ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 580 by chrisfen, Tue Aug 30 18:23:50 2005 UTC vs.
Revision 1121 by chuckv, Mon Feb 26 04:45:42 2007 UTC

# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57 + #include "UseTheForce/fCutoffPolicy.h"
58 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 + #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61   #include "UseTheForce/doForces_interface.h"
62 < #include "UseTheForce/notifyCutoffs_interface.h"
62 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
65   #include "utils/MemoryUtils.hpp"
66   #include "utils/simError.h"
67   #include "selection/SelectionManager.hpp"
68 + #include "io/ForceFieldOptions.hpp"
69 + #include "UseTheForce/ForceField.hpp"
70  
71 +
72   #ifdef IS_MPI
73   #include "UseTheForce/mpiComponentPlan.h"
74   #include "UseTheForce/DarkSide/simParallel_interface.h"
75   #endif
76  
77   namespace oopse {
78 +  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 +    std::map<int, std::set<int> >::iterator i = container.find(index);
80 +    std::set<int> result;
81 +    if (i != container.end()) {
82 +        result = i->second;
83 +    }
84  
85 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
86 <                   ForceField* ff, Globals* simParams) :
87 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
88 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
85 >    return result;
86 >  }
87 >  
88 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
89 >    forceField_(ff), simParams_(simParams),
90 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
94      nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
95 <    sman_(NULL), fortranInitialized_(false) {
95 >    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) {
96  
78            
79      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
97        MoleculeStamp* molStamp;
98        int nMolWithSameStamp;
99        int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
100 <      int nGroups = 0;          //total cutoff groups defined in meta-data file
100 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
101        CutoffGroupStamp* cgStamp;    
102        RigidBodyStamp* rbStamp;
103        int nRigidAtoms = 0;
104 <    
105 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
106 <        molStamp = i->first;
107 <        nMolWithSameStamp = i->second;
104 >      std::vector<Component*> components = simParams->getComponents();
105 >      
106 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
107 >        molStamp = (*i)->getMoleculeStamp();
108 >        nMolWithSameStamp = (*i)->getNMol();
109          
110          addMoleculeStamp(molStamp, nMolWithSameStamp);
111  
112          //calculate atoms in molecules
113          nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
114  
97
115          //calculate atoms in cutoff groups
116          int nAtomsInGroups = 0;
117          int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
118          
119          for (int j=0; j < nCutoffGroupsInStamp; j++) {
120 <          cgStamp = molStamp->getCutoffGroup(j);
120 >          cgStamp = molStamp->getCutoffGroupStamp(j);
121            nAtomsInGroups += cgStamp->getNMembers();
122          }
123  
124          nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
125 +
126          nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
127  
128          //calculate atoms in rigid bodies
# Line 112 | Line 130 | namespace oopse {
130          int nRigidBodiesInStamp = molStamp->getNRigidBodies();
131          
132          for (int j=0; j < nRigidBodiesInStamp; j++) {
133 <          rbStamp = molStamp->getRigidBody(j);
133 >          rbStamp = molStamp->getRigidBodyStamp(j);
134            nAtomsInRigidBodies += rbStamp->getNMembers();
135          }
136  
# Line 121 | Line 139 | namespace oopse {
139          
140        }
141  
142 <      //every free atom (atom does not belong to cutoff groups) is a cutoff group
143 <      //therefore the total number of cutoff groups in the system is equal to
144 <      //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
145 <      //file plus the number of cutoff groups defined in meta-data file
142 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
143 >      //group therefore the total number of cutoff groups in the system is
144 >      //equal to the total number of atoms minus number of atoms belong to
145 >      //cutoff group defined in meta-data file plus the number of cutoff
146 >      //groups defined in meta-data file
147        nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
148  
149 <      //every free atom (atom does not belong to rigid bodies) is an integrable object
150 <      //therefore the total number of  integrable objects in the system is equal to
151 <      //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
152 <      //file plus the number of  rigid bodies defined in meta-data file
153 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
154 <
149 >      //every free atom (atom does not belong to rigid bodies) is an
150 >      //integrable object therefore the total number of integrable objects
151 >      //in the system is equal to the total number of atoms minus number of
152 >      //atoms belong to rigid body defined in meta-data file plus the number
153 >      //of rigid bodies defined in meta-data file
154 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
155 >                                                + nGlobalRigidBodies_;
156 >  
157        nGlobalMols_ = molStampIds_.size();
158  
159   #ifdef IS_MPI    
# Line 148 | Line 169 | namespace oopse {
169      }
170      molecules_.clear();
171        
151    delete stamps_;
172      delete sman_;
173      delete simParams_;
174      delete forceField_;
# Line 255 | Line 275 | namespace oopse {
275            }
276          }
277              
278 <      }//end for (integrableObject)
279 <    }// end for (mol)
278 >      }
279 >    }
280      
281      // n_constraints is local, so subtract them on each processor
282      ndf_local -= nConstraints_;
# Line 273 | Line 293 | namespace oopse {
293  
294    }
295  
296 +  int SimInfo::getFdf() {
297 + #ifdef IS_MPI
298 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
299 + #else
300 +    fdf_ = fdf_local;
301 + #endif
302 +    return fdf_;
303 +  }
304 +    
305    void SimInfo::calcNdfRaw() {
306      int ndfRaw_local;
307  
# Line 335 | Line 364 | namespace oopse {
364      int b;
365      int c;
366      int d;
367 +
368 +    std::map<int, std::set<int> > atomGroups;
369 +
370 +    Molecule::RigidBodyIterator rbIter;
371 +    RigidBody* rb;
372 +    Molecule::IntegrableObjectIterator ii;
373 +    StuntDouble* integrableObject;
374      
375 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
376 +           integrableObject = mol->nextIntegrableObject(ii)) {
377 +
378 +      if (integrableObject->isRigidBody()) {
379 +          rb = static_cast<RigidBody*>(integrableObject);
380 +          std::vector<Atom*> atoms = rb->getAtoms();
381 +          std::set<int> rigidAtoms;
382 +          for (int i = 0; i < atoms.size(); ++i) {
383 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
384 +          }
385 +          for (int i = 0; i < atoms.size(); ++i) {
386 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
387 +          }      
388 +      } else {
389 +        std::set<int> oneAtomSet;
390 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
391 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
392 +      }
393 +    }  
394 +
395 +    
396 +    
397      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
398        a = bond->getAtomA()->getGlobalIndex();
399        b = bond->getAtomB()->getGlobalIndex();        
# Line 346 | Line 404 | namespace oopse {
404        a = bend->getAtomA()->getGlobalIndex();
405        b = bend->getAtomB()->getGlobalIndex();        
406        c = bend->getAtomC()->getGlobalIndex();
407 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
408 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
409 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
410  
411 <      exclude_.addPair(a, b);
412 <      exclude_.addPair(a, c);
413 <      exclude_.addPair(b, c);        
411 >      exclude_.addPairs(rigidSetA, rigidSetB);
412 >      exclude_.addPairs(rigidSetA, rigidSetC);
413 >      exclude_.addPairs(rigidSetB, rigidSetC);
414 >      
415 >      //exclude_.addPair(a, b);
416 >      //exclude_.addPair(a, c);
417 >      //exclude_.addPair(b, c);        
418      }
419  
420      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
# Line 357 | Line 422 | namespace oopse {
422        b = torsion->getAtomB()->getGlobalIndex();        
423        c = torsion->getAtomC()->getGlobalIndex();        
424        d = torsion->getAtomD()->getGlobalIndex();        
425 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
426 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
427 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
428 +      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
429  
430 +      exclude_.addPairs(rigidSetA, rigidSetB);
431 +      exclude_.addPairs(rigidSetA, rigidSetC);
432 +      exclude_.addPairs(rigidSetA, rigidSetD);
433 +      exclude_.addPairs(rigidSetB, rigidSetC);
434 +      exclude_.addPairs(rigidSetB, rigidSetD);
435 +      exclude_.addPairs(rigidSetC, rigidSetD);
436 +
437 +      /*
438 +      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
439 +      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
440 +      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
441 +      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
442 +      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
443 +      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
444 +        
445 +      
446        exclude_.addPair(a, b);
447        exclude_.addPair(a, c);
448        exclude_.addPair(a, d);
449        exclude_.addPair(b, c);
450        exclude_.addPair(b, d);
451        exclude_.addPair(c, d);        
452 +      */
453      }
454  
369    Molecule::RigidBodyIterator rbIter;
370    RigidBody* rb;
455      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
456        std::vector<Atom*> atoms = rb->getAtoms();
457        for (int i = 0; i < atoms.size() -1 ; ++i) {
# Line 392 | Line 476 | namespace oopse {
476      int b;
477      int c;
478      int d;
479 +
480 +    std::map<int, std::set<int> > atomGroups;
481 +
482 +    Molecule::RigidBodyIterator rbIter;
483 +    RigidBody* rb;
484 +    Molecule::IntegrableObjectIterator ii;
485 +    StuntDouble* integrableObject;
486      
487 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
488 +           integrableObject = mol->nextIntegrableObject(ii)) {
489 +
490 +      if (integrableObject->isRigidBody()) {
491 +          rb = static_cast<RigidBody*>(integrableObject);
492 +          std::vector<Atom*> atoms = rb->getAtoms();
493 +          std::set<int> rigidAtoms;
494 +          for (int i = 0; i < atoms.size(); ++i) {
495 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
496 +          }
497 +          for (int i = 0; i < atoms.size(); ++i) {
498 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
499 +          }      
500 +      } else {
501 +        std::set<int> oneAtomSet;
502 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
503 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
504 +      }
505 +    }  
506 +
507 +    
508      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
509        a = bond->getAtomA()->getGlobalIndex();
510        b = bond->getAtomB()->getGlobalIndex();        
# Line 404 | Line 516 | namespace oopse {
516        b = bend->getAtomB()->getGlobalIndex();        
517        c = bend->getAtomC()->getGlobalIndex();
518  
519 <      exclude_.removePair(a, b);
520 <      exclude_.removePair(a, c);
521 <      exclude_.removePair(b, c);        
519 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
520 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
521 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
522 >
523 >      exclude_.removePairs(rigidSetA, rigidSetB);
524 >      exclude_.removePairs(rigidSetA, rigidSetC);
525 >      exclude_.removePairs(rigidSetB, rigidSetC);
526 >      
527 >      //exclude_.removePair(a, b);
528 >      //exclude_.removePair(a, c);
529 >      //exclude_.removePair(b, c);        
530      }
531  
532      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
# Line 415 | Line 535 | namespace oopse {
535        c = torsion->getAtomC()->getGlobalIndex();        
536        d = torsion->getAtomD()->getGlobalIndex();        
537  
538 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
539 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
540 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
541 +      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
542 +
543 +      exclude_.removePairs(rigidSetA, rigidSetB);
544 +      exclude_.removePairs(rigidSetA, rigidSetC);
545 +      exclude_.removePairs(rigidSetA, rigidSetD);
546 +      exclude_.removePairs(rigidSetB, rigidSetC);
547 +      exclude_.removePairs(rigidSetB, rigidSetD);
548 +      exclude_.removePairs(rigidSetC, rigidSetD);
549 +
550 +      /*
551 +      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
552 +      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
553 +      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
554 +      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
555 +      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
556 +      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
557 +
558 +      
559        exclude_.removePair(a, b);
560        exclude_.removePair(a, c);
561        exclude_.removePair(a, d);
562        exclude_.removePair(b, c);
563        exclude_.removePair(b, d);
564        exclude_.removePair(c, d);        
565 +      */
566      }
567  
426    Molecule::RigidBodyIterator rbIter;
427    RigidBody* rb;
568      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
569        std::vector<Atom*> atoms = rb->getAtoms();
570        for (int i = 0; i < atoms.size() -1 ; ++i) {
# Line 462 | Line 602 | namespace oopse {
602      //setup fortran force field
603      /** @deprecate */    
604      int isError = 0;
605 <    initFortranFF( &fInfo_.SIM_uses_RF, &fInfo_.SIM_uses_UW,
606 <                   &fInfo_.SIM_uses_DW, &isError );
605 >    
606 >    setupCutoff();
607 >    
608 >    setupElectrostaticSummationMethod( isError );
609 >    setupSwitchingFunction();
610 >    setupAccumulateBoxDipole();
611 >
612      if(isError){
613        sprintf( painCave.errMsg,
614                 "ForceField error: There was an error initializing the forceField in fortran.\n" );
615        painCave.isFatal = 1;
616        simError();
617      }
473  
474    
475    setupCutoff();
618  
619      calcNdf();
620      calcNdfRaw();
# Line 507 | Line 649 | namespace oopse {
649      int useLennardJones = 0;
650      int useElectrostatic = 0;
651      int useEAM = 0;
652 +    int useSC = 0;
653      int useCharge = 0;
654      int useDirectional = 0;
655      int useDipole = 0;
# Line 518 | Line 661 | namespace oopse {
661      int useDirectionalAtom = 0;    
662      int useElectrostatics = 0;
663      //usePBC and useRF are from simParams
664 <    int usePBC = simParams_->getPBC();
665 <    int useRF = simParams_->getUseRF();
666 <    int useUW = simParams_->getUseUndampedWolf();
667 <    int useDW = simParams_->getUseDampedWolf();
664 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
665 >    int useRF;
666 >    int useSF;
667 >    int useSP;
668 >    int useBoxDipole;
669 >    std::string myMethod;
670  
671 +    // set the useRF logical
672 +    useRF = 0;
673 +    useSF = 0;
674 +    useSP = 0;
675 +
676 +
677 +    if (simParams_->haveElectrostaticSummationMethod()) {
678 +      std::string myMethod = simParams_->getElectrostaticSummationMethod();
679 +      toUpper(myMethod);
680 +      if (myMethod == "REACTION_FIELD"){
681 +        useRF = 1;
682 +      } else if (myMethod == "SHIFTED_FORCE"){
683 +        useSF = 1;
684 +      } else if (myMethod == "SHIFTED_POTENTIAL"){
685 +        useSP = 1;
686 +      }
687 +    }
688 +    
689 +    if (simParams_->haveAccumulateBoxDipole())
690 +      if (simParams_->getAccumulateBoxDipole())
691 +        useBoxDipole = 1;
692 +
693      //loop over all of the atom types
694      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
695        useLennardJones |= (*i)->isLennardJones();
696        useElectrostatic |= (*i)->isElectrostatic();
697        useEAM |= (*i)->isEAM();
698 +      useSC |= (*i)->isSC();
699        useCharge |= (*i)->isCharge();
700        useDirectional |= (*i)->isDirectional();
701        useDipole |= (*i)->isDipole();
# Line 578 | Line 746 | namespace oopse {
746      temp = useEAM;
747      MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
748  
749 +    temp = useSC;
750 +    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
751 +    
752      temp = useShape;
753      MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
754  
# Line 587 | Line 758 | namespace oopse {
758      temp = useRF;
759      MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
760  
761 <    temp = useUW;
762 <    MPI_Allreduce(&temp, &useUW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
761 >    temp = useSF;
762 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
763  
764 <    temp = useDW;
765 <    MPI_Allreduce(&temp, &useDW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
766 <    
764 >    temp = useSP;
765 >    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
766 >
767 >    temp = useBoxDipole;
768 >    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
769 >
770   #endif
771  
772      fInfo_.SIM_uses_PBC = usePBC;    
# Line 605 | Line 779 | namespace oopse {
779      fInfo_.SIM_uses_StickyPower = useStickyPower;
780      fInfo_.SIM_uses_GayBerne = useGayBerne;
781      fInfo_.SIM_uses_EAM = useEAM;
782 +    fInfo_.SIM_uses_SC = useSC;
783      fInfo_.SIM_uses_Shapes = useShape;
784      fInfo_.SIM_uses_FLARB = useFLARB;
785      fInfo_.SIM_uses_RF = useRF;
786 <    fInfo_.SIM_uses_UW = useUW;
787 <    fInfo_.SIM_uses_DW = useDW;
788 <
614 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
615 <
616 <      if (simParams_->haveDielectric()) {
617 <        fInfo_.dielect = simParams_->getDielectric();
618 <      } else {
619 <        sprintf(painCave.errMsg,
620 <                "SimSetup Error: No Dielectric constant was set.\n"
621 <                "\tYou are trying to use Reaction Field without"
622 <                "\tsetting a dielectric constant!\n");
623 <        painCave.isFatal = 1;
624 <        simError();
625 <      }
626 <        
627 <    } else {
628 <      fInfo_.dielect = 0.0;
629 <    }
630 <
786 >    fInfo_.SIM_uses_SF = useSF;
787 >    fInfo_.SIM_uses_SP = useSP;
788 >    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
789    }
790  
791    void SimInfo::setupFortranSim() {
# Line 644 | Line 802 | namespace oopse {
802      }
803  
804      //calculate mass ratio of cutoff group
805 <    std::vector<double> mfact;
805 >    std::vector<RealType> mfact;
806      SimInfo::MoleculeIterator mi;
807      Molecule* mol;
808      Molecule::CutoffGroupIterator ci;
809      CutoffGroup* cg;
810      Molecule::AtomIterator ai;
811      Atom* atom;
812 <    double totalMass;
812 >    RealType totalMass;
813  
814      //to avoid memory reallocation, reserve enough space for mfact
815      mfact.reserve(getNCutoffGroups());
# Line 661 | Line 819 | namespace oopse {
819  
820          totalMass = cg->getMass();
821          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
822 <          mfact.push_back(atom->getMass()/totalMass);
822 >          // Check for massless groups - set mfact to 1 if true
823 >          if (totalMass != 0)
824 >            mfact.push_back(atom->getMass()/totalMass);
825 >          else
826 >            mfact.push_back( 1.0 );
827          }
828  
829        }      
# Line 708 | Line 870 | namespace oopse {
870               "succesfully sent the simulation information to fortran.\n");
871      MPIcheckPoint();
872   #endif // is_mpi
873 +
874 +    // Setup number of neighbors in neighbor list if present
875 +    if (simParams_->haveNeighborListNeighbors()) {
876 +      int nlistNeighbors = simParams_->getNeighborListNeighbors();
877 +      setNeighbors(&nlistNeighbors);
878 +    }
879 +  
880 +
881    }
882  
883  
# Line 770 | Line 940 | namespace oopse {
940  
941   #endif
942  
943 <  double SimInfo::calcMaxCutoffRadius() {
943 >  void SimInfo::setupCutoff() {          
944 >    
945 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
946  
947 +    // Check the cutoff policy
948 +    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
949  
950 <    std::set<AtomType*> atomTypes;
951 <    std::set<AtomType*>::iterator i;
952 <    std::vector<double> cutoffRadius;
953 <
954 <    //get the unique atom types
781 <    atomTypes = getUniqueAtomTypes();
782 <
783 <    //query the max cutoff radius among these atom types
784 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
785 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
950 >    std::string myPolicy;
951 >    if (forceFieldOptions_.haveCutoffPolicy()){
952 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
953 >    }else if (simParams_->haveCutoffPolicy()) {
954 >      myPolicy = simParams_->getCutoffPolicy();
955      }
956  
957 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
958 < #ifdef IS_MPI
959 <    //pick the max cutoff radius among the processors
960 < #endif
961 <
962 <    return maxCutoffRadius;
963 <  }
964 <
965 <  void SimInfo::getCutoff(double& rcut, double& rsw) {
966 <    
967 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
957 >    if (!myPolicy.empty()){
958 >      toUpper(myPolicy);
959 >      if (myPolicy == "MIX") {
960 >        cp = MIX_CUTOFF_POLICY;
961 >      } else {
962 >        if (myPolicy == "MAX") {
963 >          cp = MAX_CUTOFF_POLICY;
964 >        } else {
965 >          if (myPolicy == "TRADITIONAL") {            
966 >            cp = TRADITIONAL_CUTOFF_POLICY;
967 >          } else {
968 >            // throw error        
969 >            sprintf( painCave.errMsg,
970 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
971 >            painCave.isFatal = 1;
972 >            simError();
973 >          }    
974 >        }          
975 >      }
976 >    }          
977 >    notifyFortranCutoffPolicy(&cp);
978 >
979 >    // Check the Skin Thickness for neighborlists
980 >    RealType skin;
981 >    if (simParams_->haveSkinThickness()) {
982 >      skin = simParams_->getSkinThickness();
983 >      notifyFortranSkinThickness(&skin);
984 >    }            
985          
986 <      if (!simParams_->haveRcut()){
987 <        sprintf(painCave.errMsg,
986 >    // Check if the cutoff was set explicitly:
987 >    if (simParams_->haveCutoffRadius()) {
988 >      rcut_ = simParams_->getCutoffRadius();
989 >      if (simParams_->haveSwitchingRadius()) {
990 >        rsw_  = simParams_->getSwitchingRadius();
991 >      } else {
992 >        if (fInfo_.SIM_uses_Charges |
993 >            fInfo_.SIM_uses_Dipoles |
994 >            fInfo_.SIM_uses_RF) {
995 >          
996 >          rsw_ = 0.85 * rcut_;
997 >          sprintf(painCave.errMsg,
998 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
999 >                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1000 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1001 >        painCave.isFatal = 0;
1002 >        simError();
1003 >        } else {
1004 >          rsw_ = rcut_;
1005 >          sprintf(painCave.errMsg,
1006 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1007 >                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1008 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1009 >          painCave.isFatal = 0;
1010 >          simError();
1011 >        }
1012 >      }
1013 >      
1014 >      notifyFortranCutoffs(&rcut_, &rsw_);
1015 >      
1016 >    } else {
1017 >      
1018 >      // For electrostatic atoms, we'll assume a large safe value:
1019 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1020 >        sprintf(painCave.errMsg,
1021                  "SimCreator Warning: No value was set for the cutoffRadius.\n"
1022                  "\tOOPSE will use a default value of 15.0 angstroms"
1023                  "\tfor the cutoffRadius.\n");
1024 <        painCave.isFatal = 0;
1024 >        painCave.isFatal = 0;
1025          simError();
1026 <        rcut = 15.0;
1027 <      } else{
1028 <        rcut = simParams_->getRcut();
1029 <      }
1026 >        rcut_ = 15.0;
1027 >      
1028 >        if (simParams_->haveElectrostaticSummationMethod()) {
1029 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1030 >          toUpper(myMethod);
1031 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1032 >            if (simParams_->haveSwitchingRadius()){
1033 >              sprintf(painCave.errMsg,
1034 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
1035 >                      "\teven though the electrostaticSummationMethod was\n"
1036 >                      "\tset to %s\n", myMethod.c_str());
1037 >              painCave.isFatal = 1;
1038 >              simError();            
1039 >            }
1040 >          }
1041 >        }
1042 >      
1043 >        if (simParams_->haveSwitchingRadius()){
1044 >          rsw_ = simParams_->getSwitchingRadius();
1045 >        } else {        
1046 >          sprintf(painCave.errMsg,
1047 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1048 >                  "\tOOPSE will use a default value of\n"
1049 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1050 >          painCave.isFatal = 0;
1051 >          simError();
1052 >          rsw_ = 0.85 * rcut_;
1053 >        }
1054 >        notifyFortranCutoffs(&rcut_, &rsw_);
1055 >      } else {
1056 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1057 >        // We'll punt and let fortran figure out the cutoffs later.
1058 >        
1059 >        notifyFortranYouAreOnYourOwn();
1060  
812      if (!simParams_->haveRsw()){
813        sprintf(painCave.errMsg,
814                "SimCreator Warning: No value was set for switchingRadius.\n"
815                "\tOOPSE will use a default value of\n"
816                "\t0.95 * cutoffRadius for the switchingRadius\n");
817        painCave.isFatal = 0;
818        simError();
819        rsw = 0.95 * rcut;
820      } else{
821        rsw = simParams_->getRsw();
1061        }
1062 +    }
1063 +  }
1064  
1065 <    } else {
1066 <      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
1067 <      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
1068 <        
1069 <      if (simParams_->haveRcut()) {
1070 <        rcut = simParams_->getRcut();
1065 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1066 >    
1067 >    int errorOut;
1068 >    int esm =  NONE;
1069 >    int sm = UNDAMPED;
1070 >    RealType alphaVal;
1071 >    RealType dielectric;
1072 >    
1073 >    errorOut = isError;
1074 >
1075 >    if (simParams_->haveElectrostaticSummationMethod()) {
1076 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1077 >      toUpper(myMethod);
1078 >      if (myMethod == "NONE") {
1079 >        esm = NONE;
1080        } else {
1081 <        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
1082 <        rcut = calcMaxCutoffRadius();
1081 >        if (myMethod == "SWITCHING_FUNCTION") {
1082 >          esm = SWITCHING_FUNCTION;
1083 >        } else {
1084 >          if (myMethod == "SHIFTED_POTENTIAL") {
1085 >            esm = SHIFTED_POTENTIAL;
1086 >          } else {
1087 >            if (myMethod == "SHIFTED_FORCE") {            
1088 >              esm = SHIFTED_FORCE;
1089 >            } else {
1090 >              if (myMethod == "REACTION_FIELD") {
1091 >                esm = REACTION_FIELD;
1092 >                dielectric = simParams_->getDielectric();
1093 >                if (!simParams_->haveDielectric()) {
1094 >                  // throw warning
1095 >                  sprintf( painCave.errMsg,
1096 >                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1097 >                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1098 >                  painCave.isFatal = 0;
1099 >                  simError();
1100 >                }
1101 >              } else {
1102 >                // throw error        
1103 >                sprintf( painCave.errMsg,
1104 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1105 >                         "\t(Input file specified %s .)\n"
1106 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1107 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1108 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1109 >                painCave.isFatal = 1;
1110 >                simError();
1111 >              }    
1112 >            }          
1113 >          }
1114 >        }
1115        }
1116 <
1117 <      if (simParams_->haveRsw()) {
1118 <        rsw  = simParams_->getRsw();
1116 >    }
1117 >    
1118 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1119 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1120 >      toUpper(myScreen);
1121 >      if (myScreen == "UNDAMPED") {
1122 >        sm = UNDAMPED;
1123        } else {
1124 <        rsw = rcut;
1124 >        if (myScreen == "DAMPED") {
1125 >          sm = DAMPED;
1126 >          if (!simParams_->haveDampingAlpha()) {
1127 >            // first set a cutoff dependent alpha value
1128 >            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1129 >            alphaVal = 0.5125 - rcut_* 0.025;
1130 >            // for values rcut > 20.5, alpha is zero
1131 >            if (alphaVal < 0) alphaVal = 0;
1132 >
1133 >            // throw warning
1134 >            sprintf( painCave.errMsg,
1135 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1136 >                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1137 >            painCave.isFatal = 0;
1138 >            simError();
1139 >          } else {
1140 >            alphaVal = simParams_->getDampingAlpha();
1141 >          }
1142 >          
1143 >        } else {
1144 >          // throw error        
1145 >          sprintf( painCave.errMsg,
1146 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1147 >                   "\t(Input file specified %s .)\n"
1148 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1149 >                   "or \"damped\".\n", myScreen.c_str() );
1150 >          painCave.isFatal = 1;
1151 >          simError();
1152 >        }
1153        }
1154 +    }
1155      
1156 +    // let's pass some summation method variables to fortran
1157 +    setElectrostaticSummationMethod( &esm );
1158 +    setFortranElectrostaticMethod( &esm );
1159 +    setScreeningMethod( &sm );
1160 +    setDampingAlpha( &alphaVal );
1161 +    setReactionFieldDielectric( &dielectric );
1162 +    initFortranFF( &errorOut );
1163 +  }
1164 +
1165 +  void SimInfo::setupSwitchingFunction() {    
1166 +    int ft = CUBIC;
1167 +
1168 +    if (simParams_->haveSwitchingFunctionType()) {
1169 +      std::string funcType = simParams_->getSwitchingFunctionType();
1170 +      toUpper(funcType);
1171 +      if (funcType == "CUBIC") {
1172 +        ft = CUBIC;
1173 +      } else {
1174 +        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1175 +          ft = FIFTH_ORDER_POLY;
1176 +        } else {
1177 +          // throw error        
1178 +          sprintf( painCave.errMsg,
1179 +                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1180 +          painCave.isFatal = 1;
1181 +          simError();
1182 +        }          
1183 +      }
1184      }
1185 +
1186 +    // send switching function notification to switcheroo
1187 +    setFunctionType(&ft);
1188 +
1189    }
1190  
1191 <  void SimInfo::setupCutoff() {
845 <    getCutoff(rcut_, rsw_);    
846 <    double rnblist = rcut_ + 1; // skin of neighbor list
1191 >  void SimInfo::setupAccumulateBoxDipole() {    
1192  
1193 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
1194 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
1193 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1194 >    if ( simParams_->haveAccumulateBoxDipole() )
1195 >      if ( simParams_->getAccumulateBoxDipole() ) {
1196 >        setAccumulateBoxDipole();
1197 >        calcBoxDipole_ = true;
1198 >      }
1199 >
1200    }
1201  
1202    void SimInfo::addProperty(GenericData* genData) {
# Line 905 | Line 1255 | namespace oopse {
1255      Molecule* mol;
1256  
1257      Vector3d comVel(0.0);
1258 <    double totalMass = 0.0;
1258 >    RealType totalMass = 0.0;
1259      
1260  
1261      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1262 <      double mass = mol->getMass();
1262 >      RealType mass = mol->getMass();
1263        totalMass += mass;
1264        comVel += mass * mol->getComVel();
1265      }  
1266  
1267   #ifdef IS_MPI
1268 <    double tmpMass = totalMass;
1268 >    RealType tmpMass = totalMass;
1269      Vector3d tmpComVel(comVel);    
1270 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1271 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1270 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1271 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1272   #endif
1273  
1274      comVel /= totalMass;
# Line 931 | Line 1281 | namespace oopse {
1281      Molecule* mol;
1282  
1283      Vector3d com(0.0);
1284 <    double totalMass = 0.0;
1284 >    RealType totalMass = 0.0;
1285      
1286      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1287 <      double mass = mol->getMass();
1287 >      RealType mass = mol->getMass();
1288        totalMass += mass;
1289        com += mass * mol->getCom();
1290      }  
1291  
1292   #ifdef IS_MPI
1293 <    double tmpMass = totalMass;
1293 >    RealType tmpMass = totalMass;
1294      Vector3d tmpCom(com);    
1295 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1296 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1295 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1296 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1297   #endif
1298  
1299      com /= totalMass;
# Line 967 | Line 1317 | namespace oopse {
1317        Molecule* mol;
1318        
1319      
1320 <      double totalMass = 0.0;
1320 >      RealType totalMass = 0.0;
1321      
1322  
1323        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1324 <         double mass = mol->getMass();
1324 >         RealType mass = mol->getMass();
1325           totalMass += mass;
1326           com += mass * mol->getCom();
1327           comVel += mass * mol->getComVel();          
1328        }  
1329        
1330   #ifdef IS_MPI
1331 <      double tmpMass = totalMass;
1331 >      RealType tmpMass = totalMass;
1332        Vector3d tmpCom(com);  
1333        Vector3d tmpComVel(comVel);
1334 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1335 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1336 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1334 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1335 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1336 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1337   #endif
1338        
1339        com /= totalMass;
# Line 1002 | Line 1352 | namespace oopse {
1352     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1353        
1354  
1355 <      double xx = 0.0;
1356 <      double yy = 0.0;
1357 <      double zz = 0.0;
1358 <      double xy = 0.0;
1359 <      double xz = 0.0;
1360 <      double yz = 0.0;
1355 >      RealType xx = 0.0;
1356 >      RealType yy = 0.0;
1357 >      RealType zz = 0.0;
1358 >      RealType xy = 0.0;
1359 >      RealType xz = 0.0;
1360 >      RealType yz = 0.0;
1361        Vector3d com(0.0);
1362        Vector3d comVel(0.0);
1363        
# Line 1019 | Line 1369 | namespace oopse {
1369        Vector3d thisq(0.0);
1370        Vector3d thisv(0.0);
1371  
1372 <      double thisMass = 0.0;
1372 >      RealType thisMass = 0.0;
1373      
1374        
1375        
# Line 1057 | Line 1407 | namespace oopse {
1407   #ifdef IS_MPI
1408        Mat3x3d tmpI(inertiaTensor);
1409        Vector3d tmpAngMom;
1410 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1411 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1410 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1411 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1412   #endif
1413                
1414        return;
# Line 1079 | Line 1429 | namespace oopse {
1429        Vector3d thisr(0.0);
1430        Vector3d thisp(0.0);
1431        
1432 <      double thisMass;
1432 >      RealType thisMass;
1433        
1434        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1435          thisMass = mol->getMass();
# Line 1092 | Line 1442 | namespace oopse {
1442        
1443   #ifdef IS_MPI
1444        Vector3d tmpAngMom;
1445 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1445 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1446   #endif
1447        
1448        return angularMomentum;
1449     }
1450    
1451 <  
1451 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1452 >    return IOIndexToIntegrableObject.at(index);
1453 >  }
1454 >  
1455 >  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1456 >    IOIndexToIntegrableObject= v;
1457 >  }
1458 >
1459 >  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1460 >     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1461 >     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1462 >     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1463 >  */
1464 >  void SimInfo::getGyrationalVolume(RealType &volume){
1465 >    Mat3x3d intTensor;
1466 >    RealType det;
1467 >    Vector3d dummyAngMom;
1468 >    RealType sysconstants;
1469 >    RealType geomCnst;
1470 >
1471 >    geomCnst = 3.0/2.0;
1472 >    /* Get the inertial tensor and angular momentum for free*/
1473 >    getInertiaTensor(intTensor,dummyAngMom);
1474 >    
1475 >    det = intTensor.determinant();
1476 >    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1477 >    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1478 >    return;
1479 >  }
1480 >
1481 >  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1482 >    Mat3x3d intTensor;
1483 >    Vector3d dummyAngMom;
1484 >    RealType sysconstants;
1485 >    RealType geomCnst;
1486 >
1487 >    geomCnst = 3.0/2.0;
1488 >    /* Get the inertial tensor and angular momentum for free*/
1489 >    getInertiaTensor(intTensor,dummyAngMom);
1490 >    
1491 >    detI = intTensor.determinant();
1492 >    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1493 >    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1494 >    return;
1495 >  }
1496 > /*
1497 >   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1498 >      assert( v.size() == nAtoms_ + nRigidBodies_);
1499 >      sdByGlobalIndex_ = v;
1500 >    }
1501 >
1502 >    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1503 >      //assert(index < nAtoms_ + nRigidBodies_);
1504 >      return sdByGlobalIndex_.at(index);
1505 >    }  
1506 > */  
1507   }//end namespace oopse
1508  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines