1 |
< |
#include <stdlib.h> |
2 |
< |
#include <string.h> |
3 |
< |
#include <math.h> |
1 |
> |
/* |
2 |
> |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
> |
* |
4 |
> |
* The University of Notre Dame grants you ("Licensee") a |
5 |
> |
* non-exclusive, royalty free, license to use, modify and |
6 |
> |
* redistribute this software in source and binary code form, provided |
7 |
> |
* that the following conditions are met: |
8 |
> |
* |
9 |
> |
* 1. Acknowledgement of the program authors must be made in any |
10 |
> |
* publication of scientific results based in part on use of the |
11 |
> |
* program. An acceptable form of acknowledgement is citation of |
12 |
> |
* the article in which the program was described (Matthew |
13 |
> |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
> |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
> |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
> |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
> |
* |
18 |
> |
* 2. Redistributions of source code must retain the above copyright |
19 |
> |
* notice, this list of conditions and the following disclaimer. |
20 |
> |
* |
21 |
> |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
> |
* notice, this list of conditions and the following disclaimer in the |
23 |
> |
* documentation and/or other materials provided with the |
24 |
> |
* distribution. |
25 |
> |
* |
26 |
> |
* This software is provided "AS IS," without a warranty of any |
27 |
> |
* kind. All express or implied conditions, representations and |
28 |
> |
* warranties, including any implied warranty of merchantability, |
29 |
> |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
> |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
> |
* be liable for any damages suffered by licensee as a result of |
32 |
> |
* using, modifying or distributing the software or its |
33 |
> |
* derivatives. In no event will the University of Notre Dame or its |
34 |
> |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
> |
* direct, indirect, special, consequential, incidental or punitive |
36 |
> |
* damages, however caused and regardless of the theory of liability, |
37 |
> |
* arising out of the use of or inability to use software, even if the |
38 |
> |
* University of Notre Dame has been advised of the possibility of |
39 |
> |
* such damages. |
40 |
> |
*/ |
41 |
> |
|
42 |
> |
/** |
43 |
> |
* @file SimInfo.cpp |
44 |
> |
* @author tlin |
45 |
> |
* @date 11/02/2004 |
46 |
> |
* @version 1.0 |
47 |
> |
*/ |
48 |
|
|
49 |
< |
#include <iostream> |
50 |
< |
using namespace std; |
49 |
> |
#include <algorithm> |
50 |
> |
#include <set> |
51 |
|
|
52 |
< |
#include "SimInfo.hpp" |
53 |
< |
#define __C |
54 |
< |
#include "fSimulation.h" |
55 |
< |
#include "simError.h" |
52 |
> |
#include "brains/SimInfo.hpp" |
53 |
> |
#include "math/Vector3.hpp" |
54 |
> |
#include "primitives/Molecule.hpp" |
55 |
> |
#include "UseTheForce/fCutoffPolicy.h" |
56 |
> |
#include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" |
57 |
> |
#include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h" |
58 |
> |
#include "UseTheForce/doForces_interface.h" |
59 |
> |
#include "UseTheForce/DarkSide/electrostatic_interface.h" |
60 |
> |
#include "UseTheForce/notifyCutoffs_interface.h" |
61 |
> |
#include "utils/MemoryUtils.hpp" |
62 |
> |
#include "utils/simError.h" |
63 |
> |
#include "selection/SelectionManager.hpp" |
64 |
|
|
13 |
– |
#include "fortranWrappers.hpp" |
14 |
– |
|
15 |
– |
#include "MatVec3.h" |
16 |
– |
|
65 |
|
#ifdef IS_MPI |
66 |
< |
#include "mpiSimulation.hpp" |
67 |
< |
#endif |
66 |
> |
#include "UseTheForce/mpiComponentPlan.h" |
67 |
> |
#include "UseTheForce/DarkSide/simParallel_interface.h" |
68 |
> |
#endif |
69 |
|
|
70 |
< |
inline double roundMe( double x ){ |
22 |
< |
return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); |
23 |
< |
} |
24 |
< |
|
25 |
< |
inline double min( double a, double b ){ |
26 |
< |
return (a < b ) ? a : b; |
27 |
< |
} |
70 |
> |
namespace oopse { |
71 |
|
|
72 |
< |
SimInfo* currentInfo; |
72 |
> |
SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, |
73 |
> |
ForceField* ff, Globals* simParams) : |
74 |
> |
stamps_(stamps), forceField_(ff), simParams_(simParams), |
75 |
> |
ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
76 |
> |
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
77 |
> |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
78 |
> |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0), |
79 |
> |
nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0), |
80 |
> |
sman_(NULL), fortranInitialized_(false) { |
81 |
|
|
82 |
< |
SimInfo::SimInfo(){ |
82 |
> |
|
83 |
> |
std::vector<std::pair<MoleculeStamp*, int> >::iterator i; |
84 |
> |
MoleculeStamp* molStamp; |
85 |
> |
int nMolWithSameStamp; |
86 |
> |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
87 |
> |
int nGroups = 0; //total cutoff groups defined in meta-data file |
88 |
> |
CutoffGroupStamp* cgStamp; |
89 |
> |
RigidBodyStamp* rbStamp; |
90 |
> |
int nRigidAtoms = 0; |
91 |
> |
|
92 |
> |
for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) { |
93 |
> |
molStamp = i->first; |
94 |
> |
nMolWithSameStamp = i->second; |
95 |
> |
|
96 |
> |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
97 |
|
|
98 |
< |
n_constraints = 0; |
99 |
< |
nZconstraints = 0; |
35 |
< |
n_oriented = 0; |
36 |
< |
n_dipoles = 0; |
37 |
< |
ndf = 0; |
38 |
< |
ndfRaw = 0; |
39 |
< |
nZconstraints = 0; |
40 |
< |
the_integrator = NULL; |
41 |
< |
setTemp = 0; |
42 |
< |
thermalTime = 0.0; |
43 |
< |
currentTime = 0.0; |
44 |
< |
rCut = 0.0; |
45 |
< |
rSw = 0.0; |
98 |
> |
//calculate atoms in molecules |
99 |
> |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
100 |
|
|
47 |
– |
haveRcut = 0; |
48 |
– |
haveRsw = 0; |
49 |
– |
boxIsInit = 0; |
50 |
– |
|
51 |
– |
resetTime = 1e99; |
101 |
|
|
102 |
< |
orthoRhombic = 0; |
103 |
< |
orthoTolerance = 1E-6; |
104 |
< |
useInitXSstate = true; |
102 |
> |
//calculate atoms in cutoff groups |
103 |
> |
int nAtomsInGroups = 0; |
104 |
> |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
105 |
> |
|
106 |
> |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
107 |
> |
cgStamp = molStamp->getCutoffGroup(j); |
108 |
> |
nAtomsInGroups += cgStamp->getNMembers(); |
109 |
> |
} |
110 |
|
|
111 |
< |
usePBC = 0; |
58 |
< |
useLJ = 0; |
59 |
< |
useSticky = 0; |
60 |
< |
useCharges = 0; |
61 |
< |
useDipoles = 0; |
62 |
< |
useReactionField = 0; |
63 |
< |
useGB = 0; |
64 |
< |
useEAM = 0; |
65 |
< |
useSolidThermInt = 0; |
66 |
< |
useLiquidThermInt = 0; |
111 |
> |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
112 |
|
|
113 |
< |
haveCutoffGroups = false; |
113 |
> |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
114 |
|
|
115 |
< |
excludes = Exclude::Instance(); |
115 |
> |
//calculate atoms in rigid bodies |
116 |
> |
int nAtomsInRigidBodies = 0; |
117 |
> |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
118 |
> |
|
119 |
> |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
120 |
> |
rbStamp = molStamp->getRigidBody(j); |
121 |
> |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
122 |
> |
} |
123 |
|
|
124 |
< |
myConfiguration = new SimState(); |
124 |
> |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
125 |
> |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
126 |
> |
|
127 |
> |
} |
128 |
|
|
129 |
< |
has_minimizer = false; |
130 |
< |
the_minimizer =NULL; |
129 |
> |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
130 |
> |
//group therefore the total number of cutoff groups in the system is |
131 |
> |
//equal to the total number of atoms minus number of atoms belong to |
132 |
> |
//cutoff group defined in meta-data file plus the number of cutoff |
133 |
> |
//groups defined in meta-data file |
134 |
> |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
135 |
|
|
136 |
< |
ngroup = 0; |
136 |
> |
//every free atom (atom does not belong to rigid bodies) is an |
137 |
> |
//integrable object therefore the total number of integrable objects |
138 |
> |
//in the system is equal to the total number of atoms minus number of |
139 |
> |
//atoms belong to rigid body defined in meta-data file plus the number |
140 |
> |
//of rigid bodies defined in meta-data file |
141 |
> |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
142 |
> |
+ nGlobalRigidBodies_; |
143 |
> |
|
144 |
> |
nGlobalMols_ = molStampIds_.size(); |
145 |
|
|
146 |
< |
wrapMeSimInfo( this ); |
147 |
< |
} |
146 |
> |
#ifdef IS_MPI |
147 |
> |
molToProcMap_.resize(nGlobalMols_); |
148 |
> |
#endif |
149 |
|
|
150 |
+ |
} |
151 |
|
|
152 |
< |
SimInfo::~SimInfo(){ |
152 |
> |
SimInfo::~SimInfo() { |
153 |
> |
std::map<int, Molecule*>::iterator i; |
154 |
> |
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
155 |
> |
delete i->second; |
156 |
> |
} |
157 |
> |
molecules_.clear(); |
158 |
> |
|
159 |
> |
delete stamps_; |
160 |
> |
delete sman_; |
161 |
> |
delete simParams_; |
162 |
> |
delete forceField_; |
163 |
> |
} |
164 |
|
|
165 |
< |
delete myConfiguration; |
165 |
> |
int SimInfo::getNGlobalConstraints() { |
166 |
> |
int nGlobalConstraints; |
167 |
> |
#ifdef IS_MPI |
168 |
> |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
169 |
> |
MPI_COMM_WORLD); |
170 |
> |
#else |
171 |
> |
nGlobalConstraints = nConstraints_; |
172 |
> |
#endif |
173 |
> |
return nGlobalConstraints; |
174 |
> |
} |
175 |
|
|
176 |
< |
map<string, GenericData*>::iterator i; |
177 |
< |
|
89 |
< |
for(i = properties.begin(); i != properties.end(); i++) |
90 |
< |
delete (*i).second; |
176 |
> |
bool SimInfo::addMolecule(Molecule* mol) { |
177 |
> |
MoleculeIterator i; |
178 |
|
|
179 |
< |
} |
179 |
> |
i = molecules_.find(mol->getGlobalIndex()); |
180 |
> |
if (i == molecules_.end() ) { |
181 |
|
|
182 |
< |
void SimInfo::setBox(double newBox[3]) { |
183 |
< |
|
184 |
< |
int i, j; |
185 |
< |
double tempMat[3][3]; |
182 |
> |
molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol)); |
183 |
> |
|
184 |
> |
nAtoms_ += mol->getNAtoms(); |
185 |
> |
nBonds_ += mol->getNBonds(); |
186 |
> |
nBends_ += mol->getNBends(); |
187 |
> |
nTorsions_ += mol->getNTorsions(); |
188 |
> |
nRigidBodies_ += mol->getNRigidBodies(); |
189 |
> |
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
190 |
> |
nCutoffGroups_ += mol->getNCutoffGroups(); |
191 |
> |
nConstraints_ += mol->getNConstraintPairs(); |
192 |
|
|
193 |
< |
for(i=0; i<3; i++) |
194 |
< |
for (j=0; j<3; j++) tempMat[i][j] = 0.0;; |
195 |
< |
|
196 |
< |
tempMat[0][0] = newBox[0]; |
197 |
< |
tempMat[1][1] = newBox[1]; |
104 |
< |
tempMat[2][2] = newBox[2]; |
105 |
< |
|
106 |
< |
setBoxM( tempMat ); |
107 |
< |
|
108 |
< |
} |
109 |
< |
|
110 |
< |
void SimInfo::setBoxM( double theBox[3][3] ){ |
111 |
< |
|
112 |
< |
int i, j; |
113 |
< |
double FortranHmat[9]; // to preserve compatibility with Fortran the |
114 |
< |
// ordering in the array is as follows: |
115 |
< |
// [ 0 3 6 ] |
116 |
< |
// [ 1 4 7 ] |
117 |
< |
// [ 2 5 8 ] |
118 |
< |
double FortranHmatInv[9]; // the inverted Hmat (for Fortran); |
119 |
< |
|
120 |
< |
if( !boxIsInit ) boxIsInit = 1; |
121 |
< |
|
122 |
< |
for(i=0; i < 3; i++) |
123 |
< |
for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; |
124 |
< |
|
125 |
< |
calcBoxL(); |
126 |
< |
calcHmatInv(); |
127 |
< |
|
128 |
< |
for(i=0; i < 3; i++) { |
129 |
< |
for (j=0; j < 3; j++) { |
130 |
< |
FortranHmat[3*j + i] = Hmat[i][j]; |
131 |
< |
FortranHmatInv[3*j + i] = HmatInv[i][j]; |
193 |
> |
addExcludePairs(mol); |
194 |
> |
|
195 |
> |
return true; |
196 |
> |
} else { |
197 |
> |
return false; |
198 |
|
} |
199 |
|
} |
200 |
|
|
201 |
< |
setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic); |
202 |
< |
|
203 |
< |
} |
138 |
< |
|
201 |
> |
bool SimInfo::removeMolecule(Molecule* mol) { |
202 |
> |
MoleculeIterator i; |
203 |
> |
i = molecules_.find(mol->getGlobalIndex()); |
204 |
|
|
205 |
< |
void SimInfo::getBoxM (double theBox[3][3]) { |
205 |
> |
if (i != molecules_.end() ) { |
206 |
|
|
207 |
< |
int i, j; |
208 |
< |
for(i=0; i<3; i++) |
209 |
< |
for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]; |
210 |
< |
} |
207 |
> |
assert(mol == i->second); |
208 |
> |
|
209 |
> |
nAtoms_ -= mol->getNAtoms(); |
210 |
> |
nBonds_ -= mol->getNBonds(); |
211 |
> |
nBends_ -= mol->getNBends(); |
212 |
> |
nTorsions_ -= mol->getNTorsions(); |
213 |
> |
nRigidBodies_ -= mol->getNRigidBodies(); |
214 |
> |
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
215 |
> |
nCutoffGroups_ -= mol->getNCutoffGroups(); |
216 |
> |
nConstraints_ -= mol->getNConstraintPairs(); |
217 |
|
|
218 |
+ |
removeExcludePairs(mol); |
219 |
+ |
molecules_.erase(mol->getGlobalIndex()); |
220 |
|
|
221 |
< |
void SimInfo::scaleBox(double scale) { |
222 |
< |
double theBox[3][3]; |
223 |
< |
int i, j; |
221 |
> |
delete mol; |
222 |
> |
|
223 |
> |
return true; |
224 |
> |
} else { |
225 |
> |
return false; |
226 |
> |
} |
227 |
|
|
152 |
– |
// cerr << "Scaling box by " << scale << "\n"; |
228 |
|
|
229 |
< |
for(i=0; i<3; i++) |
155 |
< |
for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale; |
229 |
> |
} |
230 |
|
|
231 |
< |
setBoxM(theBox); |
231 |
> |
|
232 |
> |
Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { |
233 |
> |
i = molecules_.begin(); |
234 |
> |
return i == molecules_.end() ? NULL : i->second; |
235 |
> |
} |
236 |
|
|
237 |
< |
} |
237 |
> |
Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { |
238 |
> |
++i; |
239 |
> |
return i == molecules_.end() ? NULL : i->second; |
240 |
> |
} |
241 |
|
|
161 |
– |
void SimInfo::calcHmatInv( void ) { |
162 |
– |
|
163 |
– |
int oldOrtho; |
164 |
– |
int i,j; |
165 |
– |
double smallDiag; |
166 |
– |
double tol; |
167 |
– |
double sanity[3][3]; |
242 |
|
|
243 |
< |
invertMat3( Hmat, HmatInv ); |
243 |
> |
void SimInfo::calcNdf() { |
244 |
> |
int ndf_local; |
245 |
> |
MoleculeIterator i; |
246 |
> |
std::vector<StuntDouble*>::iterator j; |
247 |
> |
Molecule* mol; |
248 |
> |
StuntDouble* integrableObject; |
249 |
|
|
250 |
< |
// check to see if Hmat is orthorhombic |
251 |
< |
|
252 |
< |
oldOrtho = orthoRhombic; |
250 |
> |
ndf_local = 0; |
251 |
> |
|
252 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
253 |
> |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
254 |
> |
integrableObject = mol->nextIntegrableObject(j)) { |
255 |
|
|
256 |
< |
smallDiag = fabs(Hmat[0][0]); |
176 |
< |
if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]); |
177 |
< |
if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]); |
178 |
< |
tol = smallDiag * orthoTolerance; |
256 |
> |
ndf_local += 3; |
257 |
|
|
258 |
< |
orthoRhombic = 1; |
259 |
< |
|
260 |
< |
for (i = 0; i < 3; i++ ) { |
261 |
< |
for (j = 0 ; j < 3; j++) { |
262 |
< |
if (i != j) { |
263 |
< |
if (orthoRhombic) { |
264 |
< |
if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0; |
265 |
< |
} |
266 |
< |
} |
267 |
< |
} |
190 |
< |
} |
191 |
< |
|
192 |
< |
if( oldOrtho != orthoRhombic ){ |
258 |
> |
if (integrableObject->isDirectional()) { |
259 |
> |
if (integrableObject->isLinear()) { |
260 |
> |
ndf_local += 2; |
261 |
> |
} else { |
262 |
> |
ndf_local += 3; |
263 |
> |
} |
264 |
> |
} |
265 |
> |
|
266 |
> |
}//end for (integrableObject) |
267 |
> |
}// end for (mol) |
268 |
|
|
269 |
< |
if( orthoRhombic ) { |
270 |
< |
sprintf( painCave.errMsg, |
196 |
< |
"OOPSE is switching from the default Non-Orthorhombic\n" |
197 |
< |
"\tto the faster Orthorhombic periodic boundary computations.\n" |
198 |
< |
"\tThis is usually a good thing, but if you wan't the\n" |
199 |
< |
"\tNon-Orthorhombic computations, make the orthoBoxTolerance\n" |
200 |
< |
"\tvariable ( currently set to %G ) smaller.\n", |
201 |
< |
orthoTolerance); |
202 |
< |
painCave.severity = OOPSE_INFO; |
203 |
< |
simError(); |
204 |
< |
} |
205 |
< |
else { |
206 |
< |
sprintf( painCave.errMsg, |
207 |
< |
"OOPSE is switching from the faster Orthorhombic to the more\n" |
208 |
< |
"\tflexible Non-Orthorhombic periodic boundary computations.\n" |
209 |
< |
"\tThis is usually because the box has deformed under\n" |
210 |
< |
"\tNPTf integration. If you wan't to live on the edge with\n" |
211 |
< |
"\tthe Orthorhombic computations, make the orthoBoxTolerance\n" |
212 |
< |
"\tvariable ( currently set to %G ) larger.\n", |
213 |
< |
orthoTolerance); |
214 |
< |
painCave.severity = OOPSE_WARNING; |
215 |
< |
simError(); |
216 |
< |
} |
217 |
< |
} |
218 |
< |
} |
269 |
> |
// n_constraints is local, so subtract them on each processor |
270 |
> |
ndf_local -= nConstraints_; |
271 |
|
|
272 |
< |
void SimInfo::calcBoxL( void ){ |
272 |
> |
#ifdef IS_MPI |
273 |
> |
MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
274 |
> |
#else |
275 |
> |
ndf_ = ndf_local; |
276 |
> |
#endif |
277 |
|
|
278 |
< |
double dx, dy, dz, dsq; |
278 |
> |
// nZconstraints_ is global, as are the 3 COM translations for the |
279 |
> |
// entire system: |
280 |
> |
ndf_ = ndf_ - 3 - nZconstraint_; |
281 |
|
|
282 |
< |
// boxVol = Determinant of Hmat |
282 |
> |
} |
283 |
|
|
284 |
< |
boxVol = matDet3( Hmat ); |
284 |
> |
void SimInfo::calcNdfRaw() { |
285 |
> |
int ndfRaw_local; |
286 |
|
|
287 |
< |
// boxLx |
288 |
< |
|
289 |
< |
dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; |
290 |
< |
dsq = dx*dx + dy*dy + dz*dz; |
232 |
< |
boxL[0] = sqrt( dsq ); |
233 |
< |
//maxCutoff = 0.5 * boxL[0]; |
287 |
> |
MoleculeIterator i; |
288 |
> |
std::vector<StuntDouble*>::iterator j; |
289 |
> |
Molecule* mol; |
290 |
> |
StuntDouble* integrableObject; |
291 |
|
|
292 |
< |
// boxLy |
293 |
< |
|
294 |
< |
dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; |
295 |
< |
dsq = dx*dx + dy*dy + dz*dz; |
296 |
< |
boxL[1] = sqrt( dsq ); |
297 |
< |
//if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1]; |
292 |
> |
// Raw degrees of freedom that we have to set |
293 |
> |
ndfRaw_local = 0; |
294 |
> |
|
295 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
296 |
> |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
297 |
> |
integrableObject = mol->nextIntegrableObject(j)) { |
298 |
|
|
299 |
< |
|
243 |
< |
// boxLz |
244 |
< |
|
245 |
< |
dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; |
246 |
< |
dsq = dx*dx + dy*dy + dz*dz; |
247 |
< |
boxL[2] = sqrt( dsq ); |
248 |
< |
//if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2]; |
299 |
> |
ndfRaw_local += 3; |
300 |
|
|
301 |
< |
//calculate the max cutoff |
302 |
< |
maxCutoff = calcMaxCutOff(); |
303 |
< |
|
304 |
< |
checkCutOffs(); |
301 |
> |
if (integrableObject->isDirectional()) { |
302 |
> |
if (integrableObject->isLinear()) { |
303 |
> |
ndfRaw_local += 2; |
304 |
> |
} else { |
305 |
> |
ndfRaw_local += 3; |
306 |
> |
} |
307 |
> |
} |
308 |
> |
|
309 |
> |
} |
310 |
> |
} |
311 |
> |
|
312 |
> |
#ifdef IS_MPI |
313 |
> |
MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
314 |
> |
#else |
315 |
> |
ndfRaw_ = ndfRaw_local; |
316 |
> |
#endif |
317 |
> |
} |
318 |
|
|
319 |
< |
} |
319 |
> |
void SimInfo::calcNdfTrans() { |
320 |
> |
int ndfTrans_local; |
321 |
|
|
322 |
+ |
ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; |
323 |
|
|
258 |
– |
double SimInfo::calcMaxCutOff(){ |
324 |
|
|
325 |
< |
double ri[3], rj[3], rk[3]; |
326 |
< |
double rij[3], rjk[3], rki[3]; |
327 |
< |
double minDist; |
325 |
> |
#ifdef IS_MPI |
326 |
> |
MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
327 |
> |
#else |
328 |
> |
ndfTrans_ = ndfTrans_local; |
329 |
> |
#endif |
330 |
|
|
331 |
< |
ri[0] = Hmat[0][0]; |
332 |
< |
ri[1] = Hmat[1][0]; |
333 |
< |
ri[2] = Hmat[2][0]; |
331 |
> |
ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; |
332 |
> |
|
333 |
> |
} |
334 |
|
|
335 |
< |
rj[0] = Hmat[0][1]; |
336 |
< |
rj[1] = Hmat[1][1]; |
337 |
< |
rj[2] = Hmat[2][1]; |
338 |
< |
|
339 |
< |
rk[0] = Hmat[0][2]; |
340 |
< |
rk[1] = Hmat[1][2]; |
341 |
< |
rk[2] = Hmat[2][2]; |
335 |
> |
void SimInfo::addExcludePairs(Molecule* mol) { |
336 |
> |
std::vector<Bond*>::iterator bondIter; |
337 |
> |
std::vector<Bend*>::iterator bendIter; |
338 |
> |
std::vector<Torsion*>::iterator torsionIter; |
339 |
> |
Bond* bond; |
340 |
> |
Bend* bend; |
341 |
> |
Torsion* torsion; |
342 |
> |
int a; |
343 |
> |
int b; |
344 |
> |
int c; |
345 |
> |
int d; |
346 |
|
|
347 |
< |
crossProduct3(ri, rj, rij); |
348 |
< |
distXY = dotProduct3(rk,rij) / norm3(rij); |
347 |
> |
for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
348 |
> |
a = bond->getAtomA()->getGlobalIndex(); |
349 |
> |
b = bond->getAtomB()->getGlobalIndex(); |
350 |
> |
exclude_.addPair(a, b); |
351 |
> |
} |
352 |
|
|
353 |
< |
crossProduct3(rj,rk, rjk); |
354 |
< |
distYZ = dotProduct3(ri,rjk) / norm3(rjk); |
353 |
> |
for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
354 |
> |
a = bend->getAtomA()->getGlobalIndex(); |
355 |
> |
b = bend->getAtomB()->getGlobalIndex(); |
356 |
> |
c = bend->getAtomC()->getGlobalIndex(); |
357 |
|
|
358 |
< |
crossProduct3(rk,ri, rki); |
359 |
< |
distZX = dotProduct3(rj,rki) / norm3(rki); |
358 |
> |
exclude_.addPair(a, b); |
359 |
> |
exclude_.addPair(a, c); |
360 |
> |
exclude_.addPair(b, c); |
361 |
> |
} |
362 |
|
|
363 |
< |
minDist = min(min(distXY, distYZ), distZX); |
364 |
< |
return minDist/2; |
365 |
< |
|
366 |
< |
} |
363 |
> |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
364 |
> |
a = torsion->getAtomA()->getGlobalIndex(); |
365 |
> |
b = torsion->getAtomB()->getGlobalIndex(); |
366 |
> |
c = torsion->getAtomC()->getGlobalIndex(); |
367 |
> |
d = torsion->getAtomD()->getGlobalIndex(); |
368 |
|
|
369 |
< |
void SimInfo::wrapVector( double thePos[3] ){ |
369 |
> |
exclude_.addPair(a, b); |
370 |
> |
exclude_.addPair(a, c); |
371 |
> |
exclude_.addPair(a, d); |
372 |
> |
exclude_.addPair(b, c); |
373 |
> |
exclude_.addPair(b, d); |
374 |
> |
exclude_.addPair(c, d); |
375 |
> |
} |
376 |
|
|
377 |
< |
int i; |
378 |
< |
double scaled[3]; |
377 |
> |
Molecule::RigidBodyIterator rbIter; |
378 |
> |
RigidBody* rb; |
379 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
380 |
> |
std::vector<Atom*> atoms = rb->getAtoms(); |
381 |
> |
for (int i = 0; i < atoms.size() -1 ; ++i) { |
382 |
> |
for (int j = i + 1; j < atoms.size(); ++j) { |
383 |
> |
a = atoms[i]->getGlobalIndex(); |
384 |
> |
b = atoms[j]->getGlobalIndex(); |
385 |
> |
exclude_.addPair(a, b); |
386 |
> |
} |
387 |
> |
} |
388 |
> |
} |
389 |
|
|
390 |
< |
if( !orthoRhombic ){ |
296 |
< |
// calc the scaled coordinates. |
297 |
< |
|
390 |
> |
} |
391 |
|
|
392 |
< |
matVecMul3(HmatInv, thePos, scaled); |
392 |
> |
void SimInfo::removeExcludePairs(Molecule* mol) { |
393 |
> |
std::vector<Bond*>::iterator bondIter; |
394 |
> |
std::vector<Bend*>::iterator bendIter; |
395 |
> |
std::vector<Torsion*>::iterator torsionIter; |
396 |
> |
Bond* bond; |
397 |
> |
Bend* bend; |
398 |
> |
Torsion* torsion; |
399 |
> |
int a; |
400 |
> |
int b; |
401 |
> |
int c; |
402 |
> |
int d; |
403 |
|
|
404 |
< |
for(i=0; i<3; i++) |
405 |
< |
scaled[i] -= roundMe(scaled[i]); |
406 |
< |
|
407 |
< |
// calc the wrapped real coordinates from the wrapped scaled coordinates |
408 |
< |
|
306 |
< |
matVecMul3(Hmat, scaled, thePos); |
404 |
> |
for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
405 |
> |
a = bond->getAtomA()->getGlobalIndex(); |
406 |
> |
b = bond->getAtomB()->getGlobalIndex(); |
407 |
> |
exclude_.removePair(a, b); |
408 |
> |
} |
409 |
|
|
410 |
< |
} |
411 |
< |
else{ |
412 |
< |
// calc the scaled coordinates. |
413 |
< |
|
312 |
< |
for(i=0; i<3; i++) |
313 |
< |
scaled[i] = thePos[i]*HmatInv[i][i]; |
314 |
< |
|
315 |
< |
// wrap the scaled coordinates |
316 |
< |
|
317 |
< |
for(i=0; i<3; i++) |
318 |
< |
scaled[i] -= roundMe(scaled[i]); |
319 |
< |
|
320 |
< |
// calc the wrapped real coordinates from the wrapped scaled coordinates |
321 |
< |
|
322 |
< |
for(i=0; i<3; i++) |
323 |
< |
thePos[i] = scaled[i]*Hmat[i][i]; |
324 |
< |
} |
325 |
< |
|
326 |
< |
} |
410 |
> |
for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
411 |
> |
a = bend->getAtomA()->getGlobalIndex(); |
412 |
> |
b = bend->getAtomB()->getGlobalIndex(); |
413 |
> |
c = bend->getAtomC()->getGlobalIndex(); |
414 |
|
|
415 |
+ |
exclude_.removePair(a, b); |
416 |
+ |
exclude_.removePair(a, c); |
417 |
+ |
exclude_.removePair(b, c); |
418 |
+ |
} |
419 |
|
|
420 |
< |
int SimInfo::getNDF(){ |
421 |
< |
int ndf_local; |
420 |
> |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
421 |
> |
a = torsion->getAtomA()->getGlobalIndex(); |
422 |
> |
b = torsion->getAtomB()->getGlobalIndex(); |
423 |
> |
c = torsion->getAtomC()->getGlobalIndex(); |
424 |
> |
d = torsion->getAtomD()->getGlobalIndex(); |
425 |
|
|
426 |
< |
ndf_local = 0; |
427 |
< |
|
428 |
< |
for(int i = 0; i < integrableObjects.size(); i++){ |
429 |
< |
ndf_local += 3; |
430 |
< |
if (integrableObjects[i]->isDirectional()) { |
431 |
< |
if (integrableObjects[i]->isLinear()) |
338 |
< |
ndf_local += 2; |
339 |
< |
else |
340 |
< |
ndf_local += 3; |
426 |
> |
exclude_.removePair(a, b); |
427 |
> |
exclude_.removePair(a, c); |
428 |
> |
exclude_.removePair(a, d); |
429 |
> |
exclude_.removePair(b, c); |
430 |
> |
exclude_.removePair(b, d); |
431 |
> |
exclude_.removePair(c, d); |
432 |
|
} |
433 |
+ |
|
434 |
+ |
Molecule::RigidBodyIterator rbIter; |
435 |
+ |
RigidBody* rb; |
436 |
+ |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
437 |
+ |
std::vector<Atom*> atoms = rb->getAtoms(); |
438 |
+ |
for (int i = 0; i < atoms.size() -1 ; ++i) { |
439 |
+ |
for (int j = i + 1; j < atoms.size(); ++j) { |
440 |
+ |
a = atoms[i]->getGlobalIndex(); |
441 |
+ |
b = atoms[j]->getGlobalIndex(); |
442 |
+ |
exclude_.removePair(a, b); |
443 |
+ |
} |
444 |
+ |
} |
445 |
+ |
} |
446 |
+ |
|
447 |
|
} |
448 |
|
|
344 |
– |
// n_constraints is local, so subtract them on each processor: |
449 |
|
|
450 |
< |
ndf_local -= n_constraints; |
450 |
> |
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
451 |
> |
int curStampId; |
452 |
|
|
453 |
+ |
//index from 0 |
454 |
+ |
curStampId = moleculeStamps_.size(); |
455 |
+ |
|
456 |
+ |
moleculeStamps_.push_back(molStamp); |
457 |
+ |
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
458 |
+ |
} |
459 |
+ |
|
460 |
+ |
void SimInfo::update() { |
461 |
+ |
|
462 |
+ |
setupSimType(); |
463 |
+ |
|
464 |
|
#ifdef IS_MPI |
465 |
< |
MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
350 |
< |
#else |
351 |
< |
ndf = ndf_local; |
465 |
> |
setupFortranParallel(); |
466 |
|
#endif |
467 |
|
|
468 |
< |
// nZconstraints is global, as are the 3 COM translations for the |
355 |
< |
// entire system: |
468 |
> |
setupFortranSim(); |
469 |
|
|
470 |
< |
ndf = ndf - 3 - nZconstraints; |
470 |
> |
//setup fortran force field |
471 |
> |
/** @deprecate */ |
472 |
> |
int isError = 0; |
473 |
> |
|
474 |
> |
setupElectrostaticSummationMethod( isError ); |
475 |
|
|
476 |
< |
return ndf; |
477 |
< |
} |
476 |
> |
if(isError){ |
477 |
> |
sprintf( painCave.errMsg, |
478 |
> |
"ForceField error: There was an error initializing the forceField in fortran.\n" ); |
479 |
> |
painCave.isFatal = 1; |
480 |
> |
simError(); |
481 |
> |
} |
482 |
> |
|
483 |
> |
|
484 |
> |
setupCutoff(); |
485 |
|
|
486 |
< |
int SimInfo::getNDFraw() { |
487 |
< |
int ndfRaw_local; |
486 |
> |
calcNdf(); |
487 |
> |
calcNdfRaw(); |
488 |
> |
calcNdfTrans(); |
489 |
|
|
490 |
< |
// Raw degrees of freedom that we have to set |
491 |
< |
ndfRaw_local = 0; |
490 |
> |
fortranInitialized_ = true; |
491 |
> |
} |
492 |
|
|
493 |
< |
for(int i = 0; i < integrableObjects.size(); i++){ |
494 |
< |
ndfRaw_local += 3; |
495 |
< |
if (integrableObjects[i]->isDirectional()) { |
496 |
< |
if (integrableObjects[i]->isLinear()) |
497 |
< |
ndfRaw_local += 2; |
498 |
< |
else |
499 |
< |
ndfRaw_local += 3; |
493 |
> |
std::set<AtomType*> SimInfo::getUniqueAtomTypes() { |
494 |
> |
SimInfo::MoleculeIterator mi; |
495 |
> |
Molecule* mol; |
496 |
> |
Molecule::AtomIterator ai; |
497 |
> |
Atom* atom; |
498 |
> |
std::set<AtomType*> atomTypes; |
499 |
> |
|
500 |
> |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
501 |
> |
|
502 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
503 |
> |
atomTypes.insert(atom->getAtomType()); |
504 |
> |
} |
505 |
> |
|
506 |
|
} |
507 |
+ |
|
508 |
+ |
return atomTypes; |
509 |
|
} |
510 |
+ |
|
511 |
+ |
void SimInfo::setupSimType() { |
512 |
+ |
std::set<AtomType*>::iterator i; |
513 |
+ |
std::set<AtomType*> atomTypes; |
514 |
+ |
atomTypes = getUniqueAtomTypes(); |
515 |
|
|
516 |
< |
#ifdef IS_MPI |
517 |
< |
MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
518 |
< |
#else |
519 |
< |
ndfRaw = ndfRaw_local; |
520 |
< |
#endif |
516 |
> |
int useLennardJones = 0; |
517 |
> |
int useElectrostatic = 0; |
518 |
> |
int useEAM = 0; |
519 |
> |
int useCharge = 0; |
520 |
> |
int useDirectional = 0; |
521 |
> |
int useDipole = 0; |
522 |
> |
int useGayBerne = 0; |
523 |
> |
int useSticky = 0; |
524 |
> |
int useStickyPower = 0; |
525 |
> |
int useShape = 0; |
526 |
> |
int useFLARB = 0; //it is not in AtomType yet |
527 |
> |
int useDirectionalAtom = 0; |
528 |
> |
int useElectrostatics = 0; |
529 |
> |
//usePBC and useRF are from simParams |
530 |
> |
int usePBC = simParams_->getUsePeriodicBoundaryConditions(); |
531 |
> |
int useRF; |
532 |
> |
int useDW; |
533 |
> |
std::string myMethod; |
534 |
|
|
535 |
< |
return ndfRaw; |
536 |
< |
} |
535 |
> |
// set the useRF logical |
536 |
> |
useRF = 0; |
537 |
> |
useDW = 0; |
538 |
|
|
387 |
– |
int SimInfo::getNDFtranslational() { |
388 |
– |
int ndfTrans_local; |
539 |
|
|
540 |
< |
ndfTrans_local = 3 * integrableObjects.size() - n_constraints; |
540 |
> |
if (simParams_->haveElectrostaticSummationMethod()) { |
541 |
> |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
542 |
> |
toUpper(myMethod); |
543 |
> |
if (myMethod == "REACTION_FIELD") { |
544 |
> |
useRF=1; |
545 |
> |
} else { |
546 |
> |
if (myMethod == "SHIFTED_POTENTIAL") { |
547 |
> |
useDW = 1; |
548 |
> |
} |
549 |
> |
} |
550 |
> |
} |
551 |
|
|
552 |
+ |
//loop over all of the atom types |
553 |
+ |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
554 |
+ |
useLennardJones |= (*i)->isLennardJones(); |
555 |
+ |
useElectrostatic |= (*i)->isElectrostatic(); |
556 |
+ |
useEAM |= (*i)->isEAM(); |
557 |
+ |
useCharge |= (*i)->isCharge(); |
558 |
+ |
useDirectional |= (*i)->isDirectional(); |
559 |
+ |
useDipole |= (*i)->isDipole(); |
560 |
+ |
useGayBerne |= (*i)->isGayBerne(); |
561 |
+ |
useSticky |= (*i)->isSticky(); |
562 |
+ |
useStickyPower |= (*i)->isStickyPower(); |
563 |
+ |
useShape |= (*i)->isShape(); |
564 |
+ |
} |
565 |
|
|
566 |
< |
#ifdef IS_MPI |
567 |
< |
MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
568 |
< |
#else |
396 |
< |
ndfTrans = ndfTrans_local; |
397 |
< |
#endif |
566 |
> |
if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) { |
567 |
> |
useDirectionalAtom = 1; |
568 |
> |
} |
569 |
|
|
570 |
< |
ndfTrans = ndfTrans - 3 - nZconstraints; |
570 |
> |
if (useCharge || useDipole) { |
571 |
> |
useElectrostatics = 1; |
572 |
> |
} |
573 |
|
|
574 |
< |
return ndfTrans; |
575 |
< |
} |
574 |
> |
#ifdef IS_MPI |
575 |
> |
int temp; |
576 |
|
|
577 |
< |
int SimInfo::getTotIntegrableObjects() { |
578 |
< |
int nObjs_local; |
406 |
< |
int nObjs; |
577 |
> |
temp = usePBC; |
578 |
> |
MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
579 |
|
|
580 |
< |
nObjs_local = integrableObjects.size(); |
580 |
> |
temp = useDirectionalAtom; |
581 |
> |
MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
582 |
|
|
583 |
+ |
temp = useLennardJones; |
584 |
+ |
MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
585 |
|
|
586 |
< |
#ifdef IS_MPI |
587 |
< |
MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
413 |
< |
#else |
414 |
< |
nObjs = nObjs_local; |
415 |
< |
#endif |
586 |
> |
temp = useElectrostatics; |
587 |
> |
MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
588 |
|
|
589 |
+ |
temp = useCharge; |
590 |
+ |
MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
591 |
|
|
592 |
< |
return nObjs; |
593 |
< |
} |
592 |
> |
temp = useDipole; |
593 |
> |
MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
594 |
|
|
595 |
< |
void SimInfo::refreshSim(){ |
595 |
> |
temp = useSticky; |
596 |
> |
MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
597 |
|
|
598 |
< |
simtype fInfo; |
599 |
< |
int isError; |
600 |
< |
int n_global; |
601 |
< |
int* excl; |
602 |
< |
|
428 |
< |
fInfo.dielect = 0.0; |
598 |
> |
temp = useStickyPower; |
599 |
> |
MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
600 |
> |
|
601 |
> |
temp = useGayBerne; |
602 |
> |
MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
603 |
|
|
604 |
< |
if( useDipoles ){ |
605 |
< |
if( useReactionField )fInfo.dielect = dielectric; |
432 |
< |
} |
604 |
> |
temp = useEAM; |
605 |
> |
MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
606 |
|
|
607 |
< |
fInfo.SIM_uses_PBC = usePBC; |
608 |
< |
//fInfo.SIM_uses_LJ = 0; |
436 |
< |
fInfo.SIM_uses_LJ = useLJ; |
437 |
< |
fInfo.SIM_uses_sticky = useSticky; |
438 |
< |
//fInfo.SIM_uses_sticky = 0; |
439 |
< |
fInfo.SIM_uses_charges = useCharges; |
440 |
< |
fInfo.SIM_uses_dipoles = useDipoles; |
441 |
< |
//fInfo.SIM_uses_dipoles = 0; |
442 |
< |
fInfo.SIM_uses_RF = useReactionField; |
443 |
< |
//fInfo.SIM_uses_RF = 0; |
444 |
< |
fInfo.SIM_uses_GB = useGB; |
445 |
< |
fInfo.SIM_uses_EAM = useEAM; |
607 |
> |
temp = useShape; |
608 |
> |
MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
609 |
|
|
610 |
< |
n_exclude = excludes->getSize(); |
611 |
< |
excl = excludes->getFortranArray(); |
612 |
< |
|
613 |
< |
#ifdef IS_MPI |
614 |
< |
n_global = mpiSim->getNAtomsGlobal(); |
615 |
< |
#else |
616 |
< |
n_global = n_atoms; |
610 |
> |
temp = useFLARB; |
611 |
> |
MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
612 |
> |
|
613 |
> |
temp = useRF; |
614 |
> |
MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
615 |
> |
|
616 |
> |
temp = useDW; |
617 |
> |
MPI_Allreduce(&temp, &useDW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
618 |
> |
|
619 |
|
#endif |
455 |
– |
|
456 |
– |
isError = 0; |
457 |
– |
|
458 |
– |
getFortranGroupArrays(this, FglobalGroupMembership, mfact); |
459 |
– |
//it may not be a good idea to pass the address of first element in vector |
460 |
– |
//since c++ standard does not require vector to be stored continuously in meomory |
461 |
– |
//Most of the compilers will organize the memory of vector continuously |
462 |
– |
setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl, |
463 |
– |
&nGlobalExcludes, globalExcludes, molMembershipArray, |
464 |
– |
&mfact[0], &ngroup, &FglobalGroupMembership[0], &isError); |
620 |
|
|
621 |
< |
if( isError ){ |
622 |
< |
|
623 |
< |
sprintf( painCave.errMsg, |
624 |
< |
"There was an error setting the simulation information in fortran.\n" ); |
625 |
< |
painCave.isFatal = 1; |
626 |
< |
painCave.severity = OOPSE_ERROR; |
627 |
< |
simError(); |
621 |
> |
fInfo_.SIM_uses_PBC = usePBC; |
622 |
> |
fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom; |
623 |
> |
fInfo_.SIM_uses_LennardJones = useLennardJones; |
624 |
> |
fInfo_.SIM_uses_Electrostatics = useElectrostatics; |
625 |
> |
fInfo_.SIM_uses_Charges = useCharge; |
626 |
> |
fInfo_.SIM_uses_Dipoles = useDipole; |
627 |
> |
fInfo_.SIM_uses_Sticky = useSticky; |
628 |
> |
fInfo_.SIM_uses_StickyPower = useStickyPower; |
629 |
> |
fInfo_.SIM_uses_GayBerne = useGayBerne; |
630 |
> |
fInfo_.SIM_uses_EAM = useEAM; |
631 |
> |
fInfo_.SIM_uses_Shapes = useShape; |
632 |
> |
fInfo_.SIM_uses_FLARB = useFLARB; |
633 |
> |
fInfo_.SIM_uses_RF = useRF; |
634 |
> |
fInfo_.SIM_uses_DampedWolf = useDW; |
635 |
> |
|
636 |
> |
if( myMethod == "REACTION_FIELD") { |
637 |
> |
|
638 |
> |
if (simParams_->haveDielectric()) { |
639 |
> |
fInfo_.dielect = simParams_->getDielectric(); |
640 |
> |
} else { |
641 |
> |
sprintf(painCave.errMsg, |
642 |
> |
"SimSetup Error: No Dielectric constant was set.\n" |
643 |
> |
"\tYou are trying to use Reaction Field without" |
644 |
> |
"\tsetting a dielectric constant!\n"); |
645 |
> |
painCave.isFatal = 1; |
646 |
> |
simError(); |
647 |
> |
} |
648 |
> |
} |
649 |
> |
|
650 |
|
} |
474 |
– |
|
475 |
– |
#ifdef IS_MPI |
476 |
– |
sprintf( checkPointMsg, |
477 |
– |
"succesfully sent the simulation information to fortran.\n"); |
478 |
– |
MPIcheckPoint(); |
479 |
– |
#endif // is_mpi |
480 |
– |
|
481 |
– |
this->ndf = this->getNDF(); |
482 |
– |
this->ndfRaw = this->getNDFraw(); |
483 |
– |
this->ndfTrans = this->getNDFtranslational(); |
484 |
– |
} |
651 |
|
|
652 |
< |
void SimInfo::setDefaultRcut( double theRcut ){ |
653 |
< |
|
654 |
< |
haveRcut = 1; |
655 |
< |
rCut = theRcut; |
656 |
< |
rList = rCut + 1.0; |
657 |
< |
|
658 |
< |
notifyFortranCutOffs( &rCut, &rSw, &rList ); |
493 |
< |
} |
652 |
> |
void SimInfo::setupFortranSim() { |
653 |
> |
int isError; |
654 |
> |
int nExclude; |
655 |
> |
std::vector<int> fortranGlobalGroupMembership; |
656 |
> |
|
657 |
> |
nExclude = exclude_.getSize(); |
658 |
> |
isError = 0; |
659 |
|
|
660 |
< |
void SimInfo::setDefaultRcut( double theRcut, double theRsw ){ |
660 |
> |
//globalGroupMembership_ is filled by SimCreator |
661 |
> |
for (int i = 0; i < nGlobalAtoms_; i++) { |
662 |
> |
fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
663 |
> |
} |
664 |
|
|
665 |
< |
rSw = theRsw; |
666 |
< |
setDefaultRcut( theRcut ); |
667 |
< |
} |
665 |
> |
//calculate mass ratio of cutoff group |
666 |
> |
std::vector<double> mfact; |
667 |
> |
SimInfo::MoleculeIterator mi; |
668 |
> |
Molecule* mol; |
669 |
> |
Molecule::CutoffGroupIterator ci; |
670 |
> |
CutoffGroup* cg; |
671 |
> |
Molecule::AtomIterator ai; |
672 |
> |
Atom* atom; |
673 |
> |
double totalMass; |
674 |
|
|
675 |
+ |
//to avoid memory reallocation, reserve enough space for mfact |
676 |
+ |
mfact.reserve(getNCutoffGroups()); |
677 |
+ |
|
678 |
+ |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
679 |
+ |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
680 |
|
|
681 |
< |
void SimInfo::checkCutOffs( void ){ |
682 |
< |
|
683 |
< |
if( boxIsInit ){ |
681 |
> |
totalMass = cg->getMass(); |
682 |
> |
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
683 |
> |
// Check for massless groups - set mfact to 1 if true |
684 |
> |
if (totalMass != 0) |
685 |
> |
mfact.push_back(atom->getMass()/totalMass); |
686 |
> |
else |
687 |
> |
mfact.push_back( 1.0 ); |
688 |
> |
} |
689 |
> |
|
690 |
> |
} |
691 |
> |
} |
692 |
> |
|
693 |
> |
//fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) |
694 |
> |
std::vector<int> identArray; |
695 |
> |
|
696 |
> |
//to avoid memory reallocation, reserve enough space identArray |
697 |
> |
identArray.reserve(getNAtoms()); |
698 |
|
|
699 |
< |
//we need to check cutOffs against the box |
699 |
> |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
700 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
701 |
> |
identArray.push_back(atom->getIdent()); |
702 |
> |
} |
703 |
> |
} |
704 |
> |
|
705 |
> |
//fill molMembershipArray |
706 |
> |
//molMembershipArray is filled by SimCreator |
707 |
> |
std::vector<int> molMembershipArray(nGlobalAtoms_); |
708 |
> |
for (int i = 0; i < nGlobalAtoms_; i++) { |
709 |
> |
molMembershipArray[i] = globalMolMembership_[i] + 1; |
710 |
> |
} |
711 |
|
|
712 |
< |
if( rCut > maxCutoff ){ |
712 |
> |
//setup fortran simulation |
713 |
> |
int nGlobalExcludes = 0; |
714 |
> |
int* globalExcludes = NULL; |
715 |
> |
int* excludeList = exclude_.getExcludeList(); |
716 |
> |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList , |
717 |
> |
&nGlobalExcludes, globalExcludes, &molMembershipArray[0], |
718 |
> |
&mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError); |
719 |
> |
|
720 |
> |
if( isError ){ |
721 |
> |
|
722 |
|
sprintf( painCave.errMsg, |
723 |
< |
"cutoffRadius is too large for the current periodic box.\n" |
511 |
< |
"\tCurrent Value of cutoffRadius = %G at time %G\n " |
512 |
< |
"\tThis is larger than half of at least one of the\n" |
513 |
< |
"\tperiodic box vectors. Right now, the Box matrix is:\n" |
514 |
< |
"\n" |
515 |
< |
"\t[ %G %G %G ]\n" |
516 |
< |
"\t[ %G %G %G ]\n" |
517 |
< |
"\t[ %G %G %G ]\n", |
518 |
< |
rCut, currentTime, |
519 |
< |
Hmat[0][0], Hmat[0][1], Hmat[0][2], |
520 |
< |
Hmat[1][0], Hmat[1][1], Hmat[1][2], |
521 |
< |
Hmat[2][0], Hmat[2][1], Hmat[2][2]); |
522 |
< |
painCave.severity = OOPSE_ERROR; |
723 |
> |
"There was an error setting the simulation information in fortran.\n" ); |
724 |
|
painCave.isFatal = 1; |
725 |
+ |
painCave.severity = OOPSE_ERROR; |
726 |
|
simError(); |
727 |
< |
} |
728 |
< |
} else { |
729 |
< |
// initialize this stuff before using it, OK? |
730 |
< |
sprintf( painCave.errMsg, |
731 |
< |
"Trying to check cutoffs without a box.\n" |
732 |
< |
"\tOOPSE should have better programmers than that.\n" ); |
733 |
< |
painCave.severity = OOPSE_ERROR; |
532 |
< |
painCave.isFatal = 1; |
533 |
< |
simError(); |
727 |
> |
} |
728 |
> |
|
729 |
> |
#ifdef IS_MPI |
730 |
> |
sprintf( checkPointMsg, |
731 |
> |
"succesfully sent the simulation information to fortran.\n"); |
732 |
> |
MPIcheckPoint(); |
733 |
> |
#endif // is_mpi |
734 |
|
} |
535 |
– |
|
536 |
– |
} |
735 |
|
|
538 |
– |
void SimInfo::addProperty(GenericData* prop){ |
736 |
|
|
737 |
< |
map<string, GenericData*>::iterator result; |
738 |
< |
result = properties.find(prop->getID()); |
542 |
< |
|
543 |
< |
//we can't simply use properties[prop->getID()] = prop, |
544 |
< |
//it will cause memory leak if we already contain a propery which has the same name of prop |
545 |
< |
|
546 |
< |
if(result != properties.end()){ |
737 |
> |
#ifdef IS_MPI |
738 |
> |
void SimInfo::setupFortranParallel() { |
739 |
|
|
740 |
< |
delete (*result).second; |
741 |
< |
(*result).second = prop; |
742 |
< |
|
743 |
< |
} |
744 |
< |
else{ |
740 |
> |
//SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
741 |
> |
std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
742 |
> |
std::vector<int> localToGlobalCutoffGroupIndex; |
743 |
> |
SimInfo::MoleculeIterator mi; |
744 |
> |
Molecule::AtomIterator ai; |
745 |
> |
Molecule::CutoffGroupIterator ci; |
746 |
> |
Molecule* mol; |
747 |
> |
Atom* atom; |
748 |
> |
CutoffGroup* cg; |
749 |
> |
mpiSimData parallelData; |
750 |
> |
int isError; |
751 |
|
|
752 |
< |
properties[prop->getID()] = prop; |
752 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
753 |
|
|
754 |
+ |
//local index(index in DataStorge) of atom is important |
755 |
+ |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
756 |
+ |
localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
757 |
+ |
} |
758 |
+ |
|
759 |
+ |
//local index of cutoff group is trivial, it only depends on the order of travesing |
760 |
+ |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
761 |
+ |
localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
762 |
+ |
} |
763 |
+ |
|
764 |
+ |
} |
765 |
+ |
|
766 |
+ |
//fill up mpiSimData struct |
767 |
+ |
parallelData.nMolGlobal = getNGlobalMolecules(); |
768 |
+ |
parallelData.nMolLocal = getNMolecules(); |
769 |
+ |
parallelData.nAtomsGlobal = getNGlobalAtoms(); |
770 |
+ |
parallelData.nAtomsLocal = getNAtoms(); |
771 |
+ |
parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
772 |
+ |
parallelData.nGroupsLocal = getNCutoffGroups(); |
773 |
+ |
parallelData.myNode = worldRank; |
774 |
+ |
MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
775 |
+ |
|
776 |
+ |
//pass mpiSimData struct and index arrays to fortran |
777 |
+ |
setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
778 |
+ |
&localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
779 |
+ |
&localToGlobalCutoffGroupIndex[0], &isError); |
780 |
+ |
|
781 |
+ |
if (isError) { |
782 |
+ |
sprintf(painCave.errMsg, |
783 |
+ |
"mpiRefresh errror: fortran didn't like something we gave it.\n"); |
784 |
+ |
painCave.isFatal = 1; |
785 |
+ |
simError(); |
786 |
+ |
} |
787 |
+ |
|
788 |
+ |
sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
789 |
+ |
MPIcheckPoint(); |
790 |
+ |
|
791 |
+ |
|
792 |
|
} |
557 |
– |
|
558 |
– |
} |
793 |
|
|
794 |
< |
GenericData* SimInfo::getProperty(const string& propName){ |
561 |
< |
|
562 |
< |
map<string, GenericData*>::iterator result; |
563 |
< |
|
564 |
< |
//string lowerCaseName = (); |
565 |
< |
|
566 |
< |
result = properties.find(propName); |
567 |
< |
|
568 |
< |
if(result != properties.end()) |
569 |
< |
return (*result).second; |
570 |
< |
else |
571 |
< |
return NULL; |
572 |
< |
} |
794 |
> |
#endif |
795 |
|
|
796 |
+ |
double SimInfo::calcMaxCutoffRadius() { |
797 |
|
|
575 |
– |
void SimInfo::getFortranGroupArrays(SimInfo* info, |
576 |
– |
vector<int>& FglobalGroupMembership, |
577 |
– |
vector<double>& mfact){ |
578 |
– |
|
579 |
– |
Molecule* myMols; |
580 |
– |
Atom** myAtoms; |
581 |
– |
int numAtom; |
582 |
– |
double mtot; |
583 |
– |
int numMol; |
584 |
– |
int numCutoffGroups; |
585 |
– |
CutoffGroup* myCutoffGroup; |
586 |
– |
vector<CutoffGroup*>::iterator iterCutoff; |
587 |
– |
Atom* cutoffAtom; |
588 |
– |
vector<Atom*>::iterator iterAtom; |
589 |
– |
int atomIndex; |
590 |
– |
double totalMass; |
591 |
– |
|
592 |
– |
mfact.clear(); |
593 |
– |
FglobalGroupMembership.clear(); |
594 |
– |
|
798 |
|
|
799 |
< |
// Fix the silly fortran indexing problem |
799 |
> |
std::set<AtomType*> atomTypes; |
800 |
> |
std::set<AtomType*>::iterator i; |
801 |
> |
std::vector<double> cutoffRadius; |
802 |
> |
|
803 |
> |
//get the unique atom types |
804 |
> |
atomTypes = getUniqueAtomTypes(); |
805 |
> |
|
806 |
> |
//query the max cutoff radius among these atom types |
807 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
808 |
> |
cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i)); |
809 |
> |
} |
810 |
> |
|
811 |
> |
double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end())); |
812 |
|
#ifdef IS_MPI |
813 |
< |
numAtom = mpiSim->getNAtomsGlobal(); |
599 |
< |
#else |
600 |
< |
numAtom = n_atoms; |
813 |
> |
//pick the max cutoff radius among the processors |
814 |
|
#endif |
602 |
– |
for (int i = 0; i < numAtom; i++) |
603 |
– |
FglobalGroupMembership.push_back(globalGroupMembership[i] + 1); |
604 |
– |
|
815 |
|
|
816 |
< |
myMols = info->molecules; |
817 |
< |
numMol = info->n_mol; |
608 |
< |
for(int i = 0; i < numMol; i++){ |
609 |
< |
numCutoffGroups = myMols[i].getNCutoffGroups(); |
610 |
< |
for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff); |
611 |
< |
myCutoffGroup != NULL; |
612 |
< |
myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){ |
816 |
> |
return maxCutoffRadius; |
817 |
> |
} |
818 |
|
|
819 |
< |
totalMass = myCutoffGroup->getMass(); |
820 |
< |
|
821 |
< |
for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom); |
822 |
< |
cutoffAtom != NULL; |
823 |
< |
cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){ |
824 |
< |
mfact.push_back(cutoffAtom->getMass()/totalMass); |
825 |
< |
} |
819 |
> |
void SimInfo::getCutoff(double& rcut, double& rsw) { |
820 |
> |
|
821 |
> |
if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { |
822 |
> |
|
823 |
> |
if (!simParams_->haveCutoffRadius()){ |
824 |
> |
sprintf(painCave.errMsg, |
825 |
> |
"SimCreator Warning: No value was set for the cutoffRadius.\n" |
826 |
> |
"\tOOPSE will use a default value of 15.0 angstroms" |
827 |
> |
"\tfor the cutoffRadius.\n"); |
828 |
> |
painCave.isFatal = 0; |
829 |
> |
simError(); |
830 |
> |
rcut = 15.0; |
831 |
> |
} else{ |
832 |
> |
rcut = simParams_->getCutoffRadius(); |
833 |
> |
} |
834 |
> |
|
835 |
> |
if (!simParams_->haveSwitchingRadius()){ |
836 |
> |
sprintf(painCave.errMsg, |
837 |
> |
"SimCreator Warning: No value was set for switchingRadius.\n" |
838 |
> |
"\tOOPSE will use a default value of\n" |
839 |
> |
"\t0.85 * cutoffRadius for the switchingRadius\n"); |
840 |
> |
painCave.isFatal = 0; |
841 |
> |
simError(); |
842 |
> |
rsw = 0.85 * rcut; |
843 |
> |
} else{ |
844 |
> |
rsw = simParams_->getSwitchingRadius(); |
845 |
> |
} |
846 |
> |
|
847 |
> |
} else { |
848 |
> |
// if charge, dipole or reaction field is not used and the cutofff radius is not specified in |
849 |
> |
//meta-data file, the maximum cutoff radius calculated from forcefiled will be used |
850 |
> |
|
851 |
> |
if (simParams_->haveCutoffRadius()) { |
852 |
> |
rcut = simParams_->getCutoffRadius(); |
853 |
> |
} else { |
854 |
> |
//set cutoff radius to the maximum cutoff radius based on atom types in the whole system |
855 |
> |
rcut = calcMaxCutoffRadius(); |
856 |
> |
} |
857 |
> |
|
858 |
> |
if (simParams_->haveSwitchingRadius()) { |
859 |
> |
rsw = simParams_->getSwitchingRadius(); |
860 |
> |
} else { |
861 |
> |
rsw = rcut; |
862 |
> |
} |
863 |
> |
|
864 |
|
} |
865 |
|
} |
866 |
|
|
867 |
< |
} |
867 |
> |
void SimInfo::setupCutoff() { |
868 |
> |
getCutoff(rcut_, rsw_); |
869 |
> |
double rnblist = rcut_ + 1; // skin of neighbor list |
870 |
> |
|
871 |
> |
//Pass these cutoff radius etc. to fortran. This function should be called once and only once |
872 |
> |
|
873 |
> |
int cp = TRADITIONAL_CUTOFF_POLICY; |
874 |
> |
if (simParams_->haveCutoffPolicy()) { |
875 |
> |
std::string myPolicy = simParams_->getCutoffPolicy(); |
876 |
> |
toUpper(myPolicy); |
877 |
> |
if (myPolicy == "MIX") { |
878 |
> |
cp = MIX_CUTOFF_POLICY; |
879 |
> |
} else { |
880 |
> |
if (myPolicy == "MAX") { |
881 |
> |
cp = MAX_CUTOFF_POLICY; |
882 |
> |
} else { |
883 |
> |
if (myPolicy == "TRADITIONAL") { |
884 |
> |
cp = TRADITIONAL_CUTOFF_POLICY; |
885 |
> |
} else { |
886 |
> |
// throw error |
887 |
> |
sprintf( painCave.errMsg, |
888 |
> |
"SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() ); |
889 |
> |
painCave.isFatal = 1; |
890 |
> |
simError(); |
891 |
> |
} |
892 |
> |
} |
893 |
> |
} |
894 |
> |
} |
895 |
> |
|
896 |
> |
|
897 |
> |
if (simParams_->haveSkinThickness()) { |
898 |
> |
double skinThickness = simParams_->getSkinThickness(); |
899 |
> |
} |
900 |
> |
|
901 |
> |
notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp); |
902 |
> |
// also send cutoff notification to electrostatics |
903 |
> |
setElectrostaticCutoffRadius(&rcut_, &rsw_); |
904 |
> |
} |
905 |
> |
|
906 |
> |
void SimInfo::setupElectrostaticSummationMethod( int isError ) { |
907 |
> |
|
908 |
> |
int errorOut; |
909 |
> |
int esm = NONE; |
910 |
> |
int sm = UNDAMPED; |
911 |
> |
double alphaVal; |
912 |
> |
double dielectric; |
913 |
> |
|
914 |
> |
errorOut = isError; |
915 |
> |
alphaVal = simParams_->getDampingAlpha(); |
916 |
> |
dielectric = simParams_->getDielectric(); |
917 |
> |
|
918 |
> |
if (simParams_->haveElectrostaticSummationMethod()) { |
919 |
> |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
920 |
> |
toUpper(myMethod); |
921 |
> |
if (myMethod == "NONE") { |
922 |
> |
esm = NONE; |
923 |
> |
} else { |
924 |
> |
if (myMethod == "SWITCHING_FUNCTION") { |
925 |
> |
esm = SWITCHING_FUNCTION; |
926 |
> |
} else { |
927 |
> |
if (myMethod == "SHIFTED_POTENTIAL") { |
928 |
> |
esm = SHIFTED_POTENTIAL; |
929 |
> |
} else { |
930 |
> |
if (myMethod == "SHIFTED_FORCE") { |
931 |
> |
esm = SHIFTED_FORCE; |
932 |
> |
} else { |
933 |
> |
if (myMethod == "REACTION_FIELD") { |
934 |
> |
esm = REACTION_FIELD; |
935 |
> |
} else { |
936 |
> |
// throw error |
937 |
> |
sprintf( painCave.errMsg, |
938 |
> |
"SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"shifted_potential\", \"shifted_force\", or \"reaction_field\".", myMethod.c_str() ); |
939 |
> |
painCave.isFatal = 1; |
940 |
> |
simError(); |
941 |
> |
} |
942 |
> |
} |
943 |
> |
} |
944 |
> |
} |
945 |
> |
} |
946 |
> |
} |
947 |
> |
|
948 |
> |
if (simParams_->haveElectrostaticScreeningMethod()) { |
949 |
> |
std::string myScreen = simParams_->getElectrostaticScreeningMethod(); |
950 |
> |
toUpper(myScreen); |
951 |
> |
if (myScreen == "UNDAMPED") { |
952 |
> |
sm = UNDAMPED; |
953 |
> |
} else { |
954 |
> |
if (myScreen == "DAMPED") { |
955 |
> |
sm = DAMPED; |
956 |
> |
if (!simParams_->haveDampingAlpha()) { |
957 |
> |
//throw error |
958 |
> |
sprintf( painCave.errMsg, |
959 |
> |
"SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used.", alphaVal); |
960 |
> |
painCave.isFatal = 0; |
961 |
> |
simError(); |
962 |
> |
} |
963 |
> |
} else { |
964 |
> |
// throw error |
965 |
> |
sprintf( painCave.errMsg, |
966 |
> |
"SimInfo error: Unknown electrostaticScreeningMethod. (Input file specified %s .)\n\telectrostaticScreeningMethod must be one of: \"undamped\" or \"damped\".", myScreen.c_str() ); |
967 |
> |
painCave.isFatal = 1; |
968 |
> |
simError(); |
969 |
> |
} |
970 |
> |
} |
971 |
> |
} |
972 |
> |
|
973 |
> |
// let's pass some summation method variables to fortran |
974 |
> |
setElectrostaticSummationMethod( &esm ); |
975 |
> |
setScreeningMethod( &sm ); |
976 |
> |
setDampingAlpha( &alphaVal ); |
977 |
> |
setReactionFieldDielectric( &dielectric ); |
978 |
> |
initFortranFF( &esm, &errorOut ); |
979 |
> |
} |
980 |
> |
|
981 |
> |
void SimInfo::addProperty(GenericData* genData) { |
982 |
> |
properties_.addProperty(genData); |
983 |
> |
} |
984 |
> |
|
985 |
> |
void SimInfo::removeProperty(const std::string& propName) { |
986 |
> |
properties_.removeProperty(propName); |
987 |
> |
} |
988 |
> |
|
989 |
> |
void SimInfo::clearProperties() { |
990 |
> |
properties_.clearProperties(); |
991 |
> |
} |
992 |
> |
|
993 |
> |
std::vector<std::string> SimInfo::getPropertyNames() { |
994 |
> |
return properties_.getPropertyNames(); |
995 |
> |
} |
996 |
> |
|
997 |
> |
std::vector<GenericData*> SimInfo::getProperties() { |
998 |
> |
return properties_.getProperties(); |
999 |
> |
} |
1000 |
> |
|
1001 |
> |
GenericData* SimInfo::getPropertyByName(const std::string& propName) { |
1002 |
> |
return properties_.getPropertyByName(propName); |
1003 |
> |
} |
1004 |
> |
|
1005 |
> |
void SimInfo::setSnapshotManager(SnapshotManager* sman) { |
1006 |
> |
if (sman_ == sman) { |
1007 |
> |
return; |
1008 |
> |
} |
1009 |
> |
delete sman_; |
1010 |
> |
sman_ = sman; |
1011 |
> |
|
1012 |
> |
Molecule* mol; |
1013 |
> |
RigidBody* rb; |
1014 |
> |
Atom* atom; |
1015 |
> |
SimInfo::MoleculeIterator mi; |
1016 |
> |
Molecule::RigidBodyIterator rbIter; |
1017 |
> |
Molecule::AtomIterator atomIter;; |
1018 |
> |
|
1019 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
1020 |
> |
|
1021 |
> |
for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { |
1022 |
> |
atom->setSnapshotManager(sman_); |
1023 |
> |
} |
1024 |
> |
|
1025 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
1026 |
> |
rb->setSnapshotManager(sman_); |
1027 |
> |
} |
1028 |
> |
} |
1029 |
> |
|
1030 |
> |
} |
1031 |
> |
|
1032 |
> |
Vector3d SimInfo::getComVel(){ |
1033 |
> |
SimInfo::MoleculeIterator i; |
1034 |
> |
Molecule* mol; |
1035 |
> |
|
1036 |
> |
Vector3d comVel(0.0); |
1037 |
> |
double totalMass = 0.0; |
1038 |
> |
|
1039 |
> |
|
1040 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1041 |
> |
double mass = mol->getMass(); |
1042 |
> |
totalMass += mass; |
1043 |
> |
comVel += mass * mol->getComVel(); |
1044 |
> |
} |
1045 |
> |
|
1046 |
> |
#ifdef IS_MPI |
1047 |
> |
double tmpMass = totalMass; |
1048 |
> |
Vector3d tmpComVel(comVel); |
1049 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1050 |
> |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1051 |
> |
#endif |
1052 |
> |
|
1053 |
> |
comVel /= totalMass; |
1054 |
> |
|
1055 |
> |
return comVel; |
1056 |
> |
} |
1057 |
> |
|
1058 |
> |
Vector3d SimInfo::getCom(){ |
1059 |
> |
SimInfo::MoleculeIterator i; |
1060 |
> |
Molecule* mol; |
1061 |
> |
|
1062 |
> |
Vector3d com(0.0); |
1063 |
> |
double totalMass = 0.0; |
1064 |
> |
|
1065 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1066 |
> |
double mass = mol->getMass(); |
1067 |
> |
totalMass += mass; |
1068 |
> |
com += mass * mol->getCom(); |
1069 |
> |
} |
1070 |
> |
|
1071 |
> |
#ifdef IS_MPI |
1072 |
> |
double tmpMass = totalMass; |
1073 |
> |
Vector3d tmpCom(com); |
1074 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1075 |
> |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1076 |
> |
#endif |
1077 |
> |
|
1078 |
> |
com /= totalMass; |
1079 |
> |
|
1080 |
> |
return com; |
1081 |
> |
|
1082 |
> |
} |
1083 |
> |
|
1084 |
> |
std::ostream& operator <<(std::ostream& o, SimInfo& info) { |
1085 |
> |
|
1086 |
> |
return o; |
1087 |
> |
} |
1088 |
> |
|
1089 |
> |
|
1090 |
> |
/* |
1091 |
> |
Returns center of mass and center of mass velocity in one function call. |
1092 |
> |
*/ |
1093 |
> |
|
1094 |
> |
void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ |
1095 |
> |
SimInfo::MoleculeIterator i; |
1096 |
> |
Molecule* mol; |
1097 |
> |
|
1098 |
> |
|
1099 |
> |
double totalMass = 0.0; |
1100 |
> |
|
1101 |
> |
|
1102 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1103 |
> |
double mass = mol->getMass(); |
1104 |
> |
totalMass += mass; |
1105 |
> |
com += mass * mol->getCom(); |
1106 |
> |
comVel += mass * mol->getComVel(); |
1107 |
> |
} |
1108 |
> |
|
1109 |
> |
#ifdef IS_MPI |
1110 |
> |
double tmpMass = totalMass; |
1111 |
> |
Vector3d tmpCom(com); |
1112 |
> |
Vector3d tmpComVel(comVel); |
1113 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1114 |
> |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1115 |
> |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1116 |
> |
#endif |
1117 |
> |
|
1118 |
> |
com /= totalMass; |
1119 |
> |
comVel /= totalMass; |
1120 |
> |
} |
1121 |
> |
|
1122 |
> |
/* |
1123 |
> |
Return intertia tensor for entire system and angular momentum Vector. |
1124 |
> |
|
1125 |
> |
|
1126 |
> |
[ Ixx -Ixy -Ixz ] |
1127 |
> |
J =| -Iyx Iyy -Iyz | |
1128 |
> |
[ -Izx -Iyz Izz ] |
1129 |
> |
*/ |
1130 |
> |
|
1131 |
> |
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1132 |
> |
|
1133 |
> |
|
1134 |
> |
double xx = 0.0; |
1135 |
> |
double yy = 0.0; |
1136 |
> |
double zz = 0.0; |
1137 |
> |
double xy = 0.0; |
1138 |
> |
double xz = 0.0; |
1139 |
> |
double yz = 0.0; |
1140 |
> |
Vector3d com(0.0); |
1141 |
> |
Vector3d comVel(0.0); |
1142 |
> |
|
1143 |
> |
getComAll(com, comVel); |
1144 |
> |
|
1145 |
> |
SimInfo::MoleculeIterator i; |
1146 |
> |
Molecule* mol; |
1147 |
> |
|
1148 |
> |
Vector3d thisq(0.0); |
1149 |
> |
Vector3d thisv(0.0); |
1150 |
> |
|
1151 |
> |
double thisMass = 0.0; |
1152 |
> |
|
1153 |
> |
|
1154 |
> |
|
1155 |
> |
|
1156 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1157 |
> |
|
1158 |
> |
thisq = mol->getCom()-com; |
1159 |
> |
thisv = mol->getComVel()-comVel; |
1160 |
> |
thisMass = mol->getMass(); |
1161 |
> |
// Compute moment of intertia coefficients. |
1162 |
> |
xx += thisq[0]*thisq[0]*thisMass; |
1163 |
> |
yy += thisq[1]*thisq[1]*thisMass; |
1164 |
> |
zz += thisq[2]*thisq[2]*thisMass; |
1165 |
> |
|
1166 |
> |
// compute products of intertia |
1167 |
> |
xy += thisq[0]*thisq[1]*thisMass; |
1168 |
> |
xz += thisq[0]*thisq[2]*thisMass; |
1169 |
> |
yz += thisq[1]*thisq[2]*thisMass; |
1170 |
> |
|
1171 |
> |
angularMomentum += cross( thisq, thisv ) * thisMass; |
1172 |
> |
|
1173 |
> |
} |
1174 |
> |
|
1175 |
> |
|
1176 |
> |
inertiaTensor(0,0) = yy + zz; |
1177 |
> |
inertiaTensor(0,1) = -xy; |
1178 |
> |
inertiaTensor(0,2) = -xz; |
1179 |
> |
inertiaTensor(1,0) = -xy; |
1180 |
> |
inertiaTensor(1,1) = xx + zz; |
1181 |
> |
inertiaTensor(1,2) = -yz; |
1182 |
> |
inertiaTensor(2,0) = -xz; |
1183 |
> |
inertiaTensor(2,1) = -yz; |
1184 |
> |
inertiaTensor(2,2) = xx + yy; |
1185 |
> |
|
1186 |
> |
#ifdef IS_MPI |
1187 |
> |
Mat3x3d tmpI(inertiaTensor); |
1188 |
> |
Vector3d tmpAngMom; |
1189 |
> |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1190 |
> |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1191 |
> |
#endif |
1192 |
> |
|
1193 |
> |
return; |
1194 |
> |
} |
1195 |
> |
|
1196 |
> |
//Returns the angular momentum of the system |
1197 |
> |
Vector3d SimInfo::getAngularMomentum(){ |
1198 |
> |
|
1199 |
> |
Vector3d com(0.0); |
1200 |
> |
Vector3d comVel(0.0); |
1201 |
> |
Vector3d angularMomentum(0.0); |
1202 |
> |
|
1203 |
> |
getComAll(com,comVel); |
1204 |
> |
|
1205 |
> |
SimInfo::MoleculeIterator i; |
1206 |
> |
Molecule* mol; |
1207 |
> |
|
1208 |
> |
Vector3d thisr(0.0); |
1209 |
> |
Vector3d thisp(0.0); |
1210 |
> |
|
1211 |
> |
double thisMass; |
1212 |
> |
|
1213 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1214 |
> |
thisMass = mol->getMass(); |
1215 |
> |
thisr = mol->getCom()-com; |
1216 |
> |
thisp = (mol->getComVel()-comVel)*thisMass; |
1217 |
> |
|
1218 |
> |
angularMomentum += cross( thisr, thisp ); |
1219 |
> |
|
1220 |
> |
} |
1221 |
> |
|
1222 |
> |
#ifdef IS_MPI |
1223 |
> |
Vector3d tmpAngMom; |
1224 |
> |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1225 |
> |
#endif |
1226 |
> |
|
1227 |
> |
return angularMomentum; |
1228 |
> |
} |
1229 |
> |
|
1230 |
> |
|
1231 |
> |
}//end namespace oopse |
1232 |
> |
|