ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 124 by chuckv, Wed Oct 20 20:46:20 2004 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1534 by gezelter, Wed Dec 29 21:53:28 2010 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Vardeman & Gezelter, in progress (2009).                        
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51 > #include <map>
52  
53   #include "brains/SimInfo.hpp"
54 < #define __C
55 < #include "brains/fSimulation.h"
54 > #include "math/Vector3.hpp"
55 > #include "primitives/Molecule.hpp"
56 > #include "primitives/StuntDouble.hpp"
57 > #include "UseTheForce/doForces_interface.h"
58 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
59 > #include "utils/MemoryUtils.hpp"
60   #include "utils/simError.h"
61 < #include "UseTheForce/DarkSide/simulation_interface.h"
62 < #include "UseTheForce/notifyCutoffs_interface.h"
61 > #include "selection/SelectionManager.hpp"
62 > #include "io/ForceFieldOptions.hpp"
63 > #include "UseTheForce/ForceField.hpp"
64 > #include "nonbonded/SwitchingFunction.hpp"
65  
15 //#include "UseTheForce/fortranWrappers.hpp"
16
17 #include "math/MatVec3.h"
18
66   #ifdef IS_MPI
67 < #include "brains/mpiSimulation.hpp"
68 < #endif
67 > #include "UseTheForce/mpiComponentPlan.h"
68 > #include "UseTheForce/DarkSide/simParallel_interface.h"
69 > #endif
70  
71 < inline double roundMe( double x ){
72 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
73 < }
74 <          
75 < inline double min( double a, double b ){
76 <  return (a < b ) ? a : b;
77 < }
71 > using namespace std;
72 > namespace OpenMD {
73 >  
74 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
75 >    forceField_(ff), simParams_(simParams),
76 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
77 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
78 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
79 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
80 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
81 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
82 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
83 >    
84 >    MoleculeStamp* molStamp;
85 >    int nMolWithSameStamp;
86 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
88 >    CutoffGroupStamp* cgStamp;    
89 >    RigidBodyStamp* rbStamp;
90 >    int nRigidAtoms = 0;
91 >    
92 >    vector<Component*> components = simParams->getComponents();
93 >    
94 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
95 >      molStamp = (*i)->getMoleculeStamp();
96 >      nMolWithSameStamp = (*i)->getNMol();
97 >      
98 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
99 >      
100 >      //calculate atoms in molecules
101 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
102 >      
103 >      //calculate atoms in cutoff groups
104 >      int nAtomsInGroups = 0;
105 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
106 >      
107 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
108 >        cgStamp = molStamp->getCutoffGroupStamp(j);
109 >        nAtomsInGroups += cgStamp->getNMembers();
110 >      }
111 >      
112 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
113 >      
114 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
115 >      
116 >      //calculate atoms in rigid bodies
117 >      int nAtomsInRigidBodies = 0;
118 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
119 >      
120 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
121 >        rbStamp = molStamp->getRigidBodyStamp(j);
122 >        nAtomsInRigidBodies += rbStamp->getNMembers();
123 >      }
124 >      
125 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
126 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
127 >      
128 >    }
129 >    
130 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
131 >    //group therefore the total number of cutoff groups in the system is
132 >    //equal to the total number of atoms minus number of atoms belong to
133 >    //cutoff group defined in meta-data file plus the number of cutoff
134 >    //groups defined in meta-data file
135 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
136 >    
137 >    //every free atom (atom does not belong to rigid bodies) is an
138 >    //integrable object therefore the total number of integrable objects
139 >    //in the system is equal to the total number of atoms minus number of
140 >    //atoms belong to rigid body defined in meta-data file plus the number
141 >    //of rigid bodies defined in meta-data file
142 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
143 >      + nGlobalRigidBodies_;
144 >    
145 >    nGlobalMols_ = molStampIds_.size();
146 >    molToProcMap_.resize(nGlobalMols_);
147 >  }
148 >  
149 >  SimInfo::~SimInfo() {
150 >    map<int, Molecule*>::iterator i;
151 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
152 >      delete i->second;
153 >    }
154 >    molecules_.clear();
155 >      
156 >    delete sman_;
157 >    delete simParams_;
158 >    delete forceField_;
159 >  }
160  
31 SimInfo* currentInfo;
161  
162 < SimInfo::SimInfo(){
163 <
164 <  n_constraints = 0;
165 <  nZconstraints = 0;
166 <  n_oriented = 0;
167 <  n_dipoles = 0;
168 <  ndf = 0;
169 <  ndfRaw = 0;
170 <  nZconstraints = 0;
171 <  the_integrator = NULL;
172 <  setTemp = 0;
173 <  thermalTime = 0.0;
174 <  currentTime = 0.0;
175 <  rCut = 0.0;
176 <  rSw = 0.0;
177 <
178 <  haveRcut = 0;
179 <  haveRsw = 0;
180 <  boxIsInit = 0;
162 >  bool SimInfo::addMolecule(Molecule* mol) {
163 >    MoleculeIterator i;
164 >    
165 >    i = molecules_.find(mol->getGlobalIndex());
166 >    if (i == molecules_.end() ) {
167 >      
168 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
169 >      
170 >      nAtoms_ += mol->getNAtoms();
171 >      nBonds_ += mol->getNBonds();
172 >      nBends_ += mol->getNBends();
173 >      nTorsions_ += mol->getNTorsions();
174 >      nInversions_ += mol->getNInversions();
175 >      nRigidBodies_ += mol->getNRigidBodies();
176 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
177 >      nCutoffGroups_ += mol->getNCutoffGroups();
178 >      nConstraints_ += mol->getNConstraintPairs();
179 >      
180 >      addInteractionPairs(mol);
181 >      
182 >      return true;
183 >    } else {
184 >      return false;
185 >    }
186 >  }
187    
188 <  resetTime = 1e99;
188 >  bool SimInfo::removeMolecule(Molecule* mol) {
189 >    MoleculeIterator i;
190 >    i = molecules_.find(mol->getGlobalIndex());
191  
192 <  orthoRhombic = 0;
56 <  orthoTolerance = 1E-6;
57 <  useInitXSstate = true;
192 >    if (i != molecules_.end() ) {
193  
194 <  usePBC = 0;
195 <  useLJ = 0;
196 <  useSticky = 0;
197 <  useCharges = 0;
198 <  useDipoles = 0;
199 <  useReactionField = 0;
200 <  useGB = 0;
201 <  useEAM = 0;
202 <  useSolidThermInt = 0;
203 <  useLiquidThermInt = 0;
194 >      assert(mol == i->second);
195 >        
196 >      nAtoms_ -= mol->getNAtoms();
197 >      nBonds_ -= mol->getNBonds();
198 >      nBends_ -= mol->getNBends();
199 >      nTorsions_ -= mol->getNTorsions();
200 >      nInversions_ -= mol->getNInversions();
201 >      nRigidBodies_ -= mol->getNRigidBodies();
202 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
203 >      nCutoffGroups_ -= mol->getNCutoffGroups();
204 >      nConstraints_ -= mol->getNConstraintPairs();
205  
206 <  haveCutoffGroups = false;
206 >      removeInteractionPairs(mol);
207 >      molecules_.erase(mol->getGlobalIndex());
208  
209 <  excludes = Exclude::Instance();
210 <
211 <  myConfiguration = new SimState();
212 <
213 <  has_minimizer = false;
214 <  the_minimizer =NULL;
215 <
79 <  ngroup = 0;
80 <
81 < }
209 >      delete mol;
210 >        
211 >      return true;
212 >    } else {
213 >      return false;
214 >    }
215 >  }    
216  
217 +        
218 +  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
219 +    i = molecules_.begin();
220 +    return i == molecules_.end() ? NULL : i->second;
221 +  }    
222  
223 < SimInfo::~SimInfo(){
223 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
224 >    ++i;
225 >    return i == molecules_.end() ? NULL : i->second;    
226 >  }
227  
86  delete myConfiguration;
228  
229 <  map<string, GenericData*>::iterator i;
230 <  
231 <  for(i = properties.begin(); i != properties.end(); i++)
232 <    delete (*i).second;
229 >  void SimInfo::calcNdf() {
230 >    int ndf_local;
231 >    MoleculeIterator i;
232 >    vector<StuntDouble*>::iterator j;
233 >    Molecule* mol;
234 >    StuntDouble* integrableObject;
235  
236 < }
236 >    ndf_local = 0;
237 >    
238 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
239 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
240 >           integrableObject = mol->nextIntegrableObject(j)) {
241  
242 < void SimInfo::setBox(double newBox[3]) {
96 <  
97 <  int i, j;
98 <  double tempMat[3][3];
242 >        ndf_local += 3;
243  
244 <  for(i=0; i<3; i++)
245 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
244 >        if (integrableObject->isDirectional()) {
245 >          if (integrableObject->isLinear()) {
246 >            ndf_local += 2;
247 >          } else {
248 >            ndf_local += 3;
249 >          }
250 >        }
251 >            
252 >      }
253 >    }
254 >    
255 >    // n_constraints is local, so subtract them on each processor
256 >    ndf_local -= nConstraints_;
257  
258 <  tempMat[0][0] = newBox[0];
259 <  tempMat[1][1] = newBox[1];
260 <  tempMat[2][2] = newBox[2];
258 > #ifdef IS_MPI
259 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
260 > #else
261 >    ndf_ = ndf_local;
262 > #endif
263  
264 <  setBoxM( tempMat );
264 >    // nZconstraints_ is global, as are the 3 COM translations for the
265 >    // entire system:
266 >    ndf_ = ndf_ - 3 - nZconstraint_;
267  
268 < }
268 >  }
269  
270 < void SimInfo::setBoxM( double theBox[3][3] ){
271 <  
272 <  int i, j;
273 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
274 <                         // ordering in the array is as follows:
275 <                         // [ 0 3 6 ]
276 <                         // [ 1 4 7 ]
118 <                         // [ 2 5 8 ]
119 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
120 <
121 <  if( !boxIsInit ) boxIsInit = 1;
122 <
123 <  for(i=0; i < 3; i++)
124 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
125 <  
126 <  calcBoxL();
127 <  calcHmatInv();
128 <
129 <  for(i=0; i < 3; i++) {
130 <    for (j=0; j < 3; j++) {
131 <      FortranHmat[3*j + i] = Hmat[i][j];
132 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
133 <    }
270 >  int SimInfo::getFdf() {
271 > #ifdef IS_MPI
272 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
273 > #else
274 >    fdf_ = fdf_local;
275 > #endif
276 >    return fdf_;
277    }
278 +    
279 +  void SimInfo::calcNdfRaw() {
280 +    int ndfRaw_local;
281  
282 <  setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic);
283 <
284 < }
285 <
282 >    MoleculeIterator i;
283 >    vector<StuntDouble*>::iterator j;
284 >    Molecule* mol;
285 >    StuntDouble* integrableObject;
286  
287 < void SimInfo::getBoxM (double theBox[3][3]) {
287 >    // Raw degrees of freedom that we have to set
288 >    ndfRaw_local = 0;
289 >    
290 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
291 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
292 >           integrableObject = mol->nextIntegrableObject(j)) {
293  
294 <  int i, j;
144 <  for(i=0; i<3; i++)
145 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
146 < }
294 >        ndfRaw_local += 3;
295  
296 <
297 < void SimInfo::scaleBox(double scale) {
298 <  double theBox[3][3];
299 <  int i, j;
300 <
301 <  // cerr << "Scaling box by " << scale << "\n";
302 <
303 <  for(i=0; i<3; i++)
156 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
157 <
158 <  setBoxM(theBox);
159 <
160 < }
161 <
162 < void SimInfo::calcHmatInv( void ) {
163 <  
164 <  int oldOrtho;
165 <  int i,j;
166 <  double smallDiag;
167 <  double tol;
168 <  double sanity[3][3];
169 <
170 <  invertMat3( Hmat, HmatInv );
171 <
172 <  // check to see if Hmat is orthorhombic
173 <  
174 <  oldOrtho = orthoRhombic;
175 <
176 <  smallDiag = fabs(Hmat[0][0]);
177 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
178 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
179 <  tol = smallDiag * orthoTolerance;
180 <
181 <  orthoRhombic = 1;
182 <  
183 <  for (i = 0; i < 3; i++ ) {
184 <    for (j = 0 ; j < 3; j++) {
185 <      if (i != j) {
186 <        if (orthoRhombic) {
187 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
188 <        }        
296 >        if (integrableObject->isDirectional()) {
297 >          if (integrableObject->isLinear()) {
298 >            ndfRaw_local += 2;
299 >          } else {
300 >            ndfRaw_local += 3;
301 >          }
302 >        }
303 >            
304        }
305      }
191  }
192
193  if( oldOrtho != orthoRhombic ){
306      
307 <    if( orthoRhombic ) {
308 <      sprintf( painCave.errMsg,
309 <               "OOPSE is switching from the default Non-Orthorhombic\n"
310 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
311 <               "\tThis is usually a good thing, but if you wan't the\n"
200 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
201 <               "\tvariable ( currently set to %G ) smaller.\n",
202 <               orthoTolerance);
203 <      painCave.severity = OOPSE_INFO;
204 <      simError();
205 <    }
206 <    else {
207 <      sprintf( painCave.errMsg,
208 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
209 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
210 <               "\tThis is usually because the box has deformed under\n"
211 <               "\tNPTf integration. If you wan't to live on the edge with\n"
212 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
213 <               "\tvariable ( currently set to %G ) larger.\n",
214 <               orthoTolerance);
215 <      painCave.severity = OOPSE_WARNING;
216 <      simError();
217 <    }
307 > #ifdef IS_MPI
308 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
309 > #else
310 >    ndfRaw_ = ndfRaw_local;
311 > #endif
312    }
219 }
313  
314 < void SimInfo::calcBoxL( void ){
314 >  void SimInfo::calcNdfTrans() {
315 >    int ndfTrans_local;
316  
317 <  double dx, dy, dz, dsq;
317 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
318  
225  // boxVol = Determinant of Hmat
319  
320 <  boxVol = matDet3( Hmat );
320 > #ifdef IS_MPI
321 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
322 > #else
323 >    ndfTrans_ = ndfTrans_local;
324 > #endif
325  
326 <  // boxLx
327 <  
328 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
232 <  dsq = dx*dx + dy*dy + dz*dz;
233 <  boxL[0] = sqrt( dsq );
234 <  //maxCutoff = 0.5 * boxL[0];
326 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
327 >
328 >  }
329  
330 <  // boxLy
331 <  
332 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
333 <  dsq = dx*dx + dy*dy + dz*dz;
334 <  boxL[1] = sqrt( dsq );
335 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
330 >  void SimInfo::addInteractionPairs(Molecule* mol) {
331 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
332 >    vector<Bond*>::iterator bondIter;
333 >    vector<Bend*>::iterator bendIter;
334 >    vector<Torsion*>::iterator torsionIter;
335 >    vector<Inversion*>::iterator inversionIter;
336 >    Bond* bond;
337 >    Bend* bend;
338 >    Torsion* torsion;
339 >    Inversion* inversion;
340 >    int a;
341 >    int b;
342 >    int c;
343 >    int d;
344  
345 +    // atomGroups can be used to add special interaction maps between
346 +    // groups of atoms that are in two separate rigid bodies.
347 +    // However, most site-site interactions between two rigid bodies
348 +    // are probably not special, just the ones between the physically
349 +    // bonded atoms.  Interactions *within* a single rigid body should
350 +    // always be excluded.  These are done at the bottom of this
351 +    // function.
352  
353 <  // boxLz
354 <  
355 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
356 <  dsq = dx*dx + dy*dy + dz*dz;
357 <  boxL[2] = sqrt( dsq );
358 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
353 >    map<int, set<int> > atomGroups;
354 >    Molecule::RigidBodyIterator rbIter;
355 >    RigidBody* rb;
356 >    Molecule::IntegrableObjectIterator ii;
357 >    StuntDouble* integrableObject;
358 >    
359 >    for (integrableObject = mol->beginIntegrableObject(ii);
360 >         integrableObject != NULL;
361 >         integrableObject = mol->nextIntegrableObject(ii)) {
362 >      
363 >      if (integrableObject->isRigidBody()) {
364 >        rb = static_cast<RigidBody*>(integrableObject);
365 >        vector<Atom*> atoms = rb->getAtoms();
366 >        set<int> rigidAtoms;
367 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
368 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
369 >        }
370 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
371 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
372 >        }      
373 >      } else {
374 >        set<int> oneAtomSet;
375 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
376 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
377 >      }
378 >    }  
379 >          
380 >    for (bond= mol->beginBond(bondIter); bond != NULL;
381 >         bond = mol->nextBond(bondIter)) {
382  
383 <  //calculate the max cutoff
384 <  maxCutoff =  calcMaxCutOff();
385 <  
386 <  checkCutOffs();
383 >      a = bond->getAtomA()->getGlobalIndex();
384 >      b = bond->getAtomB()->getGlobalIndex();  
385 >    
386 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
387 >        oneTwoInteractions_.addPair(a, b);
388 >      } else {
389 >        excludedInteractions_.addPair(a, b);
390 >      }
391 >    }
392  
393 < }
393 >    for (bend= mol->beginBend(bendIter); bend != NULL;
394 >         bend = mol->nextBend(bendIter)) {
395  
396 +      a = bend->getAtomA()->getGlobalIndex();
397 +      b = bend->getAtomB()->getGlobalIndex();        
398 +      c = bend->getAtomC()->getGlobalIndex();
399 +      
400 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
401 +        oneTwoInteractions_.addPair(a, b);      
402 +        oneTwoInteractions_.addPair(b, c);
403 +      } else {
404 +        excludedInteractions_.addPair(a, b);
405 +        excludedInteractions_.addPair(b, c);
406 +      }
407  
408 < double SimInfo::calcMaxCutOff(){
408 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
409 >        oneThreeInteractions_.addPair(a, c);      
410 >      } else {
411 >        excludedInteractions_.addPair(a, c);
412 >      }
413 >    }
414  
415 <  double ri[3], rj[3], rk[3];
416 <  double rij[3], rjk[3], rki[3];
263 <  double minDist;
415 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
416 >         torsion = mol->nextTorsion(torsionIter)) {
417  
418 <  ri[0] = Hmat[0][0];
419 <  ri[1] = Hmat[1][0];
420 <  ri[2] = Hmat[2][0];
418 >      a = torsion->getAtomA()->getGlobalIndex();
419 >      b = torsion->getAtomB()->getGlobalIndex();        
420 >      c = torsion->getAtomC()->getGlobalIndex();        
421 >      d = torsion->getAtomD()->getGlobalIndex();      
422  
423 <  rj[0] = Hmat[0][1];
424 <  rj[1] = Hmat[1][1];
425 <  rj[2] = Hmat[2][1];
423 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
424 >        oneTwoInteractions_.addPair(a, b);      
425 >        oneTwoInteractions_.addPair(b, c);
426 >        oneTwoInteractions_.addPair(c, d);
427 >      } else {
428 >        excludedInteractions_.addPair(a, b);
429 >        excludedInteractions_.addPair(b, c);
430 >        excludedInteractions_.addPair(c, d);
431 >      }
432  
433 <  rk[0] = Hmat[0][2];
434 <  rk[1] = Hmat[1][2];
435 <  rk[2] = Hmat[2][2];
436 <    
437 <  crossProduct3(ri, rj, rij);
438 <  distXY = dotProduct3(rk,rij) / norm3(rij);
433 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
434 >        oneThreeInteractions_.addPair(a, c);      
435 >        oneThreeInteractions_.addPair(b, d);      
436 >      } else {
437 >        excludedInteractions_.addPair(a, c);
438 >        excludedInteractions_.addPair(b, d);
439 >      }
440  
441 <  crossProduct3(rj,rk, rjk);
442 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
441 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
442 >        oneFourInteractions_.addPair(a, d);      
443 >      } else {
444 >        excludedInteractions_.addPair(a, d);
445 >      }
446 >    }
447  
448 <  crossProduct3(rk,ri, rki);
449 <  distZX = dotProduct3(rj,rki) / norm3(rki);
448 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
449 >         inversion = mol->nextInversion(inversionIter)) {
450  
451 <  minDist = min(min(distXY, distYZ), distZX);
452 <  return minDist/2;
453 <  
454 < }
451 >      a = inversion->getAtomA()->getGlobalIndex();
452 >      b = inversion->getAtomB()->getGlobalIndex();        
453 >      c = inversion->getAtomC()->getGlobalIndex();        
454 >      d = inversion->getAtomD()->getGlobalIndex();        
455  
456 < void SimInfo::wrapVector( double thePos[3] ){
456 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
457 >        oneTwoInteractions_.addPair(a, b);      
458 >        oneTwoInteractions_.addPair(a, c);
459 >        oneTwoInteractions_.addPair(a, d);
460 >      } else {
461 >        excludedInteractions_.addPair(a, b);
462 >        excludedInteractions_.addPair(a, c);
463 >        excludedInteractions_.addPair(a, d);
464 >      }
465  
466 <  int i;
467 <  double scaled[3];
466 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
467 >        oneThreeInteractions_.addPair(b, c);    
468 >        oneThreeInteractions_.addPair(b, d);    
469 >        oneThreeInteractions_.addPair(c, d);      
470 >      } else {
471 >        excludedInteractions_.addPair(b, c);
472 >        excludedInteractions_.addPair(b, d);
473 >        excludedInteractions_.addPair(c, d);
474 >      }
475 >    }
476  
477 <  if( !orthoRhombic ){
478 <    // calc the scaled coordinates.
479 <  
477 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
478 >         rb = mol->nextRigidBody(rbIter)) {
479 >      vector<Atom*> atoms = rb->getAtoms();
480 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
481 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
482 >          a = atoms[i]->getGlobalIndex();
483 >          b = atoms[j]->getGlobalIndex();
484 >          excludedInteractions_.addPair(a, b);
485 >        }
486 >      }
487 >    }        
488  
489 <    matVecMul3(HmatInv, thePos, scaled);
489 >  }
490 >
491 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
492 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
493 >    vector<Bond*>::iterator bondIter;
494 >    vector<Bend*>::iterator bendIter;
495 >    vector<Torsion*>::iterator torsionIter;
496 >    vector<Inversion*>::iterator inversionIter;
497 >    Bond* bond;
498 >    Bend* bend;
499 >    Torsion* torsion;
500 >    Inversion* inversion;
501 >    int a;
502 >    int b;
503 >    int c;
504 >    int d;
505 >
506 >    map<int, set<int> > atomGroups;
507 >    Molecule::RigidBodyIterator rbIter;
508 >    RigidBody* rb;
509 >    Molecule::IntegrableObjectIterator ii;
510 >    StuntDouble* integrableObject;
511      
512 <    for(i=0; i<3; i++)
513 <      scaled[i] -= roundMe(scaled[i]);
514 <    
515 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
516 <    
517 <    matVecMul3(Hmat, scaled, thePos);
512 >    for (integrableObject = mol->beginIntegrableObject(ii);
513 >         integrableObject != NULL;
514 >         integrableObject = mol->nextIntegrableObject(ii)) {
515 >      
516 >      if (integrableObject->isRigidBody()) {
517 >        rb = static_cast<RigidBody*>(integrableObject);
518 >        vector<Atom*> atoms = rb->getAtoms();
519 >        set<int> rigidAtoms;
520 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
521 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
522 >        }
523 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
524 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
525 >        }      
526 >      } else {
527 >        set<int> oneAtomSet;
528 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
529 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
530 >      }
531 >    }  
532  
533 <  }
534 <  else{
535 <    // calc the scaled coordinates.
533 >    for (bond= mol->beginBond(bondIter); bond != NULL;
534 >         bond = mol->nextBond(bondIter)) {
535 >      
536 >      a = bond->getAtomA()->getGlobalIndex();
537 >      b = bond->getAtomB()->getGlobalIndex();  
538      
539 <    for(i=0; i<3; i++)
540 <      scaled[i] = thePos[i]*HmatInv[i][i];
541 <    
542 <    // wrap the scaled coordinates
543 <    
544 <    for(i=0; i<3; i++)
319 <      scaled[i] -= roundMe(scaled[i]);
320 <    
321 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
322 <    
323 <    for(i=0; i<3; i++)
324 <      thePos[i] = scaled[i]*Hmat[i][i];
325 <  }
326 <    
327 < }
539 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
540 >        oneTwoInteractions_.removePair(a, b);
541 >      } else {
542 >        excludedInteractions_.removePair(a, b);
543 >      }
544 >    }
545  
546 +    for (bend= mol->beginBend(bendIter); bend != NULL;
547 +         bend = mol->nextBend(bendIter)) {
548  
549 < int SimInfo::getNDF(){
550 <  int ndf_local;
549 >      a = bend->getAtomA()->getGlobalIndex();
550 >      b = bend->getAtomB()->getGlobalIndex();        
551 >      c = bend->getAtomC()->getGlobalIndex();
552 >      
553 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
554 >        oneTwoInteractions_.removePair(a, b);      
555 >        oneTwoInteractions_.removePair(b, c);
556 >      } else {
557 >        excludedInteractions_.removePair(a, b);
558 >        excludedInteractions_.removePair(b, c);
559 >      }
560  
561 <  ndf_local = 0;
561 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
562 >        oneThreeInteractions_.removePair(a, c);      
563 >      } else {
564 >        excludedInteractions_.removePair(a, c);
565 >      }
566 >    }
567 >
568 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
569 >         torsion = mol->nextTorsion(torsionIter)) {
570 >
571 >      a = torsion->getAtomA()->getGlobalIndex();
572 >      b = torsion->getAtomB()->getGlobalIndex();        
573 >      c = torsion->getAtomC()->getGlobalIndex();        
574 >      d = torsion->getAtomD()->getGlobalIndex();      
575    
576 <  for(int i = 0; i < integrableObjects.size(); i++){
577 <    ndf_local += 3;
578 <    if (integrableObjects[i]->isDirectional()) {
579 <      if (integrableObjects[i]->isLinear())
580 <        ndf_local += 2;
581 <      else
582 <        ndf_local += 3;
576 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
577 >        oneTwoInteractions_.removePair(a, b);      
578 >        oneTwoInteractions_.removePair(b, c);
579 >        oneTwoInteractions_.removePair(c, d);
580 >      } else {
581 >        excludedInteractions_.removePair(a, b);
582 >        excludedInteractions_.removePair(b, c);
583 >        excludedInteractions_.removePair(c, d);
584 >      }
585 >
586 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
587 >        oneThreeInteractions_.removePair(a, c);      
588 >        oneThreeInteractions_.removePair(b, d);      
589 >      } else {
590 >        excludedInteractions_.removePair(a, c);
591 >        excludedInteractions_.removePair(b, d);
592 >      }
593 >
594 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
595 >        oneFourInteractions_.removePair(a, d);      
596 >      } else {
597 >        excludedInteractions_.removePair(a, d);
598 >      }
599      }
343  }
600  
601 <  // n_constraints is local, so subtract them on each processor:
601 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
602 >         inversion = mol->nextInversion(inversionIter)) {
603  
604 <  ndf_local -= n_constraints;
604 >      a = inversion->getAtomA()->getGlobalIndex();
605 >      b = inversion->getAtomB()->getGlobalIndex();        
606 >      c = inversion->getAtomC()->getGlobalIndex();        
607 >      d = inversion->getAtomD()->getGlobalIndex();        
608  
609 < #ifdef IS_MPI
610 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
611 < #else
612 <  ndf = ndf_local;
613 < #endif
609 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
610 >        oneTwoInteractions_.removePair(a, b);      
611 >        oneTwoInteractions_.removePair(a, c);
612 >        oneTwoInteractions_.removePair(a, d);
613 >      } else {
614 >        excludedInteractions_.removePair(a, b);
615 >        excludedInteractions_.removePair(a, c);
616 >        excludedInteractions_.removePair(a, d);
617 >      }
618  
619 <  // nZconstraints is global, as are the 3 COM translations for the
620 <  // entire system:
619 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
620 >        oneThreeInteractions_.removePair(b, c);    
621 >        oneThreeInteractions_.removePair(b, d);    
622 >        oneThreeInteractions_.removePair(c, d);      
623 >      } else {
624 >        excludedInteractions_.removePair(b, c);
625 >        excludedInteractions_.removePair(b, d);
626 >        excludedInteractions_.removePair(c, d);
627 >      }
628 >    }
629  
630 <  ndf = ndf - 3 - nZconstraints;
630 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
631 >         rb = mol->nextRigidBody(rbIter)) {
632 >      vector<Atom*> atoms = rb->getAtoms();
633 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
634 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
635 >          a = atoms[i]->getGlobalIndex();
636 >          b = atoms[j]->getGlobalIndex();
637 >          excludedInteractions_.removePair(a, b);
638 >        }
639 >      }
640 >    }        
641 >    
642 >  }
643 >  
644 >  
645 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
646 >    int curStampId;
647 >    
648 >    //index from 0
649 >    curStampId = moleculeStamps_.size();
650  
651 <  return ndf;
652 < }
651 >    moleculeStamps_.push_back(molStamp);
652 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
653 >  }
654  
363 int SimInfo::getNDFraw() {
364  int ndfRaw_local;
655  
656 <  // Raw degrees of freedom that we have to set
657 <  ndfRaw_local = 0;
656 >  /**
657 >   * update
658 >   *
659 >   *  Performs the global checks and variable settings after the objects have been
660 >   *  created.
661 >   *
662 >   */
663 >  void SimInfo::update() {
664 >    
665 >    setupSimVariables();
666 >    setupCutoffs();
667 >    setupSwitching();
668 >    setupElectrostatics();
669 >    setupNeighborlists();
670  
671 <  for(int i = 0; i < integrableObjects.size(); i++){
672 <    ndfRaw_local += 3;
673 <    if (integrableObjects[i]->isDirectional()) {
674 <       if (integrableObjects[i]->isLinear())
675 <        ndfRaw_local += 2;
676 <      else
677 <        ndfRaw_local += 3;
671 > #ifdef IS_MPI
672 >    setupFortranParallel();
673 > #endif
674 >    setupFortranSim();
675 >    fortranInitialized_ = true;
676 >
677 >    calcNdf();
678 >    calcNdfRaw();
679 >    calcNdfTrans();
680 >  }
681 >  
682 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
683 >    SimInfo::MoleculeIterator mi;
684 >    Molecule* mol;
685 >    Molecule::AtomIterator ai;
686 >    Atom* atom;
687 >    set<AtomType*> atomTypes;
688 >    
689 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
690 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
691 >        atomTypes.insert(atom->getAtomType());
692 >      }      
693 >    }    
694 >    return atomTypes;        
695 >  }
696 >
697 >  /**
698 >   * setupCutoffs
699 >   *
700 >   * Sets the values of cutoffRadius and cutoffMethod
701 >   *
702 >   * cutoffRadius : realType
703 >   *  If the cutoffRadius was explicitly set, use that value.
704 >   *  If the cutoffRadius was not explicitly set:
705 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
706 >   *      No electrostatic atoms?  Poll the atom types present in the
707 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
708 >   *      Use the maximum suggested value that was found.
709 >   *
710 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL)
711 >   *      If cutoffMethod was explicitly set, use that choice.
712 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
713 >   */
714 >  void SimInfo::setupCutoffs() {
715 >    
716 >    if (simParams_->haveCutoffRadius()) {
717 >      cutoffRadius_ = simParams_->getCutoffRadius();
718 >    } else {      
719 >      if (usesElectrostaticAtoms_) {
720 >        sprintf(painCave.errMsg,
721 >                "SimInfo: No value was set for the cutoffRadius.\n"
722 >                "\tOpenMD will use a default value of 12.0 angstroms"
723 >                "\tfor the cutoffRadius.\n");
724 >        painCave.isFatal = 0;
725 >        painCave.severity = OPENMD_INFO;
726 >        simError();
727 >        cutoffRadius_ = 12.0;
728 >      } else {
729 >        RealType thisCut;
730 >        set<AtomType*>::iterator i;
731 >        set<AtomType*> atomTypes;
732 >        atomTypes = getSimulatedAtomTypes();        
733 >        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
734 >          thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i));
735 >          cutoffRadius_ = max(thisCut, cutoffRadius_);
736 >        }
737 >        sprintf(painCave.errMsg,
738 >                "SimInfo: No value was set for the cutoffRadius.\n"
739 >                "\tOpenMD will use %lf angstroms.\n",
740 >                cutoffRadius_);
741 >        painCave.isFatal = 0;
742 >        painCave.severity = OPENMD_INFO;
743 >        simError();
744 >      }            
745      }
746 +
747 +    map<string, CutoffMethod> stringToCutoffMethod;
748 +    stringToCutoffMethod["HARD"] = HARD;
749 +    stringToCutoffMethod["SWITCHING_FUNCTION"] = SWITCHING_FUNCTION;
750 +    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
751 +    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
752 +  
753 +    if (simParams_->haveCutoffMethod()) {
754 +      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
755 +      map<string, CutoffMethod>::iterator i;
756 +      i = stringToCutoffMethod.find(cutMeth);
757 +      if (i == stringToCutoffMethod.end()) {
758 +        sprintf(painCave.errMsg,
759 +                "SimInfo: Could not find chosen cutoffMethod %s\n"
760 +                "\tShould be one of: "
761 +                "HARD, SWITCHING_FUNCTION, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
762 +                cutMeth.c_str());
763 +        painCave.isFatal = 1;
764 +        painCave.severity = OPENMD_ERROR;
765 +        simError();
766 +      } else {
767 +        cutoffMethod_ = i->second;
768 +      }
769 +    } else {
770 +      sprintf(painCave.errMsg,
771 +              "SimInfo: No value was set for the cutoffMethod.\n"
772 +              "\tOpenMD will use SHIFTED_FORCE.\n");
773 +        painCave.isFatal = 0;
774 +        painCave.severity = OPENMD_INFO;
775 +        simError();
776 +        cutoffMethod_ = SHIFTED_FORCE;        
777 +    }
778    }
779 +  
780 +  /**
781 +   * setupSwitching
782 +   *
783 +   * Sets the values of switchingRadius and
784 +   *  If the switchingRadius was explicitly set, use that value (but check it)
785 +   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
786 +   */
787 +  void SimInfo::setupSwitching() {
788      
789 < #ifdef IS_MPI
790 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
791 < #else
792 <  ndfRaw = ndfRaw_local;
793 < #endif
789 >    if (simParams_->haveSwitchingRadius()) {
790 >      switchingRadius_ = simParams_->getSwitchingRadius();
791 >      if (switchingRadius_ > cutoffRadius_) {        
792 >        sprintf(painCave.errMsg,
793 >                "SimInfo: switchingRadius (%f) is larger than cutoffRadius(%f)\n",
794 >                switchingRadius_, cutoffRadius_);
795 >        painCave.isFatal = 1;
796 >        painCave.severity = OPENMD_ERROR;
797 >        simError();
798 >      }
799 >    } else {      
800 >      switchingRadius_ = 0.85 * cutoffRadius_;
801 >      sprintf(painCave.errMsg,
802 >              "SimInfo: No value was set for the switchingRadius.\n"
803 >              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
804 >              "\tswitchingRadius = %f. for this simulation\n", switchingRadius_);
805 >      painCave.isFatal = 0;
806 >      painCave.severity = OPENMD_WARNING;
807 >      simError();
808 >    }          
809 >    
810 >    if (simParams_->haveSwitchingFunctionType()) {
811 >      string funcType = simParams_->getSwitchingFunctionType();
812 >      toUpper(funcType);
813 >      if (funcType == "CUBIC") {
814 >        sft_ = cubic;
815 >      } else {
816 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
817 >          sft_ = fifth_order_poly;
818 >        } else {
819 >          // throw error        
820 >          sprintf( painCave.errMsg,
821 >                   "SimInfo : Unknown switchingFunctionType. (Input file specified %s .)\n"
822 >                   "\tswitchingFunctionType must be one of: "
823 >                   "\"cubic\" or \"fifth_order_polynomial\".",
824 >                   funcType.c_str() );
825 >          painCave.isFatal = 1;
826 >          painCave.severity = OPENMD_ERROR;
827 >          simError();
828 >        }          
829 >      }
830 >    }
831 >  }
832  
833 <  return ndfRaw;
834 < }
833 >  /**
834 >   * setupNeighborlists
835 >   *
836 >   *  If the skinThickness was explicitly set, use that value (but check it)
837 >   *  If the skinThickness was not explicitly set: use 1.0 angstroms
838 >   */
839 >  void SimInfo::setupNeighborlists() {    
840 >    if (simParams_->haveSkinThickness()) {
841 >      skinThickness_ = simParams_->getSkinThickness();
842 >    } else {      
843 >      skinThickness_ = 1.0;
844 >      sprintf(painCave.errMsg,
845 >              "SimInfo: No value was set for the skinThickness.\n"
846 >              "\tOpenMD will use a default value of %f Angstroms\n"
847 >              "\tfor this simulation\n", skinThickness_);
848 >      painCave.severity = OPENMD_INFO;
849 >      painCave.isFatal = 0;
850 >      simError();
851 >    }            
852 >  }
853  
854 < int SimInfo::getNDFtranslational() {
855 <  int ndfTrans_local;
854 >  void SimInfo::setupSimVariables() {
855 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
856 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
857 >    calcBoxDipole_ = false;
858 >    if ( simParams_->haveAccumulateBoxDipole() )
859 >      if ( simParams_->getAccumulateBoxDipole() ) {
860 >        calcBoxDipole_ = true;      
861 >      }
862  
863 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
863 >    set<AtomType*>::iterator i;
864 >    set<AtomType*> atomTypes;
865 >    atomTypes = getSimulatedAtomTypes();    
866 >    int usesElectrostatic = 0;
867 >    int usesMetallic = 0;
868 >    int usesDirectional = 0;
869 >    //loop over all of the atom types
870 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
871 >      usesElectrostatic |= (*i)->isElectrostatic();
872 >      usesMetallic |= (*i)->isMetal();
873 >      usesDirectional |= (*i)->isDirectional();
874 >    }
875  
876 + #ifdef IS_MPI    
877 +    int temp;
878 +    temp = usesDirectional;
879 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
880  
881 < #ifdef IS_MPI
882 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
396 < #else
397 <  ndfTrans = ndfTrans_local;
398 < #endif
881 >    temp = usesMetallic;
882 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
883  
884 <  ndfTrans = ndfTrans - 3 - nZconstraints;
885 <
402 <  return ndfTrans;
403 < }
404 <
405 < int SimInfo::getTotIntegrableObjects() {
406 <  int nObjs_local;
407 <  int nObjs;
408 <
409 <  nObjs_local =  integrableObjects.size();
410 <
411 <
412 < #ifdef IS_MPI
413 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
414 < #else
415 <  nObjs = nObjs_local;
884 >    temp = usesElectrostatic;
885 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
886   #endif
887 +    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
888 +    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
889 +    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
890 +    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
891 +    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
892 +    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
893 +  }
894  
895 +  void SimInfo::setupFortranSim() {
896 +    int isError;
897 +    int nExclude, nOneTwo, nOneThree, nOneFour;
898 +    vector<int> fortranGlobalGroupMembership;
899 +    
900 +    notifyFortranSkinThickness(&skinThickness_);
901  
902 <  return nObjs;
903 < }
902 >    int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0;
903 >    int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0;
904 >    notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf);
905  
906 < void SimInfo::refreshSim(){
906 >    isError = 0;
907  
908 <  simtype fInfo;
909 <  int isError;
910 <  int n_global;
911 <  int* excl;
908 >    //globalGroupMembership_ is filled by SimCreator    
909 >    for (int i = 0; i < nGlobalAtoms_; i++) {
910 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
911 >    }
912  
913 <  fInfo.dielect = 0.0;
913 >    //calculate mass ratio of cutoff group
914 >    vector<RealType> mfact;
915 >    SimInfo::MoleculeIterator mi;
916 >    Molecule* mol;
917 >    Molecule::CutoffGroupIterator ci;
918 >    CutoffGroup* cg;
919 >    Molecule::AtomIterator ai;
920 >    Atom* atom;
921 >    RealType totalMass;
922  
923 <  if( useDipoles ){
924 <    if( useReactionField )fInfo.dielect = dielectric;
925 <  }
923 >    //to avoid memory reallocation, reserve enough space for mfact
924 >    mfact.reserve(getNCutoffGroups());
925 >    
926 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
927 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
928  
929 <  fInfo.SIM_uses_PBC = usePBC;
930 <  //fInfo.SIM_uses_LJ = 0;
931 <  fInfo.SIM_uses_LJ = useLJ;
932 <  fInfo.SIM_uses_sticky = useSticky;
933 <  //fInfo.SIM_uses_sticky = 0;
934 <  fInfo.SIM_uses_charges = useCharges;
935 <  fInfo.SIM_uses_dipoles = useDipoles;
936 <  //fInfo.SIM_uses_dipoles = 0;
937 <  fInfo.SIM_uses_RF = useReactionField;
938 <  //fInfo.SIM_uses_RF = 0;
445 <  fInfo.SIM_uses_GB = useGB;
446 <  fInfo.SIM_uses_EAM = useEAM;
929 >        totalMass = cg->getMass();
930 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
931 >          // Check for massless groups - set mfact to 1 if true
932 >          if (totalMass != 0)
933 >            mfact.push_back(atom->getMass()/totalMass);
934 >          else
935 >            mfact.push_back( 1.0 );
936 >        }
937 >      }      
938 >    }
939  
940 <  n_exclude = excludes->getSize();
941 <  excl = excludes->getFortranArray();
450 <  
451 < #ifdef IS_MPI
452 <  n_global = mpiSim->getNAtomsGlobal();
453 < #else
454 <  n_global = n_atoms;
455 < #endif
456 <  
457 <  isError = 0;
458 <  
459 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
460 <  //it may not be a good idea to pass the address of first element in vector
461 <  //since c++ standard does not require vector to be stored continuously in meomory
462 <  //Most of the compilers will organize the memory of vector continuously
463 <  setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
464 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
465 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
940 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
941 >    vector<int> identArray;
942  
943 <  if( isError ){
943 >    //to avoid memory reallocation, reserve enough space identArray
944 >    identArray.reserve(getNAtoms());
945      
946 <    sprintf( painCave.errMsg,
947 <             "There was an error setting the simulation information in fortran.\n" );
948 <    painCave.isFatal = 1;
949 <    painCave.severity = OOPSE_ERROR;
950 <    simError();
474 <  }
475 <  
476 < #ifdef IS_MPI
477 <  sprintf( checkPointMsg,
478 <           "succesfully sent the simulation information to fortran.\n");
479 <  MPIcheckPoint();
480 < #endif // is_mpi
481 <  
482 <  this->ndf = this->getNDF();
483 <  this->ndfRaw = this->getNDFraw();
484 <  this->ndfTrans = this->getNDFtranslational();
485 < }
946 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
947 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
948 >        identArray.push_back(atom->getIdent());
949 >      }
950 >    }    
951  
952 < void SimInfo::setDefaultRcut( double theRcut ){
953 <  
954 <  haveRcut = 1;
955 <  rCut = theRcut;
956 <  rList = rCut + 1.0;
957 <  
958 <  notifyFortranCutoffs( &rCut, &rSw, &rList );
959 < }
952 >    //fill molMembershipArray
953 >    //molMembershipArray is filled by SimCreator    
954 >    vector<int> molMembershipArray(nGlobalAtoms_);
955 >    for (int i = 0; i < nGlobalAtoms_; i++) {
956 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
957 >    }
958 >    
959 >    //setup fortran simulation
960  
961 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
961 >    nExclude = excludedInteractions_.getSize();
962 >    nOneTwo = oneTwoInteractions_.getSize();
963 >    nOneThree = oneThreeInteractions_.getSize();
964 >    nOneFour = oneFourInteractions_.getSize();
965  
966 <  rSw = theRsw;
967 <  setDefaultRcut( theRcut );
968 < }
966 >    int* excludeList = excludedInteractions_.getPairList();
967 >    int* oneTwoList = oneTwoInteractions_.getPairList();
968 >    int* oneThreeList = oneThreeInteractions_.getPairList();
969 >    int* oneFourList = oneFourInteractions_.getPairList();
970  
971 <
972 < void SimInfo::checkCutOffs( void ){
973 <  
974 <  if( boxIsInit ){
971 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
972 >                   &nExclude, excludeList,
973 >                   &nOneTwo, oneTwoList,
974 >                   &nOneThree, oneThreeList,
975 >                   &nOneFour, oneFourList,
976 >                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
977 >                   &fortranGlobalGroupMembership[0], &isError);
978      
979 <    //we need to check cutOffs against the box
980 <    
509 <    if( rCut > maxCutoff ){
979 >    if( isError ){
980 >      
981        sprintf( painCave.errMsg,
982 <               "cutoffRadius is too large for the current periodic box.\n"
512 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
513 <               "\tThis is larger than half of at least one of the\n"
514 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
515 <               "\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n"
518 <               "\t[ %G %G %G ]\n",
519 <               rCut, currentTime,
520 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
521 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
522 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
523 <      painCave.severity = OOPSE_ERROR;
982 >               "There was an error setting the simulation information in fortran.\n" );
983        painCave.isFatal = 1;
984 +      painCave.severity = OPENMD_ERROR;
985        simError();
986 <    }    
527 <  } else {
528 <    // initialize this stuff before using it, OK?
529 <    sprintf( painCave.errMsg,
530 <             "Trying to check cutoffs without a box.\n"
531 <             "\tOOPSE should have better programmers than that.\n" );
532 <    painCave.severity = OOPSE_ERROR;
533 <    painCave.isFatal = 1;
534 <    simError();      
535 <  }
536 <  
537 < }
538 <
539 < void SimInfo::addProperty(GenericData* prop){
540 <
541 <  map<string, GenericData*>::iterator result;
542 <  result = properties.find(prop->getID());
543 <  
544 <  //we can't simply use  properties[prop->getID()] = prop,
545 <  //it will cause memory leak if we already contain a propery which has the same name of prop
546 <  
547 <  if(result != properties.end()){
986 >    }
987      
549    delete (*result).second;
550    (*result).second = prop;
551      
552  }
553  else{
554
555    properties[prop->getID()] = prop;
556
557  }
988      
989 < }
990 <
991 < GenericData* SimInfo::getProperty(const string& propName){
992 <
993 <  map<string, GenericData*>::iterator result;
994 <  
995 <  //string lowerCaseName = ();
996 <  
997 <  result = properties.find(propName);
998 <  
999 <  if(result != properties.end())
570 <    return (*result).second;  
571 <  else  
572 <    return NULL;  
573 < }
989 >    sprintf( checkPointMsg,
990 >             "succesfully sent the simulation information to fortran.\n");
991 >    
992 >    errorCheckPoint();
993 >    
994 >    // Setup number of neighbors in neighbor list if present
995 >    if (simParams_->haveNeighborListNeighbors()) {
996 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
997 >      setNeighbors(&nlistNeighbors);
998 >    }
999 >  
1000  
1001 +  }
1002  
576 void SimInfo::getFortranGroupArrays(SimInfo* info,
577                                    vector<int>& FglobalGroupMembership,
578                                    vector<double>& mfact){
579  
580  Molecule* myMols;
581  Atom** myAtoms;
582  int numAtom;
583  double mtot;
584  int numMol;
585  int numCutoffGroups;
586  CutoffGroup* myCutoffGroup;
587  vector<CutoffGroup*>::iterator iterCutoff;
588  Atom* cutoffAtom;
589  vector<Atom*>::iterator iterAtom;
590  int atomIndex;
591  double totalMass;
592  
593  mfact.clear();
594  FglobalGroupMembership.clear();
595  
1003  
1004 <  // Fix the silly fortran indexing problem
1004 >  void SimInfo::setupFortranParallel() {
1005 > #ifdef IS_MPI    
1006 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
1007 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
1008 >    vector<int> localToGlobalCutoffGroupIndex;
1009 >    SimInfo::MoleculeIterator mi;
1010 >    Molecule::AtomIterator ai;
1011 >    Molecule::CutoffGroupIterator ci;
1012 >    Molecule* mol;
1013 >    Atom* atom;
1014 >    CutoffGroup* cg;
1015 >    mpiSimData parallelData;
1016 >    int isError;
1017 >
1018 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
1019 >
1020 >      //local index(index in DataStorge) of atom is important
1021 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1022 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1023 >      }
1024 >
1025 >      //local index of cutoff group is trivial, it only depends on the order of travesing
1026 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1027 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1028 >      }        
1029 >        
1030 >    }
1031 >
1032 >    //fill up mpiSimData struct
1033 >    parallelData.nMolGlobal = getNGlobalMolecules();
1034 >    parallelData.nMolLocal = getNMolecules();
1035 >    parallelData.nAtomsGlobal = getNGlobalAtoms();
1036 >    parallelData.nAtomsLocal = getNAtoms();
1037 >    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
1038 >    parallelData.nGroupsLocal = getNCutoffGroups();
1039 >    parallelData.myNode = worldRank;
1040 >    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
1041 >
1042 >    //pass mpiSimData struct and index arrays to fortran
1043 >    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
1044 >                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
1045 >                    &localToGlobalCutoffGroupIndex[0], &isError);
1046 >
1047 >    if (isError) {
1048 >      sprintf(painCave.errMsg,
1049 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
1050 >      painCave.isFatal = 1;
1051 >      simError();
1052 >    }
1053 >
1054 >    sprintf(checkPointMsg, " mpiRefresh successful.\n");
1055 >    errorCheckPoint();
1056 >
1057 > #endif
1058 >  }
1059 >
1060 >
1061 >  void SimInfo::setupAccumulateBoxDipole() {    
1062 >
1063 >
1064 >  }
1065 >
1066 >  void SimInfo::addProperty(GenericData* genData) {
1067 >    properties_.addProperty(genData);  
1068 >  }
1069 >
1070 >  void SimInfo::removeProperty(const string& propName) {
1071 >    properties_.removeProperty(propName);  
1072 >  }
1073 >
1074 >  void SimInfo::clearProperties() {
1075 >    properties_.clearProperties();
1076 >  }
1077 >
1078 >  vector<string> SimInfo::getPropertyNames() {
1079 >    return properties_.getPropertyNames();  
1080 >  }
1081 >      
1082 >  vector<GenericData*> SimInfo::getProperties() {
1083 >    return properties_.getProperties();
1084 >  }
1085 >
1086 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
1087 >    return properties_.getPropertyByName(propName);
1088 >  }
1089 >
1090 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1091 >    if (sman_ == sman) {
1092 >      return;
1093 >    }    
1094 >    delete sman_;
1095 >    sman_ = sman;
1096 >
1097 >    Molecule* mol;
1098 >    RigidBody* rb;
1099 >    Atom* atom;
1100 >    SimInfo::MoleculeIterator mi;
1101 >    Molecule::RigidBodyIterator rbIter;
1102 >    Molecule::AtomIterator atomIter;;
1103 >
1104 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1105 >        
1106 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1107 >        atom->setSnapshotManager(sman_);
1108 >      }
1109 >        
1110 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1111 >        rb->setSnapshotManager(sman_);
1112 >      }
1113 >    }    
1114 >    
1115 >  }
1116 >
1117 >  Vector3d SimInfo::getComVel(){
1118 >    SimInfo::MoleculeIterator i;
1119 >    Molecule* mol;
1120 >
1121 >    Vector3d comVel(0.0);
1122 >    RealType totalMass = 0.0;
1123 >    
1124 >
1125 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1126 >      RealType mass = mol->getMass();
1127 >      totalMass += mass;
1128 >      comVel += mass * mol->getComVel();
1129 >    }  
1130 >
1131   #ifdef IS_MPI
1132 <  numAtom = mpiSim->getNAtomsGlobal();
1133 < #else
1134 <  numAtom = n_atoms;
1132 >    RealType tmpMass = totalMass;
1133 >    Vector3d tmpComVel(comVel);    
1134 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1135 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1136   #endif
603  for (int i = 0; i < numAtom; i++)
604    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
605  
1137  
1138 <  myMols = info->molecules;
608 <  numMol = info->n_mol;
609 <  for(int i  = 0; i < numMol; i++){
610 <    numCutoffGroups = myMols[i].getNCutoffGroups();
611 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
612 <        myCutoffGroup != NULL;
613 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
1138 >    comVel /= totalMass;
1139  
1140 <      totalMass = myCutoffGroup->getMass();
1140 >    return comVel;
1141 >  }
1142 >
1143 >  Vector3d SimInfo::getCom(){
1144 >    SimInfo::MoleculeIterator i;
1145 >    Molecule* mol;
1146 >
1147 >    Vector3d com(0.0);
1148 >    RealType totalMass = 0.0;
1149 >    
1150 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1151 >      RealType mass = mol->getMass();
1152 >      totalMass += mass;
1153 >      com += mass * mol->getCom();
1154 >    }  
1155 >
1156 > #ifdef IS_MPI
1157 >    RealType tmpMass = totalMass;
1158 >    Vector3d tmpCom(com);    
1159 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1160 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1161 > #endif
1162 >
1163 >    com /= totalMass;
1164 >
1165 >    return com;
1166 >
1167 >  }        
1168 >
1169 >  ostream& operator <<(ostream& o, SimInfo& info) {
1170 >
1171 >    return o;
1172 >  }
1173 >  
1174 >  
1175 >   /*
1176 >   Returns center of mass and center of mass velocity in one function call.
1177 >   */
1178 >  
1179 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1180 >      SimInfo::MoleculeIterator i;
1181 >      Molecule* mol;
1182        
1183 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
1184 <          cutoffAtom != NULL;
1185 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
1186 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
1183 >    
1184 >      RealType totalMass = 0.0;
1185 >    
1186 >
1187 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1188 >         RealType mass = mol->getMass();
1189 >         totalMass += mass;
1190 >         com += mass * mol->getCom();
1191 >         comVel += mass * mol->getComVel();          
1192        }  
1193 +      
1194 + #ifdef IS_MPI
1195 +      RealType tmpMass = totalMass;
1196 +      Vector3d tmpCom(com);  
1197 +      Vector3d tmpComVel(comVel);
1198 +      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1199 +      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1200 +      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1201 + #endif
1202 +      
1203 +      com /= totalMass;
1204 +      comVel /= totalMass;
1205 +   }        
1206 +  
1207 +   /*
1208 +   Return intertia tensor for entire system and angular momentum Vector.
1209 +
1210 +
1211 +       [  Ixx -Ixy  -Ixz ]
1212 +    J =| -Iyx  Iyy  -Iyz |
1213 +       [ -Izx -Iyz   Izz ]
1214 +    */
1215 +
1216 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1217 +      
1218 +
1219 +      RealType xx = 0.0;
1220 +      RealType yy = 0.0;
1221 +      RealType zz = 0.0;
1222 +      RealType xy = 0.0;
1223 +      RealType xz = 0.0;
1224 +      RealType yz = 0.0;
1225 +      Vector3d com(0.0);
1226 +      Vector3d comVel(0.0);
1227 +      
1228 +      getComAll(com, comVel);
1229 +      
1230 +      SimInfo::MoleculeIterator i;
1231 +      Molecule* mol;
1232 +      
1233 +      Vector3d thisq(0.0);
1234 +      Vector3d thisv(0.0);
1235 +
1236 +      RealType thisMass = 0.0;
1237 +    
1238 +      
1239 +      
1240 +  
1241 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1242 +        
1243 +         thisq = mol->getCom()-com;
1244 +         thisv = mol->getComVel()-comVel;
1245 +         thisMass = mol->getMass();
1246 +         // Compute moment of intertia coefficients.
1247 +         xx += thisq[0]*thisq[0]*thisMass;
1248 +         yy += thisq[1]*thisq[1]*thisMass;
1249 +         zz += thisq[2]*thisq[2]*thisMass;
1250 +        
1251 +         // compute products of intertia
1252 +         xy += thisq[0]*thisq[1]*thisMass;
1253 +         xz += thisq[0]*thisq[2]*thisMass;
1254 +         yz += thisq[1]*thisq[2]*thisMass;
1255 +            
1256 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1257 +            
1258 +      }  
1259 +      
1260 +      
1261 +      inertiaTensor(0,0) = yy + zz;
1262 +      inertiaTensor(0,1) = -xy;
1263 +      inertiaTensor(0,2) = -xz;
1264 +      inertiaTensor(1,0) = -xy;
1265 +      inertiaTensor(1,1) = xx + zz;
1266 +      inertiaTensor(1,2) = -yz;
1267 +      inertiaTensor(2,0) = -xz;
1268 +      inertiaTensor(2,1) = -yz;
1269 +      inertiaTensor(2,2) = xx + yy;
1270 +      
1271 + #ifdef IS_MPI
1272 +      Mat3x3d tmpI(inertiaTensor);
1273 +      Vector3d tmpAngMom;
1274 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1275 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1276 + #endif
1277 +              
1278 +      return;
1279 +   }
1280 +
1281 +   //Returns the angular momentum of the system
1282 +   Vector3d SimInfo::getAngularMomentum(){
1283 +      
1284 +      Vector3d com(0.0);
1285 +      Vector3d comVel(0.0);
1286 +      Vector3d angularMomentum(0.0);
1287 +      
1288 +      getComAll(com,comVel);
1289 +      
1290 +      SimInfo::MoleculeIterator i;
1291 +      Molecule* mol;
1292 +      
1293 +      Vector3d thisr(0.0);
1294 +      Vector3d thisp(0.0);
1295 +      
1296 +      RealType thisMass;
1297 +      
1298 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1299 +        thisMass = mol->getMass();
1300 +        thisr = mol->getCom()-com;
1301 +        thisp = (mol->getComVel()-comVel)*thisMass;
1302 +        
1303 +        angularMomentum += cross( thisr, thisp );
1304 +        
1305 +      }  
1306 +      
1307 + #ifdef IS_MPI
1308 +      Vector3d tmpAngMom;
1309 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1310 + #endif
1311 +      
1312 +      return angularMomentum;
1313 +   }
1314 +  
1315 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1316 +    return IOIndexToIntegrableObject.at(index);
1317 +  }
1318 +  
1319 +  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1320 +    IOIndexToIntegrableObject= v;
1321 +  }
1322 +
1323 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1324 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1325 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1326 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1327 +  */
1328 +  void SimInfo::getGyrationalVolume(RealType &volume){
1329 +    Mat3x3d intTensor;
1330 +    RealType det;
1331 +    Vector3d dummyAngMom;
1332 +    RealType sysconstants;
1333 +    RealType geomCnst;
1334 +
1335 +    geomCnst = 3.0/2.0;
1336 +    /* Get the inertial tensor and angular momentum for free*/
1337 +    getInertiaTensor(intTensor,dummyAngMom);
1338 +    
1339 +    det = intTensor.determinant();
1340 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1341 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1342 +    return;
1343 +  }
1344 +
1345 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1346 +    Mat3x3d intTensor;
1347 +    Vector3d dummyAngMom;
1348 +    RealType sysconstants;
1349 +    RealType geomCnst;
1350 +
1351 +    geomCnst = 3.0/2.0;
1352 +    /* Get the inertial tensor and angular momentum for free*/
1353 +    getInertiaTensor(intTensor,dummyAngMom);
1354 +    
1355 +    detI = intTensor.determinant();
1356 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1357 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1358 +    return;
1359 +  }
1360 + /*
1361 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1362 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1363 +      sdByGlobalIndex_ = v;
1364      }
1365 +
1366 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1367 +      //assert(index < nAtoms_ + nRigidBodies_);
1368 +      return sdByGlobalIndex_.at(index);
1369 +    }  
1370 + */  
1371 +  int SimInfo::getNGlobalConstraints() {
1372 +    int nGlobalConstraints;
1373 + #ifdef IS_MPI
1374 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1375 +                  MPI_COMM_WORLD);    
1376 + #else
1377 +    nGlobalConstraints =  nConstraints_;
1378 + #endif
1379 +    return nGlobalConstraints;
1380    }
1381  
1382 < }
1382 > }//end namespace OpenMD
1383 >

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 124 by chuckv, Wed Oct 20 20:46:20 2004 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1534 by gezelter, Wed Dec 29 21:53:28 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines