of cutoff groups in the system is equal to
147 <    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
148 <    //file plus the number of cutoff groups defined in meta-data file
149 <    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
145 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
146 >      //group therefore the total number of cutoff groups in the system is
147 >      //equal to the total number of atoms minus number of atoms belong to
148 >      //cutoff group defined in meta-data file plus the number of cutoff
149 >      //groups defined in meta-data file
150 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
151  
152 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
153 <    //therefore the total number of  integrable objects in the system is equal to
154 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
155 <    //file plus the number of  rigid bodies defined in meta-data file
156 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
157 <
158 <    nGlobalMols_ = molStampIds_.size();
159 <
160 < #ifdef IS_MPI    
161 <    molToProcMap_.resize(nGlobalMols_);
162 < #endif
141 <
142 <    selectMan_ = new SelectionManager(this);
143 <    selectMan_->selectAll();
144 < }
145 <
146 < SimInfo::~SimInfo() {
147 <    //MemoryUtils::deleteVectorOfPointer(molecules_);
152 >      //every free atom (atom does not belong to rigid bodies) is an
153 >      //integrable object therefore the total number of integrable objects
154 >      //in the system is equal to the total number of atoms minus number of
155 >      //atoms belong to rigid body defined in meta-data file plus the number
156 >      //of rigid bodies defined in meta-data file
157 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
158 >                                                + nGlobalRigidBodies_;
159 >  
160 >      nGlobalMols_ = molStampIds_.size();
161 >      molToProcMap_.resize(nGlobalMols_);
162 >    }
163  
164 <    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
165 <    
164 >  SimInfo::~SimInfo() {
165 >    std::map<int, Molecule*>::iterator i;
166 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
167 >      delete i->second;
168 >    }
169 >    molecules_.clear();
170 >      
171      delete sman_;
172      delete simParams_;
173      delete forceField_;
174 <    delete selectMan_;
155 < }
174 >  }
175  
176 < int SimInfo::getNGlobalConstraints() {
176 >  int SimInfo::getNGlobalConstraints() {
177      int nGlobalConstraints;
178   #ifdef IS_MPI
179      MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
# Line 163 | Line 182 | int SimInfo::getNGlobalConstraints() {
182      nGlobalConstraints =  nConstraints_;
183   #endif
184      return nGlobalConstraints;
185 < }
185 >  }
186  
187 < bool SimInfo::addMolecule(Molecule* mol) {
187 >  bool SimInfo::addMolecule(Molecule* mol) {
188      MoleculeIterator i;
189  
190      i = molecules_.find(mol->getGlobalIndex());
191      if (i == molecules_.end() ) {
192  
193 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
193 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
194          
195 <        nAtoms_ += mol->getNAtoms();
196 <        nBonds_ += mol->getNBonds();
197 <        nBends_ += mol->getNBends();
198 <        nTorsions_ += mol->getNTorsions();
199 <        nRigidBodies_ += mol->getNRigidBodies();
200 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
201 <        nCutoffGroups_ += mol->getNCutoffGroups();
202 <        nConstraints_ += mol->getNConstraintPairs();
195 >      nAtoms_ += mol->getNAtoms();
196 >      nBonds_ += mol->getNBonds();
197 >      nBends_ += mol->getNBends();
198 >      nTorsions_ += mol->getNTorsions();
199 >      nInversions_ += mol->getNInversions();
200 >      nRigidBodies_ += mol->getNRigidBodies();
201 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
202 >      nCutoffGroups_ += mol->getNCutoffGroups();
203 >      nConstraints_ += mol->getNConstraintPairs();
204  
205 <        addExcludePairs(mol);
205 >      addExcludePairs(mol);
206          
207 <        return true;
207 >      return true;
208      } else {
209 <        return false;
209 >      return false;
210      }
211 < }
211 >  }
212  
213 < bool SimInfo::removeMolecule(Molecule* mol) {
213 >  bool SimInfo::removeMolecule(Molecule* mol) {
214      MoleculeIterator i;
215      i = molecules_.find(mol->getGlobalIndex());
216  
217      if (i != molecules_.end() ) {
218  
219 <        assert(mol == i->second);
219 >      assert(mol == i->second);
220          
221 <        nAtoms_ -= mol->getNAtoms();
222 <        nBonds_ -= mol->getNBonds();
223 <        nBends_ -= mol->getNBends();
224 <        nTorsions_ -= mol->getNTorsions();
225 <        nRigidBodies_ -= mol->getNRigidBodies();
226 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
227 <        nCutoffGroups_ -= mol->getNCutoffGroups();
228 <        nConstraints_ -= mol->getNConstraintPairs();
221 >      nAtoms_ -= mol->getNAtoms();
222 >      nBonds_ -= mol->getNBonds();
223 >      nBends_ -= mol->getNBends();
224 >      nTorsions_ -= mol->getNTorsions();
225 >      nInversions_ -= mol->getNInversions();
226 >      nRigidBodies_ -= mol->getNRigidBodies();
227 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
228 >      nCutoffGroups_ -= mol->getNCutoffGroups();
229 >      nConstraints_ -= mol->getNConstraintPairs();
230  
231 <        removeExcludePairs(mol);
232 <        molecules_.erase(mol->getGlobalIndex());
231 >      removeExcludePairs(mol);
232 >      molecules_.erase(mol->getGlobalIndex());
233  
234 <        delete mol;
234 >      delete mol;
235          
236 <        return true;
236 >      return true;
237      } else {
238 <        return false;
238 >      return false;
239      }
240  
241  
242 < }    
242 >  }    
243  
244          
245 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
245 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
246      i = molecules_.begin();
247      return i == molecules_.end() ? NULL : i->second;
248 < }    
248 >  }    
249  
250 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
250 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
251      ++i;
252      return i == molecules_.end() ? NULL : i->second;    
253 < }
253 >  }
254  
255  
256 < void SimInfo::calcNdf() {
256 >  void SimInfo::calcNdf() {
257      int ndf_local;
258      MoleculeIterator i;
259      std::vector<StuntDouble*>::iterator j;
# Line 242 | Line 263 | void SimInfo::calcNdf() {
263      ndf_local = 0;
264      
265      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
266 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
267 <               integrableObject = mol->nextIntegrableObject(j)) {
247 <
248 <            ndf_local += 3;
266 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
267 >           integrableObject = mol->nextIntegrableObject(j)) {
268  
269 <            if (integrableObject->isDirectional()) {
270 <                if (integrableObject->isLinear()) {
271 <                    ndf_local += 2;
272 <                } else {
273 <                    ndf_local += 3;
274 <                }
275 <            }
269 >        ndf_local += 3;
270 >
271 >        if (integrableObject->isDirectional()) {
272 >          if (integrableObject->isLinear()) {
273 >            ndf_local += 2;
274 >          } else {
275 >            ndf_local += 3;
276 >          }
277 >        }
278              
279 <        }//end for (integrableObject)
280 <    }// end for (mol)
279 >      }
280 >    }
281      
282      // n_constraints is local, so subtract them on each processor
283      ndf_local -= nConstraints_;
# Line 271 | Line 292 | void SimInfo::calcNdf() {
292      // entire system:
293      ndf_ = ndf_ - 3 - nZconstraint_;
294  
295 < }
295 >  }
296  
297 < void SimInfo::calcNdfRaw() {
297 >  int SimInfo::getFdf() {
298 > #ifdef IS_MPI
299 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
300 > #else
301 >    fdf_ = fdf_local;
302 > #endif
303 >    return fdf_;
304 >  }
305 >    
306 >  void SimInfo::calcNdfRaw() {
307      int ndfRaw_local;
308  
309      MoleculeIterator i;
# Line 285 | Line 315 | void SimInfo::calcNdfRaw() {
315      ndfRaw_local = 0;
316      
317      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
318 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
319 <               integrableObject = mol->nextIntegrableObject(j)) {
318 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
319 >           integrableObject = mol->nextIntegrableObject(j)) {
320  
321 <            ndfRaw_local += 3;
321 >        ndfRaw_local += 3;
322  
323 <            if (integrableObject->isDirectional()) {
324 <                if (integrableObject->isLinear()) {
325 <                    ndfRaw_local += 2;
326 <                } else {
327 <                    ndfRaw_local += 3;
328 <                }
329 <            }
323 >        if (integrableObject->isDirectional()) {
324 >          if (integrableObject->isLinear()) {
325 >            ndfRaw_local += 2;
326 >          } else {
327 >            ndfRaw_local += 3;
328 >          }
329 >        }
330              
331 <        }
331 >      }
332      }
333      
334   #ifdef IS_MPI
# Line 306 | Line 336 | void SimInfo::calcNdfRaw() {
336   #else
337      ndfRaw_ = ndfRaw_local;
338   #endif
339 < }
339 >  }
340  
341 < void SimInfo::calcNdfTrans() {
341 >  void SimInfo::calcNdfTrans() {
342      int ndfTrans_local;
343  
344      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 322 | Line 352 | void SimInfo::calcNdfTrans() {
352  
353      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
354  
355 < }
355 >  }
356  
357 < void SimInfo::addExcludePairs(Molecule* mol) {
357 >  void SimInfo::addExcludePairs(Molecule* mol) {
358      std::vector<Bond*>::iterator bondIter;
359      std::vector<Bend*>::iterator bendIter;
360      std::vector<Torsion*>::iterator torsionIter;
361 +    std::vector<Inversion*>::iterator inversionIter;
362      Bond* bond;
363      Bend* bend;
364      Torsion* torsion;
365 +    Inversion* inversion;
366      int a;
367      int b;
368      int c;
369      int d;
370 +
371 +    std::map<int, std::set<int> > atomGroups;
372 +
373 +    Molecule::RigidBodyIterator rbIter;
374 +    RigidBody* rb;
375 +    Molecule::IntegrableObjectIterator ii;
376 +    StuntDouble* integrableObject;
377      
378 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
379 +           integrableObject = mol->nextIntegrableObject(ii)) {
380 +
381 +      if (integrableObject->isRigidBody()) {
382 +          rb = static_cast<RigidBody*>(integrableObject);
383 +          std::vector<Atom*> atoms = rb->getAtoms();
384 +          std::set<int> rigidAtoms;
385 +          for (int i = 0; i < atoms.size(); ++i) {
386 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
387 +          }
388 +          for (int i = 0; i < atoms.size(); ++i) {
389 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
390 +          }      
391 +      } else {
392 +        std::set<int> oneAtomSet;
393 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
394 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
395 +      }
396 +    }  
397 +
398 +    
399 +    
400      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
401 <        a = bond->getAtomA()->getGlobalIndex();
402 <        b = bond->getAtomB()->getGlobalIndex();        
403 <        exclude_.addPair(a, b);
401 >      a = bond->getAtomA()->getGlobalIndex();
402 >      b = bond->getAtomB()->getGlobalIndex();        
403 >      exclude_.addPair(a, b);
404      }
405  
406      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
407 <        a = bend->getAtomA()->getGlobalIndex();
408 <        b = bend->getAtomB()->getGlobalIndex();        
409 <        c = bend->getAtomC()->getGlobalIndex();
407 >      a = bend->getAtomA()->getGlobalIndex();
408 >      b = bend->getAtomB()->getGlobalIndex();        
409 >      c = bend->getAtomC()->getGlobalIndex();
410 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
411 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
412 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
413  
414 <        exclude_.addPair(a, b);
415 <        exclude_.addPair(a, c);
416 <        exclude_.addPair(b, c);        
414 >      exclude_.addPairs(rigidSetA, rigidSetB);
415 >      exclude_.addPairs(rigidSetA, rigidSetC);
416 >      exclude_.addPairs(rigidSetB, rigidSetC);
417 >      
418 >      //exclude_.addPair(a, b);
419 >      //exclude_.addPair(a, c);
420 >      //exclude_.addPair(b, c);        
421      }
422  
423      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
424 <        a = torsion->getAtomA()->getGlobalIndex();
425 <        b = torsion->getAtomB()->getGlobalIndex();        
426 <        c = torsion->getAtomC()->getGlobalIndex();        
427 <        d = torsion->getAtomD()->getGlobalIndex();        
424 >      a = torsion->getAtomA()->getGlobalIndex();
425 >      b = torsion->getAtomB()->getGlobalIndex();        
426 >      c = torsion->getAtomC()->getGlobalIndex();        
427 >      d = torsion->getAtomD()->getGlobalIndex();        
428 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
429 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
430 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
431 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
432  
433 <        exclude_.addPair(a, b);
434 <        exclude_.addPair(a, c);
435 <        exclude_.addPair(a, d);
436 <        exclude_.addPair(b, c);
437 <        exclude_.addPair(b, d);
438 <        exclude_.addPair(c, d);        
433 >      exclude_.addPairs(rigidSetA, rigidSetB);
434 >      exclude_.addPairs(rigidSetA, rigidSetC);
435 >      exclude_.addPairs(rigidSetA, rigidSetD);
436 >      exclude_.addPairs(rigidSetB, rigidSetC);
437 >      exclude_.addPairs(rigidSetB, rigidSetD);
438 >      exclude_.addPairs(rigidSetC, rigidSetD);
439 >
440 >      /*
441 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
442 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
443 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
444 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
445 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
446 >      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
447 >        
448 >      
449 >      exclude_.addPair(a, b);
450 >      exclude_.addPair(a, c);
451 >      exclude_.addPair(a, d);
452 >      exclude_.addPair(b, c);
453 >      exclude_.addPair(b, d);
454 >      exclude_.addPair(c, d);        
455 >      */
456      }
457  
458 <    
459 < }
458 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
459 >         inversion = mol->nextInversion(inversionIter)) {
460 >      a = inversion->getAtomA()->getGlobalIndex();
461 >      b = inversion->getAtomB()->getGlobalIndex();        
462 >      c = inversion->getAtomC()->getGlobalIndex();        
463 >      d = inversion->getAtomD()->getGlobalIndex();        
464 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
465 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
466 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
467 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
468  
469 < void SimInfo::removeExcludePairs(Molecule* mol) {
469 >      exclude_.addPairs(rigidSetA, rigidSetB);
470 >      exclude_.addPairs(rigidSetA, rigidSetC);
471 >      exclude_.addPairs(rigidSetA, rigidSetD);
472 >      exclude_.addPairs(rigidSetB, rigidSetC);
473 >      exclude_.addPairs(rigidSetB, rigidSetD);
474 >      exclude_.addPairs(rigidSetC, rigidSetD);
475 >
476 >      /*
477 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
478 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
479 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
480 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
481 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
482 >      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
483 >        
484 >      
485 >      exclude_.addPair(a, b);
486 >      exclude_.addPair(a, c);
487 >      exclude_.addPair(a, d);
488 >      exclude_.addPair(b, c);
489 >      exclude_.addPair(b, d);
490 >      exclude_.addPair(c, d);        
491 >      */
492 >    }
493 >
494 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
495 >      std::vector<Atom*> atoms = rb->getAtoms();
496 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
497 >        for (int j = i + 1; j < atoms.size(); ++j) {
498 >          a = atoms[i]->getGlobalIndex();
499 >          b = atoms[j]->getGlobalIndex();
500 >          exclude_.addPair(a, b);
501 >        }
502 >      }
503 >    }        
504 >
505 >  }
506 >
507 >  void SimInfo::removeExcludePairs(Molecule* mol) {
508      std::vector<Bond*>::iterator bondIter;
509      std::vector<Bend*>::iterator bendIter;
510      std::vector<Torsion*>::iterator torsionIter;
511 +    std::vector<Inversion*>::iterator inversionIter;
512      Bond* bond;
513      Bend* bend;
514      Torsion* torsion;
515 +    Inversion* inversion;
516      int a;
517      int b;
518      int c;
519      int d;
520 +
521 +    std::map<int, std::set<int> > atomGroups;
522 +
523 +    Molecule::RigidBodyIterator rbIter;
524 +    RigidBody* rb;
525 +    Molecule::IntegrableObjectIterator ii;
526 +    StuntDouble* integrableObject;
527      
528 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
529 +           integrableObject = mol->nextIntegrableObject(ii)) {
530 +
531 +      if (integrableObject->isRigidBody()) {
532 +          rb = static_cast<RigidBody*>(integrableObject);
533 +          std::vector<Atom*> atoms = rb->getAtoms();
534 +          std::set<int> rigidAtoms;
535 +          for (int i = 0; i < atoms.size(); ++i) {
536 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
537 +          }
538 +          for (int i = 0; i < atoms.size(); ++i) {
539 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
540 +          }      
541 +      } else {
542 +        std::set<int> oneAtomSet;
543 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
544 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
545 +      }
546 +    }  
547 +
548 +    
549      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
550 <        a = bond->getAtomA()->getGlobalIndex();
551 <        b = bond->getAtomB()->getGlobalIndex();        
552 <        exclude_.removePair(a, b);
550 >      a = bond->getAtomA()->getGlobalIndex();
551 >      b = bond->getAtomB()->getGlobalIndex();        
552 >      exclude_.removePair(a, b);
553      }
554  
555      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
556 <        a = bend->getAtomA()->getGlobalIndex();
557 <        b = bend->getAtomB()->getGlobalIndex();        
558 <        c = bend->getAtomC()->getGlobalIndex();
556 >      a = bend->getAtomA()->getGlobalIndex();
557 >      b = bend->getAtomB()->getGlobalIndex();        
558 >      c = bend->getAtomC()->getGlobalIndex();
559  
560 <        exclude_.removePair(a, b);
561 <        exclude_.removePair(a, c);
562 <        exclude_.removePair(b, c);        
560 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
561 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
562 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
563 >
564 >      exclude_.removePairs(rigidSetA, rigidSetB);
565 >      exclude_.removePairs(rigidSetA, rigidSetC);
566 >      exclude_.removePairs(rigidSetB, rigidSetC);
567 >      
568 >      //exclude_.removePair(a, b);
569 >      //exclude_.removePair(a, c);
570 >      //exclude_.removePair(b, c);        
571      }
572  
573      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
574 <        a = torsion->getAtomA()->getGlobalIndex();
575 <        b = torsion->getAtomB()->getGlobalIndex();        
576 <        c = torsion->getAtomC()->getGlobalIndex();        
577 <        d = torsion->getAtomD()->getGlobalIndex();        
574 >      a = torsion->getAtomA()->getGlobalIndex();
575 >      b = torsion->getAtomB()->getGlobalIndex();        
576 >      c = torsion->getAtomC()->getGlobalIndex();        
577 >      d = torsion->getAtomD()->getGlobalIndex();        
578  
579 <        exclude_.removePair(a, b);
580 <        exclude_.removePair(a, c);
581 <        exclude_.removePair(a, d);
582 <        exclude_.removePair(b, c);
583 <        exclude_.removePair(b, d);
584 <        exclude_.removePair(c, d);        
579 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
580 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
581 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
582 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
583 >
584 >      exclude_.removePairs(rigidSetA, rigidSetB);
585 >      exclude_.removePairs(rigidSetA, rigidSetC);
586 >      exclude_.removePairs(rigidSetA, rigidSetD);
587 >      exclude_.removePairs(rigidSetB, rigidSetC);
588 >      exclude_.removePairs(rigidSetB, rigidSetD);
589 >      exclude_.removePairs(rigidSetC, rigidSetD);
590 >
591 >      /*
592 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
593 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
594 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
595 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
596 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
597 >      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
598 >
599 >      
600 >      exclude_.removePair(a, b);
601 >      exclude_.removePair(a, c);
602 >      exclude_.removePair(a, d);
603 >      exclude_.removePair(b, c);
604 >      exclude_.removePair(b, d);
605 >      exclude_.removePair(c, d);        
606 >      */
607      }
608  
609 < }
609 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL; inversion = mol->nextInversion(inversionIter)) {
610 >      a = inversion->getAtomA()->getGlobalIndex();
611 >      b = inversion->getAtomB()->getGlobalIndex();        
612 >      c = inversion->getAtomC()->getGlobalIndex();        
613 >      d = inversion->getAtomD()->getGlobalIndex();        
614  
615 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
616 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
617 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
618 +      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
619  
620 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
620 >      exclude_.removePairs(rigidSetA, rigidSetB);
621 >      exclude_.removePairs(rigidSetA, rigidSetC);
622 >      exclude_.removePairs(rigidSetA, rigidSetD);
623 >      exclude_.removePairs(rigidSetB, rigidSetC);
624 >      exclude_.removePairs(rigidSetB, rigidSetD);
625 >      exclude_.removePairs(rigidSetC, rigidSetD);
626 >
627 >      /*
628 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
629 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
630 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
631 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
632 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
633 >      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
634 >
635 >      
636 >      exclude_.removePair(a, b);
637 >      exclude_.removePair(a, c);
638 >      exclude_.removePair(a, d);
639 >      exclude_.removePair(b, c);
640 >      exclude_.removePair(b, d);
641 >      exclude_.removePair(c, d);        
642 >      */
643 >    }
644 >
645 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
646 >      std::vector<Atom*> atoms = rb->getAtoms();
647 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
648 >        for (int j = i + 1; j < atoms.size(); ++j) {
649 >          a = atoms[i]->getGlobalIndex();
650 >          b = atoms[j]->getGlobalIndex();
651 >          exclude_.removePair(a, b);
652 >        }
653 >      }
654 >    }        
655 >
656 >  }
657 >
658 >
659 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
660      int curStampId;
661  
662      //index from 0
# Line 422 | Line 664 | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp
664  
665      moleculeStamps_.push_back(molStamp);
666      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
667 < }
667 >  }
668  
669 < void SimInfo::update() {
669 >  void SimInfo::update() {
670  
671      setupSimType();
672  
# Line 437 | Line 679 | void SimInfo::update() {
679      //setup fortran force field
680      /** @deprecate */    
681      int isError = 0;
440    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
441    if(isError){
442        sprintf( painCave.errMsg,
443         "ForceField error: There was an error initializing the forceField in fortran.\n" );
444        painCave.isFatal = 1;
445        simError();
446    }
447  
682      
683      setupCutoff();
684 +    
685 +    setupElectrostaticSummationMethod( isError );
686 +    setupSwitchingFunction();
687 +    setupAccumulateBoxDipole();
688  
689 +    if(isError){
690 +      sprintf( painCave.errMsg,
691 +               "ForceField error: There was an error initializing the forceField in fortran.\n" );
692 +      painCave.isFatal = 1;
693 +      simError();
694 +    }
695 +
696      calcNdf();
697      calcNdfRaw();
698      calcNdfTrans();
699  
700      fortranInitialized_ = true;
701 < }
701 >  }
702  
703 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
703 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
704      SimInfo::MoleculeIterator mi;
705      Molecule* mol;
706      Molecule::AtomIterator ai;
# Line 464 | Line 709 | std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
709  
710      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
711  
712 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
713 <            atomTypes.insert(atom->getAtomType());
714 <        }
712 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
713 >        atomTypes.insert(atom->getAtomType());
714 >      }
715          
716      }
717  
718      return atomTypes;        
719 < }
719 >  }
720  
721 < void SimInfo::setupSimType() {
721 >  void SimInfo::setupSimType() {
722      std::set<AtomType*>::iterator i;
723      std::set<AtomType*> atomTypes;
724      atomTypes = getUniqueAtomTypes();
# Line 481 | Line 726 | void SimInfo::setupSimType() {
726      int useLennardJones = 0;
727      int useElectrostatic = 0;
728      int useEAM = 0;
729 +    int useSC = 0;
730      int useCharge = 0;
731      int useDirectional = 0;
732      int useDipole = 0;
733      int useGayBerne = 0;
734      int useSticky = 0;
735 +    int useStickyPower = 0;
736      int useShape = 0;
737      int useFLARB = 0; //it is not in AtomType yet
738      int useDirectionalAtom = 0;    
739      int useElectrostatics = 0;
740      //usePBC and useRF are from simParams
741 <    int usePBC = simParams_->getPBC();
742 <    int useRF = simParams_->getUseRF();
741 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
742 >    int useRF;
743 >    int useSF;
744 >    int useSP;
745 >    int useBoxDipole;
746  
747 +    std::string myMethod;
748 +
749 +    // set the useRF logical
750 +    useRF = 0;
751 +    useSF = 0;
752 +    useSP = 0;
753 +
754 +
755 +    if (simParams_->haveElectrostaticSummationMethod()) {
756 +      std::string myMethod = simParams_->getElectrostaticSummationMethod();
757 +      toUpper(myMethod);
758 +      if (myMethod == "REACTION_FIELD"){
759 +        useRF = 1;
760 +      } else if (myMethod == "SHIFTED_FORCE"){
761 +        useSF = 1;
762 +      } else if (myMethod == "SHIFTED_POTENTIAL"){
763 +        useSP = 1;
764 +      }
765 +    }
766 +    
767 +    if (simParams_->haveAccumulateBoxDipole())
768 +      if (simParams_->getAccumulateBoxDipole())
769 +        useBoxDipole = 1;
770 +
771 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
772 +
773      //loop over all of the atom types
774      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
775 <        useLennardJones |= (*i)->isLennardJones();
776 <        useElectrostatic |= (*i)->isElectrostatic();
777 <        useEAM |= (*i)->isEAM();
778 <        useCharge |= (*i)->isCharge();
779 <        useDirectional |= (*i)->isDirectional();
780 <        useDipole |= (*i)->isDipole();
781 <        useGayBerne |= (*i)->isGayBerne();
782 <        useSticky |= (*i)->isSticky();
783 <        useShape |= (*i)->isShape();
775 >      useLennardJones |= (*i)->isLennardJones();
776 >      useElectrostatic |= (*i)->isElectrostatic();
777 >      useEAM |= (*i)->isEAM();
778 >      useSC |= (*i)->isSC();
779 >      useCharge |= (*i)->isCharge();
780 >      useDirectional |= (*i)->isDirectional();
781 >      useDipole |= (*i)->isDipole();
782 >      useGayBerne |= (*i)->isGayBerne();
783 >      useSticky |= (*i)->isSticky();
784 >      useStickyPower |= (*i)->isStickyPower();
785 >      useShape |= (*i)->isShape();
786      }
787  
788 <    if (useSticky || useDipole || useGayBerne || useShape) {
789 <        useDirectionalAtom = 1;
788 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
789 >      useDirectionalAtom = 1;
790      }
791  
792      if (useCharge || useDipole) {
793 <        useElectrostatics = 1;
793 >      useElectrostatics = 1;
794      }
795  
796   #ifdef IS_MPI    
# Line 539 | Line 817 | void SimInfo::setupSimType() {
817      temp = useSticky;
818      MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
819  
820 +    temp = useStickyPower;
821 +    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
822 +    
823      temp = useGayBerne;
824      MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
825  
826      temp = useEAM;
827      MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
828  
829 +    temp = useSC;
830 +    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
831 +    
832      temp = useShape;
833      MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
834  
# Line 553 | Line 837 | void SimInfo::setupSimType() {
837  
838      temp = useRF;
839      MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
840 <    
840 >
841 >    temp = useSF;
842 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
843 >
844 >    temp = useSP;
845 >    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
846 >
847 >    temp = useBoxDipole;
848 >    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
849 >
850 >    temp = useAtomicVirial_;
851 >    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
852 >
853   #endif
854  
855      fInfo_.SIM_uses_PBC = usePBC;    
# Line 563 | Line 859 | void SimInfo::setupSimType() {
859      fInfo_.SIM_uses_Charges = useCharge;
860      fInfo_.SIM_uses_Dipoles = useDipole;
861      fInfo_.SIM_uses_Sticky = useSticky;
862 +    fInfo_.SIM_uses_StickyPower = useStickyPower;
863      fInfo_.SIM_uses_GayBerne = useGayBerne;
864      fInfo_.SIM_uses_EAM = useEAM;
865 +    fInfo_.SIM_uses_SC = useSC;
866      fInfo_.SIM_uses_Shapes = useShape;
867      fInfo_.SIM_uses_FLARB = useFLARB;
868      fInfo_.SIM_uses_RF = useRF;
869 +    fInfo_.SIM_uses_SF = useSF;
870 +    fInfo_.SIM_uses_SP = useSP;
871 +    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
872 +    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
873 +  }
874  
875 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
573 <
574 <        if (simParams_->haveDielectric()) {
575 <            fInfo_.dielect = simParams_->getDielectric();
576 <        } else {
577 <            sprintf(painCave.errMsg,
578 <                    "SimSetup Error: No Dielectric constant was set.\n"
579 <                    "\tYou are trying to use Reaction Field without"
580 <                    "\tsetting a dielectric constant!\n");
581 <            painCave.isFatal = 1;
582 <            simError();
583 <        }
584 <        
585 <    } else {
586 <        fInfo_.dielect = 0.0;
587 <    }
588 <
589 < }
590 <
591 < void SimInfo::setupFortranSim() {
875 >  void SimInfo::setupFortranSim() {
876      int isError;
877      int nExclude;
878      std::vector<int> fortranGlobalGroupMembership;
# Line 598 | Line 882 | void SimInfo::setupFortranSim() {
882  
883      //globalGroupMembership_ is filled by SimCreator    
884      for (int i = 0; i < nGlobalAtoms_; i++) {
885 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
885 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
886      }
887  
888      //calculate mass ratio of cutoff group
889 <    std::vector<double> mfact;
889 >    std::vector<RealType> mfact;
890      SimInfo::MoleculeIterator mi;
891      Molecule* mol;
892      Molecule::CutoffGroupIterator ci;
893      CutoffGroup* cg;
894      Molecule::AtomIterator ai;
895      Atom* atom;
896 <    double totalMass;
896 >    RealType totalMass;
897  
898      //to avoid memory reallocation, reserve enough space for mfact
899      mfact.reserve(getNCutoffGroups());
900      
901      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
902 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
902 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
903  
904 <            totalMass = cg->getMass();
905 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
906 <                        mfact.push_back(atom->getMass()/totalMass);
907 <            }
904 >        totalMass = cg->getMass();
905 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
906 >          // Check for massless groups - set mfact to 1 if true
907 >          if (totalMass != 0)
908 >            mfact.push_back(atom->getMass()/totalMass);
909 >          else
910 >            mfact.push_back( 1.0 );
911 >        }
912  
913 <        }      
913 >      }      
914      }
915  
916      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
# Line 632 | Line 920 | void SimInfo::setupFortranSim() {
920      identArray.reserve(getNAtoms());
921      
922      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
923 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
924 <            identArray.push_back(atom->getIdent());
925 <        }
923 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
924 >        identArray.push_back(atom->getIdent());
925 >      }
926      }    
927  
928      //fill molMembershipArray
929      //molMembershipArray is filled by SimCreator    
930      std::vector<int> molMembershipArray(nGlobalAtoms_);
931      for (int i = 0; i < nGlobalAtoms_; i++) {
932 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
932 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
933      }
934      
935      //setup fortran simulation
648    //gloalExcludes and molMembershipArray should go away (They are never used)
649    //why the hell fortran need to know molecule?
650    //OOPSE = Object-Obfuscated Parallel Simulation Engine
936      int nGlobalExcludes = 0;
937      int* globalExcludes = NULL;
938      int* excludeList = exclude_.getExcludeList();
939 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
940 <                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
941 <                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
942 <
939 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
940 >                   &nExclude, excludeList , &nGlobalExcludes, globalExcludes,
941 >                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
942 >                   &fortranGlobalGroupMembership[0], &isError);
943 >    
944      if( isError ){
945 <
946 <        sprintf( painCave.errMsg,
947 <                 "There was an error setting the simulation information in fortran.\n" );
948 <        painCave.isFatal = 1;
949 <        painCave.severity = OOPSE_ERROR;
950 <        simError();
945 >      
946 >      sprintf( painCave.errMsg,
947 >               "There was an error setting the simulation information in fortran.\n" );
948 >      painCave.isFatal = 1;
949 >      painCave.severity = OOPSE_ERROR;
950 >      simError();
951      }
952 <
953 < #ifdef IS_MPI
952 >    
953 >    
954      sprintf( checkPointMsg,
955 <       "succesfully sent the simulation information to fortran.\n");
956 <    MPIcheckPoint();
957 < #endif // is_mpi
958 < }
955 >             "succesfully sent the simulation information to fortran.\n");
956 >    
957 >    errorCheckPoint();
958 >    
959 >    // Setup number of neighbors in neighbor list if present
960 >    if (simParams_->haveNeighborListNeighbors()) {
961 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
962 >      setNeighbors(&nlistNeighbors);
963 >    }
964 >  
965  
966 +  }
967  
968 < #ifdef IS_MPI
969 < void SimInfo::setupFortranParallel() {
970 <    
968 >
969 >  void SimInfo::setupFortranParallel() {
970 > #ifdef IS_MPI    
971      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
972      std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
973      std::vector<int> localToGlobalCutoffGroupIndex;
# Line 689 | Line 982 | void SimInfo::setupFortranParallel() {
982  
983      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
984  
985 <        //local index(index in DataStorge) of atom is important
986 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
987 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
988 <        }
985 >      //local index(index in DataStorge) of atom is important
986 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
987 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
988 >      }
989  
990 <        //local index of cutoff group is trivial, it only depends on the order of travesing
991 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
992 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
993 <        }        
990 >      //local index of cutoff group is trivial, it only depends on the order of travesing
991 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
992 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
993 >      }        
994          
995      }
996  
# Line 717 | Line 1010 | void SimInfo::setupFortranParallel() {
1010                      &localToGlobalCutoffGroupIndex[0], &isError);
1011  
1012      if (isError) {
1013 <        sprintf(painCave.errMsg,
1014 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
1015 <        painCave.isFatal = 1;
1016 <        simError();
1013 >      sprintf(painCave.errMsg,
1014 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
1015 >      painCave.isFatal = 1;
1016 >      simError();
1017      }
1018  
1019      sprintf(checkPointMsg, " mpiRefresh successful.\n");
1020 <    MPIcheckPoint();
1020 >    errorCheckPoint();
1021  
729
730 }
731
1022   #endif
1023 +  }
1024  
1025 < double SimInfo::calcMaxCutoffRadius() {
1025 >  void SimInfo::setupCutoff() {          
1026 >    
1027 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
1028  
1029 +    // Check the cutoff policy
1030 +    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1031  
1032 <    std::set<AtomType*> atomTypes;
1033 <    std::set<AtomType*>::iterator i;
1034 <    std::vector<double> cutoffRadius;
1032 >    // Set LJ shifting bools to false
1033 >    ljsp_ = false;
1034 >    ljsf_ = false;
1035  
1036 <    //get the unique atom types
1037 <    atomTypes = getUniqueAtomTypes();
1038 <
1039 <    //query the max cutoff radius among these atom types
1040 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
746 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
1036 >    std::string myPolicy;
1037 >    if (forceFieldOptions_.haveCutoffPolicy()){
1038 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
1039 >    }else if (simParams_->haveCutoffPolicy()) {
1040 >      myPolicy = simParams_->getCutoffPolicy();
1041      }
1042  
1043 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
1044 < #ifdef IS_MPI
1045 <    //pick the max cutoff radius among the processors
1046 < #endif
1043 >    if (!myPolicy.empty()){
1044 >      toUpper(myPolicy);
1045 >      if (myPolicy == "MIX") {
1046 >        cp = MIX_CUTOFF_POLICY;
1047 >      } else {
1048 >        if (myPolicy == "MAX") {
1049 >          cp = MAX_CUTOFF_POLICY;
1050 >        } else {
1051 >          if (myPolicy == "TRADITIONAL") {            
1052 >            cp = TRADITIONAL_CUTOFF_POLICY;
1053 >          } else {
1054 >            // throw error        
1055 >            sprintf( painCave.errMsg,
1056 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1057 >            painCave.isFatal = 1;
1058 >            simError();
1059 >          }    
1060 >        }          
1061 >      }
1062 >    }          
1063 >    notifyFortranCutoffPolicy(&cp);
1064  
1065 <    return maxCutoffRadius;
1066 < }
1065 >    // Check the Skin Thickness for neighborlists
1066 >    RealType skin;
1067 >    if (simParams_->haveSkinThickness()) {
1068 >      skin = simParams_->getSkinThickness();
1069 >      notifyFortranSkinThickness(&skin);
1070 >    }            
1071 >        
1072 >    // Check if the cutoff was set explicitly:
1073 >    if (simParams_->haveCutoffRadius()) {
1074 >      rcut_ = simParams_->getCutoffRadius();
1075 >      if (simParams_->haveSwitchingRadius()) {
1076 >        rsw_  = simParams_->getSwitchingRadius();
1077 >      } else {
1078 >        if (fInfo_.SIM_uses_Charges |
1079 >            fInfo_.SIM_uses_Dipoles |
1080 >            fInfo_.SIM_uses_RF) {
1081 >          
1082 >          rsw_ = 0.85 * rcut_;
1083 >          sprintf(painCave.errMsg,
1084 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1085 >                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1086 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1087 >        painCave.isFatal = 0;
1088 >        simError();
1089 >        } else {
1090 >          rsw_ = rcut_;
1091 >          sprintf(painCave.errMsg,
1092 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1093 >                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1094 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1095 >          painCave.isFatal = 0;
1096 >          simError();
1097 >        }
1098 >      }
1099  
1100 < void SimInfo::getCutoff(double& rcut, double& rsw) {
1101 <    
1102 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1100 >      if (simParams_->haveElectrostaticSummationMethod()) {
1101 >        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1102 >        toUpper(myMethod);
1103          
1104 <        if (!simParams_->haveRcut()){
1105 <            sprintf(painCave.errMsg,
1104 >        if (myMethod == "SHIFTED_POTENTIAL") {
1105 >          ljsp_ = true;
1106 >        } else if (myMethod == "SHIFTED_FORCE") {
1107 >          ljsf_ = true;
1108 >        }
1109 >      }
1110 >      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1111 >      
1112 >    } else {
1113 >      
1114 >      // For electrostatic atoms, we'll assume a large safe value:
1115 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1116 >        sprintf(painCave.errMsg,
1117                  "SimCreator Warning: No value was set for the cutoffRadius.\n"
1118                  "\tOOPSE will use a default value of 15.0 angstroms"
1119                  "\tfor the cutoffRadius.\n");
1120 <            painCave.isFatal = 0;
1121 <            simError();
1122 <            rcut_ = 15.0;
1123 <        } else{
1124 <            rcut_ = simParams_->getRcut();
1120 >        painCave.isFatal = 0;
1121 >        simError();
1122 >        rcut_ = 15.0;
1123 >      
1124 >        if (simParams_->haveElectrostaticSummationMethod()) {
1125 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1126 >          toUpper(myMethod);
1127 >      
1128 >      // For the time being, we're tethering the LJ shifted behavior to the
1129 >      // electrostaticSummationMethod keyword options
1130 >          if (myMethod == "SHIFTED_POTENTIAL") {
1131 >            ljsp_ = true;
1132 >          } else if (myMethod == "SHIFTED_FORCE") {
1133 >            ljsf_ = true;
1134 >          }
1135 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1136 >            if (simParams_->haveSwitchingRadius()){
1137 >              sprintf(painCave.errMsg,
1138 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
1139 >                      "\teven though the electrostaticSummationMethod was\n"
1140 >                      "\tset to %s\n", myMethod.c_str());
1141 >              painCave.isFatal = 1;
1142 >              simError();            
1143 >            }
1144 >          }
1145          }
1146 <
1147 <        if (!simParams_->haveRsw()){
1148 <            sprintf(painCave.errMsg,
1149 <                "SimCreator Warning: No value was set for switchingRadius.\n"
1150 <                "\tOOPSE will use a default value of\n"
1151 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
1152 <            painCave.isFatal = 0;
1153 <            simError();
1154 <            rsw_ = 0.95 * rcut_;
1155 <        } else{
1156 <            rsw_ = simParams_->getRsw();
1146 >      
1147 >        if (simParams_->haveSwitchingRadius()){
1148 >          rsw_ = simParams_->getSwitchingRadius();
1149 >        } else {        
1150 >          sprintf(painCave.errMsg,
1151 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1152 >                  "\tOOPSE will use a default value of\n"
1153 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1154 >          painCave.isFatal = 0;
1155 >          simError();
1156 >          rsw_ = 0.85 * rcut_;
1157          }
1158  
1159 <    } else {
1160 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
1161 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
1159 >        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1160 >
1161 >      } else {
1162 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1163 >        // We'll punt and let fortran figure out the cutoffs later.
1164          
1165 <        if (simParams_->haveRcut()) {
790 <            rcut_ = simParams_->getRcut();
791 <        } else {
792 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
793 <            rcut_ = calcMaxCutoffRadius();
794 <        }
1165 >        notifyFortranYouAreOnYourOwn();
1166  
1167 <        if (simParams_->haveRsw()) {
797 <            rsw_  = simParams_->getRsw();
798 <        } else {
799 <            rsw_ = rcut_;
800 <        }
801 <    
1167 >      }
1168      }
1169 < }
1169 >  }
1170  
1171 < void SimInfo::setupCutoff() {
1172 <    getCutoff(rcut_, rsw_);    
1173 <    double rnblist = rcut_ + 1; // skin of neighbor list
1171 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1172 >    
1173 >    int errorOut;
1174 >    int esm =  NONE;
1175 >    int sm = UNDAMPED;
1176 >    RealType alphaVal;
1177 >    RealType dielectric;
1178 >    
1179 >    errorOut = isError;
1180  
1181 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
1182 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
1183 < }
1181 >    if (simParams_->haveElectrostaticSummationMethod()) {
1182 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1183 >      toUpper(myMethod);
1184 >      if (myMethod == "NONE") {
1185 >        esm = NONE;
1186 >      } else {
1187 >        if (myMethod == "SWITCHING_FUNCTION") {
1188 >          esm = SWITCHING_FUNCTION;
1189 >        } else {
1190 >          if (myMethod == "SHIFTED_POTENTIAL") {
1191 >            esm = SHIFTED_POTENTIAL;
1192 >          } else {
1193 >            if (myMethod == "SHIFTED_FORCE") {            
1194 >              esm = SHIFTED_FORCE;
1195 >            } else {
1196 >              if (myMethod == "REACTION_FIELD") {
1197 >                esm = REACTION_FIELD;
1198 >                dielectric = simParams_->getDielectric();
1199 >                if (!simParams_->haveDielectric()) {
1200 >                  // throw warning
1201 >                  sprintf( painCave.errMsg,
1202 >                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1203 >                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1204 >                  painCave.isFatal = 0;
1205 >                  simError();
1206 >                }
1207 >              } else {
1208 >                // throw error        
1209 >                sprintf( painCave.errMsg,
1210 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1211 >                         "\t(Input file specified %s .)\n"
1212 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1213 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1214 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1215 >                painCave.isFatal = 1;
1216 >                simError();
1217 >              }    
1218 >            }          
1219 >          }
1220 >        }
1221 >      }
1222 >    }
1223 >    
1224 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1225 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1226 >      toUpper(myScreen);
1227 >      if (myScreen == "UNDAMPED") {
1228 >        sm = UNDAMPED;
1229 >      } else {
1230 >        if (myScreen == "DAMPED") {
1231 >          sm = DAMPED;
1232 >          if (!simParams_->haveDampingAlpha()) {
1233 >            // first set a cutoff dependent alpha value
1234 >            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1235 >            alphaVal = 0.5125 - rcut_* 0.025;
1236 >            // for values rcut > 20.5, alpha is zero
1237 >            if (alphaVal < 0) alphaVal = 0;
1238  
1239 < void SimInfo::addProperty(GenericData* genData) {
1240 <    properties_.addProperty(genData);  
1241 < }
1242 <
1243 < void SimInfo::removeProperty(const std::string& propName) {
1244 <    properties_.removeProperty(propName);  
1245 < }
1246 <
1247 < void SimInfo::clearProperties() {
1248 <    properties_.clearProperties();
1249 < }
1250 <
1251 < std::vector<std::string> SimInfo::getPropertyNames() {
1252 <    return properties_.getPropertyNames();  
1253 < }
1254 <      
1255 < std::vector<GenericData*> SimInfo::getProperties() {
1256 <    return properties_.getProperties();
1257 < }
1258 <
1259 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1260 <    return properties_.getPropertyByName(propName);
1261 < }
1239 >            // throw warning
1240 >            sprintf( painCave.errMsg,
1241 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1242 >                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1243 >            painCave.isFatal = 0;
1244 >            simError();
1245 >          } else {
1246 >            alphaVal = simParams_->getDampingAlpha();
1247 >          }
1248 >          
1249 >        } else {
1250 >          // throw error        
1251 >          sprintf( painCave.errMsg,
1252 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1253 >                   "\t(Input file specified %s .)\n"
1254 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1255 >                   "or \"damped\".\n", myScreen.c_str() );
1256 >          painCave.isFatal = 1;
1257 >          simError();
1258 >        }
1259 >      }
1260 >    }
1261 >    
1262 >    // let's pass some summation method variables to fortran
1263 >    setElectrostaticSummationMethod( &esm );
1264 >    setFortranElectrostaticMethod( &esm );
1265 >    setScreeningMethod( &sm );
1266 >    setDampingAlpha( &alphaVal );
1267 >    setReactionFieldDielectric( &dielectric );
1268 >    initFortranFF( &errorOut );
1269 >  }
1270  
1271 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1271 >  void SimInfo::setupSwitchingFunction() {    
1272 >    int ft = CUBIC;
1273 >
1274 >    if (simParams_->haveSwitchingFunctionType()) {
1275 >      std::string funcType = simParams_->getSwitchingFunctionType();
1276 >      toUpper(funcType);
1277 >      if (funcType == "CUBIC") {
1278 >        ft = CUBIC;
1279 >      } else {
1280 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1281 >          ft = FIFTH_ORDER_POLY;
1282 >        } else {
1283 >          // throw error        
1284 >          sprintf( painCave.errMsg,
1285 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1286 >          painCave.isFatal = 1;
1287 >          simError();
1288 >        }          
1289 >      }
1290 >    }
1291 >
1292 >    // send switching function notification to switcheroo
1293 >    setFunctionType(&ft);
1294 >
1295 >  }
1296 >
1297 >  void SimInfo::setupAccumulateBoxDipole() {    
1298 >
1299 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1300 >    if ( simParams_->haveAccumulateBoxDipole() )
1301 >      if ( simParams_->getAccumulateBoxDipole() ) {
1302 >        setAccumulateBoxDipole();
1303 >        calcBoxDipole_ = true;
1304 >      }
1305 >
1306 >  }
1307 >
1308 >  void SimInfo::addProperty(GenericData* genData) {
1309 >    properties_.addProperty(genData);  
1310 >  }
1311 >
1312 >  void SimInfo::removeProperty(const std::string& propName) {
1313 >    properties_.removeProperty(propName);  
1314 >  }
1315 >
1316 >  void SimInfo::clearProperties() {
1317 >    properties_.clearProperties();
1318 >  }
1319 >
1320 >  std::vector<std::string> SimInfo::getPropertyNames() {
1321 >    return properties_.getPropertyNames();  
1322 >  }
1323 >      
1324 >  std::vector<GenericData*> SimInfo::getProperties() {
1325 >    return properties_.getProperties();
1326 >  }
1327 >
1328 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1329 >    return properties_.getPropertyByName(propName);
1330 >  }
1331 >
1332 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1333 >    if (sman_ == sman) {
1334 >      return;
1335 >    }    
1336 >    delete sman_;
1337      sman_ = sman;
1338  
1339      Molecule* mol;
# Line 846 | Line 1345 | void SimInfo::setSnapshotManager(SnapshotManager* sman
1345  
1346      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1347          
1348 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1349 <            atom->setSnapshotManager(sman_);
1350 <        }
1348 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1349 >        atom->setSnapshotManager(sman_);
1350 >      }
1351          
1352 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1353 <            rb->setSnapshotManager(sman_);
1354 <        }
1352 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1353 >        rb->setSnapshotManager(sman_);
1354 >      }
1355      }    
1356      
1357 < }
1357 >  }
1358  
1359 < Vector3d SimInfo::getComVel(){
1359 >  Vector3d SimInfo::getComVel(){
1360      SimInfo::MoleculeIterator i;
1361      Molecule* mol;
1362  
1363      Vector3d comVel(0.0);
1364 <    double totalMass = 0.0;
1364 >    RealType totalMass = 0.0;
1365      
1366  
1367      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1368 <        double mass = mol->getMass();
1369 <        totalMass += mass;
1370 <        comVel += mass * mol->getComVel();
1368 >      RealType mass = mol->getMass();
1369 >      totalMass += mass;
1370 >      comVel += mass * mol->getComVel();
1371      }  
1372  
1373   #ifdef IS_MPI
1374 <    double tmpMass = totalMass;
1374 >    RealType tmpMass = totalMass;
1375      Vector3d tmpComVel(comVel);    
1376 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1377 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1376 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1377 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1378   #endif
1379  
1380      comVel /= totalMass;
1381  
1382      return comVel;
1383 < }
1383 >  }
1384  
1385 < Vector3d SimInfo::getCom(){
1385 >  Vector3d SimInfo::getCom(){
1386      SimInfo::MoleculeIterator i;
1387      Molecule* mol;
1388  
1389      Vector3d com(0.0);
1390 <    double totalMass = 0.0;
1390 >    RealType totalMass = 0.0;
1391      
1392      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1393 <        double mass = mol->getMass();
1394 <        totalMass += mass;
1395 <        com += mass * mol->getCom();
1393 >      RealType mass = mol->getMass();
1394 >      totalMass += mass;
1395 >      com += mass * mol->getCom();
1396      }  
1397  
1398   #ifdef IS_MPI
1399 <    double tmpMass = totalMass;
1399 >    RealType tmpMass = totalMass;
1400      Vector3d tmpCom(com);    
1401 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1402 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1401 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1402 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1403   #endif
1404  
1405      com /= totalMass;
1406  
1407      return com;
1408  
1409 < }        
1409 >  }        
1410  
1411 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1411 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1412  
1413      return o;
1414 < }
1414 >  }
1415 >  
1416 >  
1417 >   /*
1418 >   Returns center of mass and center of mass velocity in one function call.
1419 >   */
1420 >  
1421 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1422 >      SimInfo::MoleculeIterator i;
1423 >      Molecule* mol;
1424 >      
1425 >    
1426 >      RealType totalMass = 0.0;
1427 >    
1428  
1429 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1430 +         RealType mass = mol->getMass();
1431 +         totalMass += mass;
1432 +         com += mass * mol->getCom();
1433 +         comVel += mass * mol->getComVel();          
1434 +      }  
1435 +      
1436 + #ifdef IS_MPI
1437 +      RealType tmpMass = totalMass;
1438 +      Vector3d tmpCom(com);  
1439 +      Vector3d tmpComVel(comVel);
1440 +      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1441 +      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1442 +      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1443 + #endif
1444 +      
1445 +      com /= totalMass;
1446 +      comVel /= totalMass;
1447 +   }        
1448 +  
1449 +   /*
1450 +   Return intertia tensor for entire system and angular momentum Vector.
1451 +
1452 +
1453 +       [  Ixx -Ixy  -Ixz ]
1454 +  J =| -Iyx  Iyy  -Iyz |
1455 +       [ -Izx -Iyz   Izz ]
1456 +    */
1457 +
1458 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1459 +      
1460 +
1461 +      RealType xx = 0.0;
1462 +      RealType yy = 0.0;
1463 +      RealType zz = 0.0;
1464 +      RealType xy = 0.0;
1465 +      RealType xz = 0.0;
1466 +      RealType yz = 0.0;
1467 +      Vector3d com(0.0);
1468 +      Vector3d comVel(0.0);
1469 +      
1470 +      getComAll(com, comVel);
1471 +      
1472 +      SimInfo::MoleculeIterator i;
1473 +      Molecule* mol;
1474 +      
1475 +      Vector3d thisq(0.0);
1476 +      Vector3d thisv(0.0);
1477 +
1478 +      RealType thisMass = 0.0;
1479 +    
1480 +      
1481 +      
1482 +  
1483 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1484 +        
1485 +         thisq = mol->getCom()-com;
1486 +         thisv = mol->getComVel()-comVel;
1487 +         thisMass = mol->getMass();
1488 +         // Compute moment of intertia coefficients.
1489 +         xx += thisq[0]*thisq[0]*thisMass;
1490 +         yy += thisq[1]*thisq[1]*thisMass;
1491 +         zz += thisq[2]*thisq[2]*thisMass;
1492 +        
1493 +         // compute products of intertia
1494 +         xy += thisq[0]*thisq[1]*thisMass;
1495 +         xz += thisq[0]*thisq[2]*thisMass;
1496 +         yz += thisq[1]*thisq[2]*thisMass;
1497 +            
1498 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1499 +            
1500 +      }  
1501 +      
1502 +      
1503 +      inertiaTensor(0,0) = yy + zz;
1504 +      inertiaTensor(0,1) = -xy;
1505 +      inertiaTensor(0,2) = -xz;
1506 +      inertiaTensor(1,0) = -xy;
1507 +      inertiaTensor(1,1) = xx + zz;
1508 +      inertiaTensor(1,2) = -yz;
1509 +      inertiaTensor(2,0) = -xz;
1510 +      inertiaTensor(2,1) = -yz;
1511 +      inertiaTensor(2,2) = xx + yy;
1512 +      
1513 + #ifdef IS_MPI
1514 +      Mat3x3d tmpI(inertiaTensor);
1515 +      Vector3d tmpAngMom;
1516 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1517 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1518 + #endif
1519 +              
1520 +      return;
1521 +   }
1522 +
1523 +   //Returns the angular momentum of the system
1524 +   Vector3d SimInfo::getAngularMomentum(){
1525 +      
1526 +      Vector3d com(0.0);
1527 +      Vector3d comVel(0.0);
1528 +      Vector3d angularMomentum(0.0);
1529 +      
1530 +      getComAll(com,comVel);
1531 +      
1532 +      SimInfo::MoleculeIterator i;
1533 +      Molecule* mol;
1534 +      
1535 +      Vector3d thisr(0.0);
1536 +      Vector3d thisp(0.0);
1537 +      
1538 +      RealType thisMass;
1539 +      
1540 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1541 +        thisMass = mol->getMass();
1542 +        thisr = mol->getCom()-com;
1543 +        thisp = (mol->getComVel()-comVel)*thisMass;
1544 +        
1545 +        angularMomentum += cross( thisr, thisp );
1546 +        
1547 +      }  
1548 +      
1549 + #ifdef IS_MPI
1550 +      Vector3d tmpAngMom;
1551 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1552 + #endif
1553 +      
1554 +      return angularMomentum;
1555 +   }
1556 +  
1557 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1558 +    return IOIndexToIntegrableObject.at(index);
1559 +  }
1560 +  
1561 +  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1562 +    IOIndexToIntegrableObject= v;
1563 +  }
1564 +
1565 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1566 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1567 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1568 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1569 +  */
1570 +  void SimInfo::getGyrationalVolume(RealType &volume){
1571 +    Mat3x3d intTensor;
1572 +    RealType det;
1573 +    Vector3d dummyAngMom;
1574 +    RealType sysconstants;
1575 +    RealType geomCnst;
1576 +
1577 +    geomCnst = 3.0/2.0;
1578 +    /* Get the inertial tensor and angular momentum for free*/
1579 +    getInertiaTensor(intTensor,dummyAngMom);
1580 +    
1581 +    det = intTensor.determinant();
1582 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1583 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1584 +    return;
1585 +  }
1586 +
1587 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1588 +    Mat3x3d intTensor;
1589 +    Vector3d dummyAngMom;
1590 +    RealType sysconstants;
1591 +    RealType geomCnst;
1592 +
1593 +    geomCnst = 3.0/2.0;
1594 +    /* Get the inertial tensor and angular momentum for free*/
1595 +    getInertiaTensor(intTensor,dummyAngMom);
1596 +    
1597 +    detI = intTensor.determinant();
1598 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1599 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1600 +    return;
1601 +  }
1602 + /*
1603 +   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1604 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1605 +      sdByGlobalIndex_ = v;
1606 +    }
1607 +
1608 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1609 +      //assert(index < nAtoms_ + nRigidBodies_);
1610 +      return sdByGlobalIndex_.at(index);
1611 +    }  
1612 + */  
1613   }//end namespace oopse
1614  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines