ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing branches/development/src/brains/SimInfo.cpp (file contents):
Revision 1503 by gezelter, Sat Oct 2 19:54:41 2010 UTC vs.
Revision 1529 by gezelter, Mon Dec 27 18:35:59 2010 UTC

# Line 64 | Line 64
64   #include "selection/SelectionManager.hpp"
65   #include "io/ForceFieldOptions.hpp"
66   #include "UseTheForce/ForceField.hpp"
67 + #include "nonbonded/InteractionManager.hpp"
68  
69  
70   #ifdef IS_MPI
# Line 71 | Line 72
72   #include "UseTheForce/DarkSide/simParallel_interface.h"
73   #endif
74  
75 + using namespace std;
76   namespace OpenMD {
75  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
76    std::map<int, std::set<int> >::iterator i = container.find(index);
77    std::set<int> result;
78    if (i != container.end()) {
79        result = i->second;
80    }
81
82    return result;
83  }
77    
78    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
79      forceField_(ff), simParams_(simParams),
# Line 90 | Line 83 | namespace OpenMD {
83      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
84      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
85      nConstraints_(0), sman_(NULL), fortranInitialized_(false),
86 <    calcBoxDipole_(false), useAtomicVirial_(true) {
87 <
88 <
89 <      MoleculeStamp* molStamp;
90 <      int nMolWithSameStamp;
91 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
92 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
93 <      CutoffGroupStamp* cgStamp;    
94 <      RigidBodyStamp* rbStamp;
95 <      int nRigidAtoms = 0;
96 <
97 <      std::vector<Component*> components = simParams->getComponents();
86 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
87 >    
88 >    MoleculeStamp* molStamp;
89 >    int nMolWithSameStamp;
90 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
91 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
92 >    CutoffGroupStamp* cgStamp;    
93 >    RigidBodyStamp* rbStamp;
94 >    int nRigidAtoms = 0;
95 >    
96 >    vector<Component*> components = simParams->getComponents();
97 >    
98 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
99 >      molStamp = (*i)->getMoleculeStamp();
100 >      nMolWithSameStamp = (*i)->getNMol();
101        
102 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
103 <        molStamp = (*i)->getMoleculeStamp();
104 <        nMolWithSameStamp = (*i)->getNMol();
105 <        
106 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
107 <
108 <        //calculate atoms in molecules
109 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
110 <
111 <        //calculate atoms in cutoff groups
112 <        int nAtomsInGroups = 0;
113 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
118 <        
119 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
120 <          cgStamp = molStamp->getCutoffGroupStamp(j);
121 <          nAtomsInGroups += cgStamp->getNMembers();
122 <        }
123 <
124 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
125 <
126 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
127 <
128 <        //calculate atoms in rigid bodies
129 <        int nAtomsInRigidBodies = 0;
130 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
131 <        
132 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
133 <          rbStamp = molStamp->getRigidBodyStamp(j);
134 <          nAtomsInRigidBodies += rbStamp->getNMembers();
135 <        }
136 <
137 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
138 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
139 <        
102 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
103 >      
104 >      //calculate atoms in molecules
105 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
106 >      
107 >      //calculate atoms in cutoff groups
108 >      int nAtomsInGroups = 0;
109 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
110 >      
111 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
112 >        cgStamp = molStamp->getCutoffGroupStamp(j);
113 >        nAtomsInGroups += cgStamp->getNMembers();
114        }
115 <
116 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
117 <      //group therefore the total number of cutoff groups in the system is
118 <      //equal to the total number of atoms minus number of atoms belong to
119 <      //cutoff group defined in meta-data file plus the number of cutoff
120 <      //groups defined in meta-data file
121 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
122 <
123 <      //every free atom (atom does not belong to rigid bodies) is an
124 <      //integrable object therefore the total number of integrable objects
125 <      //in the system is equal to the total number of atoms minus number of
126 <      //atoms belong to rigid body defined in meta-data file plus the number
127 <      //of rigid bodies defined in meta-data file
128 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
129 <                                                + nGlobalRigidBodies_;
130 <  
131 <      nGlobalMols_ = molStampIds_.size();
132 <      molToProcMap_.resize(nGlobalMols_);
133 <    }
134 <
115 >      
116 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
117 >      
118 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
119 >      
120 >      //calculate atoms in rigid bodies
121 >      int nAtomsInRigidBodies = 0;
122 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
123 >      
124 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
125 >        rbStamp = molStamp->getRigidBodyStamp(j);
126 >        nAtomsInRigidBodies += rbStamp->getNMembers();
127 >      }
128 >      
129 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
130 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
131 >      
132 >    }
133 >    
134 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
135 >    //group therefore the total number of cutoff groups in the system is
136 >    //equal to the total number of atoms minus number of atoms belong to
137 >    //cutoff group defined in meta-data file plus the number of cutoff
138 >    //groups defined in meta-data file
139 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
140 >    
141 >    //every free atom (atom does not belong to rigid bodies) is an
142 >    //integrable object therefore the total number of integrable objects
143 >    //in the system is equal to the total number of atoms minus number of
144 >    //atoms belong to rigid body defined in meta-data file plus the number
145 >    //of rigid bodies defined in meta-data file
146 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
147 >      + nGlobalRigidBodies_;
148 >    
149 >    nGlobalMols_ = molStampIds_.size();
150 >    molToProcMap_.resize(nGlobalMols_);
151 >  }
152 >  
153    SimInfo::~SimInfo() {
154 <    std::map<int, Molecule*>::iterator i;
154 >    map<int, Molecule*>::iterator i;
155      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
156        delete i->second;
157      }
# Line 170 | Line 162 | namespace OpenMD {
162      delete forceField_;
163    }
164  
173  int SimInfo::getNGlobalConstraints() {
174    int nGlobalConstraints;
175 #ifdef IS_MPI
176    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
177                  MPI_COMM_WORLD);    
178 #else
179    nGlobalConstraints =  nConstraints_;
180 #endif
181    return nGlobalConstraints;
182  }
165  
166    bool SimInfo::addMolecule(Molecule* mol) {
167      MoleculeIterator i;
168 <
168 >    
169      i = molecules_.find(mol->getGlobalIndex());
170      if (i == molecules_.end() ) {
171 <
172 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
173 <        
171 >      
172 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
173 >      
174        nAtoms_ += mol->getNAtoms();
175        nBonds_ += mol->getNBonds();
176        nBends_ += mol->getNBends();
# Line 198 | Line 180 | namespace OpenMD {
180        nIntegrableObjects_ += mol->getNIntegrableObjects();
181        nCutoffGroups_ += mol->getNCutoffGroups();
182        nConstraints_ += mol->getNConstraintPairs();
183 <
183 >      
184        addInteractionPairs(mol);
185 <  
185 >      
186        return true;
187      } else {
188        return false;
189      }
190    }
191 <
191 >  
192    bool SimInfo::removeMolecule(Molecule* mol) {
193      MoleculeIterator i;
194      i = molecules_.find(mol->getGlobalIndex());
# Line 234 | Line 216 | namespace OpenMD {
216      } else {
217        return false;
218      }
237
238
219    }    
220  
221          
# Line 253 | Line 233 | namespace OpenMD {
233    void SimInfo::calcNdf() {
234      int ndf_local;
235      MoleculeIterator i;
236 <    std::vector<StuntDouble*>::iterator j;
236 >    vector<StuntDouble*>::iterator j;
237      Molecule* mol;
238      StuntDouble* integrableObject;
239  
# Line 304 | Line 284 | namespace OpenMD {
284      int ndfRaw_local;
285  
286      MoleculeIterator i;
287 <    std::vector<StuntDouble*>::iterator j;
287 >    vector<StuntDouble*>::iterator j;
288      Molecule* mol;
289      StuntDouble* integrableObject;
290  
# Line 353 | Line 333 | namespace OpenMD {
333  
334    void SimInfo::addInteractionPairs(Molecule* mol) {
335      ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
336 <    std::vector<Bond*>::iterator bondIter;
337 <    std::vector<Bend*>::iterator bendIter;
338 <    std::vector<Torsion*>::iterator torsionIter;
339 <    std::vector<Inversion*>::iterator inversionIter;
336 >    vector<Bond*>::iterator bondIter;
337 >    vector<Bend*>::iterator bendIter;
338 >    vector<Torsion*>::iterator torsionIter;
339 >    vector<Inversion*>::iterator inversionIter;
340      Bond* bond;
341      Bend* bend;
342      Torsion* torsion;
# Line 374 | Line 354 | namespace OpenMD {
354      // always be excluded.  These are done at the bottom of this
355      // function.
356  
357 <    std::map<int, std::set<int> > atomGroups;
357 >    map<int, set<int> > atomGroups;
358      Molecule::RigidBodyIterator rbIter;
359      RigidBody* rb;
360      Molecule::IntegrableObjectIterator ii;
# Line 386 | Line 366 | namespace OpenMD {
366        
367        if (integrableObject->isRigidBody()) {
368          rb = static_cast<RigidBody*>(integrableObject);
369 <        std::vector<Atom*> atoms = rb->getAtoms();
370 <        std::set<int> rigidAtoms;
369 >        vector<Atom*> atoms = rb->getAtoms();
370 >        set<int> rigidAtoms;
371          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
372            rigidAtoms.insert(atoms[i]->getGlobalIndex());
373          }
374          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
375 <          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
375 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
376          }      
377        } else {
378 <        std::set<int> oneAtomSet;
378 >        set<int> oneAtomSet;
379          oneAtomSet.insert(integrableObject->getGlobalIndex());
380 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
380 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
381        }
382      }  
383            
# Line 500 | Line 480 | namespace OpenMD {
480  
481      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
482           rb = mol->nextRigidBody(rbIter)) {
483 <      std::vector<Atom*> atoms = rb->getAtoms();
483 >      vector<Atom*> atoms = rb->getAtoms();
484        for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
485          for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
486            a = atoms[i]->getGlobalIndex();
# Line 514 | Line 494 | namespace OpenMD {
494  
495    void SimInfo::removeInteractionPairs(Molecule* mol) {
496      ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
497 <    std::vector<Bond*>::iterator bondIter;
498 <    std::vector<Bend*>::iterator bendIter;
499 <    std::vector<Torsion*>::iterator torsionIter;
500 <    std::vector<Inversion*>::iterator inversionIter;
497 >    vector<Bond*>::iterator bondIter;
498 >    vector<Bend*>::iterator bendIter;
499 >    vector<Torsion*>::iterator torsionIter;
500 >    vector<Inversion*>::iterator inversionIter;
501      Bond* bond;
502      Bend* bend;
503      Torsion* torsion;
# Line 527 | Line 507 | namespace OpenMD {
507      int c;
508      int d;
509  
510 <    std::map<int, std::set<int> > atomGroups;
510 >    map<int, set<int> > atomGroups;
511      Molecule::RigidBodyIterator rbIter;
512      RigidBody* rb;
513      Molecule::IntegrableObjectIterator ii;
# Line 539 | Line 519 | namespace OpenMD {
519        
520        if (integrableObject->isRigidBody()) {
521          rb = static_cast<RigidBody*>(integrableObject);
522 <        std::vector<Atom*> atoms = rb->getAtoms();
523 <        std::set<int> rigidAtoms;
522 >        vector<Atom*> atoms = rb->getAtoms();
523 >        set<int> rigidAtoms;
524          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
525            rigidAtoms.insert(atoms[i]->getGlobalIndex());
526          }
527          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
528 <          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
528 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
529          }      
530        } else {
531 <        std::set<int> oneAtomSet;
531 >        set<int> oneAtomSet;
532          oneAtomSet.insert(integrableObject->getGlobalIndex());
533 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
533 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
534        }
535      }  
536  
# Line 653 | Line 633 | namespace OpenMD {
633  
634      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
635           rb = mol->nextRigidBody(rbIter)) {
636 <      std::vector<Atom*> atoms = rb->getAtoms();
636 >      vector<Atom*> atoms = rb->getAtoms();
637        for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
638          for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
639            a = atoms[i]->getGlobalIndex();
# Line 679 | Line 659 | namespace OpenMD {
659    void SimInfo::update() {
660  
661      setupSimType();
662 +    setupCutoffRadius();
663 +    setupSwitchingRadius();
664 +    setupCutoffMethod();
665 +    setupSkinThickness();
666 +    setupSwitchingFunction();
667 +    setupAccumulateBoxDipole();
668  
669   #ifdef IS_MPI
670      setupFortranParallel();
671   #endif
686
672      setupFortranSim();
673 +    fortranInitialized_ = true;
674  
689    //setup fortran force field
690    /** @deprecate */    
691    int isError = 0;
692    
693    setupCutoff();
694    
695    setupElectrostaticSummationMethod( isError );
696    setupSwitchingFunction();
697    setupAccumulateBoxDipole();
698
699    if(isError){
700      sprintf( painCave.errMsg,
701               "ForceField error: There was an error initializing the forceField in fortran.\n" );
702      painCave.isFatal = 1;
703      simError();
704    }
705
675      calcNdf();
676      calcNdfRaw();
677      calcNdfTrans();
709
710    fortranInitialized_ = true;
678    }
679 <
680 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
679 >  
680 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
681      SimInfo::MoleculeIterator mi;
682      Molecule* mol;
683      Molecule::AtomIterator ai;
684      Atom* atom;
685 <    std::set<AtomType*> atomTypes;
686 <
687 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
721 <
685 >    set<AtomType*> atomTypes;
686 >    
687 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
688        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
689          atomTypes.insert(atom->getAtomType());
690 <      }
691 <        
726 <    }
727 <
690 >      }      
691 >    }    
692      return atomTypes;        
693    }
694  
695 <  void SimInfo::setupSimType() {
696 <    std::set<AtomType*>::iterator i;
697 <    std::set<AtomType*> atomTypes;
698 <    atomTypes = getUniqueAtomTypes();
695 >  /**
696 >   * setupCutoffRadius
697 >   *
698 >   *  If the cutoffRadius was explicitly set, use that value.
699 >   *  If the cutoffRadius was not explicitly set:
700 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
701 >   *      No electrostatic atoms?  Poll the atom types present in the
702 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
703 >   *      Use the maximum suggested value that was found.
704 >   */
705 >  void SimInfo::setupCutoffRadius() {
706      
707 <    int useLennardJones = 0;
708 <    int useElectrostatic = 0;
709 <    int useEAM = 0;
710 <    int useSC = 0;
711 <    int useCharge = 0;
712 <    int useDirectional = 0;
713 <    int useDipole = 0;
714 <    int useGayBerne = 0;
715 <    int useSticky = 0;
716 <    int useStickyPower = 0;
717 <    int useShape = 0;
718 <    int useFLARB = 0; //it is not in AtomType yet
719 <    int useDirectionalAtom = 0;    
720 <    int useElectrostatics = 0;
721 <    //usePBC and useRF are from simParams
722 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
723 <    int useRF;
724 <    int useSF;
725 <    int useSP;
726 <    int useBoxDipole;
727 <
728 <    std::string myMethod;
729 <
730 <    // set the useRF logical
731 <    useRF = 0;
732 <    useSF = 0;
733 <    useSP = 0;
734 <    useBoxDipole = 0;
707 >    if (simParams_->haveCutoffRadius()) {
708 >      cutoffRadius_ = simParams_->getCutoffRadius();
709 >    } else {      
710 >      if (usesElectrostaticAtoms_) {
711 >        sprintf(painCave.errMsg,
712 >                "SimInfo Warning: No value was set for the cutoffRadius.\n"
713 >                "\tOpenMD will use a default value of 12.0 angstroms"
714 >                "\tfor the cutoffRadius.\n");
715 >        painCave.isFatal = 0;
716 >        simError();
717 >        cutoffRadius_ = 12.0;
718 >      } else {
719 >        RealType thisCut;
720 >        set<AtomType*>::iterator i;
721 >        set<AtomType*> atomTypes;
722 >        atomTypes = getSimulatedAtomTypes();        
723 >        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
724 >          thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i));
725 >          cutoffRadius_ = max(thisCut, cutoffRadius_);
726 >        }
727 >        sprintf(painCave.errMsg,
728 >                "SimInfo Warning: No value was set for the cutoffRadius.\n"
729 >                "\tOpenMD will use %lf angstroms.\n",
730 >                cutoffRadius_);
731 >        painCave.isFatal = 0;
732 >        simError();
733 >      }            
734 >    }
735  
736 +    InteractionManager::Instance()->setCutoffRadius(cutoffRadius_);
737 +  }
738 +  
739 +  /**
740 +   * setupSwitchingRadius
741 +   *
742 +   *  If the switchingRadius was explicitly set, use that value (but check it)
743 +   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
744 +   */
745 +  void SimInfo::setupSwitchingRadius() {
746 +    
747 +    if (simParams_->haveSwitchingRadius()) {
748 +      switchingRadius_ = simParams_->getSwitchingRadius();
749 +      if (switchingRadius_ > cutoffRadius_) {        
750 +        sprintf(painCave.errMsg,
751 +                "SimInfo Error: switchingRadius (%f) is larger than cutoffRadius(%f)\n",
752 +                switchingRadius_, cutoffRadius_);
753 +        painCave.isFatal = 1;
754 +        simError();
755  
766    if (simParams_->haveElectrostaticSummationMethod()) {
767      std::string myMethod = simParams_->getElectrostaticSummationMethod();
768      toUpper(myMethod);
769      if (myMethod == "REACTION_FIELD"){
770        useRF = 1;
771      } else if (myMethod == "SHIFTED_FORCE"){
772        useSF = 1;
773      } else if (myMethod == "SHIFTED_POTENTIAL"){
774        useSP = 1;
756        }
757 <    }
758 <    
759 <    if (simParams_->haveAccumulateBoxDipole())
760 <      if (simParams_->getAccumulateBoxDipole())
761 <        useBoxDipole = 1;
757 >    } else {      
758 >      switchingRadius_ = 0.85 * cutoffRadius_;
759 >      sprintf(painCave.errMsg,
760 >              "SimInfo Warning: No value was set for the switchingRadius.\n"
761 >              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
762 >              "\tswitchingRadius = %f. for this simulation\n", switchingRadius_);
763 >      painCave.isFatal = 0;
764 >      simError();
765 >    }            
766 >    InteractionManager::Instance()->setSwitchingRadius(switchingRadius_);
767 >  }
768  
769 +  /**
770 +   * setupSkinThickness
771 +   *
772 +   *  If the skinThickness was explicitly set, use that value (but check it)
773 +   *  If the skinThickness was not explicitly set: use 1.0 angstroms
774 +   */
775 +  void SimInfo::setupSkinThickness() {    
776 +    if (simParams_->haveSkinThickness()) {
777 +      skinThickness_ = simParams_->getSkinThickness();
778 +    } else {      
779 +      skinThickness_ = 1.0;
780 +      sprintf(painCave.errMsg,
781 +              "SimInfo Warning: No value was set for the skinThickness.\n"
782 +              "\tOpenMD will use a default value of %f Angstroms\n"
783 +              "\tfor this simulation\n", skinThickness_);
784 +      painCave.isFatal = 0;
785 +      simError();
786 +    }            
787 +  }
788 +
789 +  void SimInfo::setupSimType() {
790 +    set<AtomType*>::iterator i;
791 +    set<AtomType*> atomTypes;
792 +    atomTypes = getSimulatedAtomTypes();
793 +
794      useAtomicVirial_ = simParams_->getUseAtomicVirial();
795  
796 +    int usesElectrostatic = 0;
797 +    int usesMetallic = 0;
798 +    int usesDirectional = 0;
799      //loop over all of the atom types
800      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
801 <      useLennardJones |= (*i)->isLennardJones();
802 <      useElectrostatic |= (*i)->isElectrostatic();
803 <      useEAM |= (*i)->isEAM();
789 <      useSC |= (*i)->isSC();
790 <      useCharge |= (*i)->isCharge();
791 <      useDirectional |= (*i)->isDirectional();
792 <      useDipole |= (*i)->isDipole();
793 <      useGayBerne |= (*i)->isGayBerne();
794 <      useSticky |= (*i)->isSticky();
795 <      useStickyPower |= (*i)->isStickyPower();
796 <      useShape |= (*i)->isShape();
801 >      usesElectrostatic |= (*i)->isElectrostatic();
802 >      usesMetallic |= (*i)->isMetal();
803 >      usesDirectional |= (*i)->isDirectional();
804      }
805  
799    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
800      useDirectionalAtom = 1;
801    }
802
803    if (useCharge || useDipole) {
804      useElectrostatics = 1;
805    }
806
806   #ifdef IS_MPI    
807      int temp;
808 +    temp = usesDirectional;
809 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
810  
811 <    temp = usePBC;
812 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
811 >    temp = usesMetallic;
812 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
813  
814 <    temp = useDirectionalAtom;
815 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
815 <
816 <    temp = useLennardJones;
817 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
818 <
819 <    temp = useElectrostatics;
820 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
821 <
822 <    temp = useCharge;
823 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
824 <
825 <    temp = useDipole;
826 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
827 <
828 <    temp = useSticky;
829 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
830 <
831 <    temp = useStickyPower;
832 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
833 <    
834 <    temp = useGayBerne;
835 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
836 <
837 <    temp = useEAM;
838 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
839 <
840 <    temp = useSC;
841 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
842 <    
843 <    temp = useShape;
844 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
845 <
846 <    temp = useFLARB;
847 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
848 <
849 <    temp = useRF;
850 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
851 <
852 <    temp = useSF;
853 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
854 <
855 <    temp = useSP;
856 <    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
857 <
858 <    temp = useBoxDipole;
859 <    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
860 <
861 <    temp = useAtomicVirial_;
862 <    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
863 <
814 >    temp = usesElectrostatic;
815 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
816   #endif
817 <
818 <    fInfo_.SIM_uses_PBC = usePBC;    
819 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
820 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
821 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
822 <    fInfo_.SIM_uses_Charges = useCharge;
871 <    fInfo_.SIM_uses_Dipoles = useDipole;
872 <    fInfo_.SIM_uses_Sticky = useSticky;
873 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
874 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
875 <    fInfo_.SIM_uses_EAM = useEAM;
876 <    fInfo_.SIM_uses_SC = useSC;
877 <    fInfo_.SIM_uses_Shapes = useShape;
878 <    fInfo_.SIM_uses_FLARB = useFLARB;
879 <    fInfo_.SIM_uses_RF = useRF;
880 <    fInfo_.SIM_uses_SF = useSF;
881 <    fInfo_.SIM_uses_SP = useSP;
882 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
883 <    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
817 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
818 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
819 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
820 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
821 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
822 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
823    }
824  
825    void SimInfo::setupFortranSim() {
826      int isError;
827      int nExclude, nOneTwo, nOneThree, nOneFour;
828 <    std::vector<int> fortranGlobalGroupMembership;
828 >    vector<int> fortranGlobalGroupMembership;
829      
830 +    notifyFortranSkinThickness(&skinThickness_);
831 +
832 +    int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0;
833 +    int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0;
834 +    notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf);
835 +
836      isError = 0;
837  
838      //globalGroupMembership_ is filled by SimCreator    
# Line 896 | Line 841 | namespace OpenMD {
841      }
842  
843      //calculate mass ratio of cutoff group
844 <    std::vector<RealType> mfact;
844 >    vector<RealType> mfact;
845      SimInfo::MoleculeIterator mi;
846      Molecule* mol;
847      Molecule::CutoffGroupIterator ci;
# Line 923 | Line 868 | namespace OpenMD {
868      }
869  
870      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
871 <    std::vector<int> identArray;
871 >    vector<int> identArray;
872  
873      //to avoid memory reallocation, reserve enough space identArray
874      identArray.reserve(getNAtoms());
# Line 936 | Line 881 | namespace OpenMD {
881  
882      //fill molMembershipArray
883      //molMembershipArray is filled by SimCreator    
884 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
884 >    vector<int> molMembershipArray(nGlobalAtoms_);
885      for (int i = 0; i < nGlobalAtoms_; i++) {
886        molMembershipArray[i] = globalMolMembership_[i] + 1;
887      }
# Line 989 | Line 934 | namespace OpenMD {
934    void SimInfo::setupFortranParallel() {
935   #ifdef IS_MPI    
936      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
937 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
938 <    std::vector<int> localToGlobalCutoffGroupIndex;
937 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
938 >    vector<int> localToGlobalCutoffGroupIndex;
939      SimInfo::MoleculeIterator mi;
940      Molecule::AtomIterator ai;
941      Molecule::CutoffGroupIterator ci;
# Line 1042 | Line 987 | namespace OpenMD {
987   #endif
988    }
989  
1045  void SimInfo::setupCutoff() {          
1046    
1047    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
990  
991 <    // Check the cutoff policy
992 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1051 <
1052 <    // Set LJ shifting bools to false
1053 <    ljsp_ = 0;
1054 <    ljsf_ = 0;
1055 <
1056 <    std::string myPolicy;
1057 <    if (forceFieldOptions_.haveCutoffPolicy()){
1058 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
1059 <    }else if (simParams_->haveCutoffPolicy()) {
1060 <      myPolicy = simParams_->getCutoffPolicy();
1061 <    }
1062 <
1063 <    if (!myPolicy.empty()){
1064 <      toUpper(myPolicy);
1065 <      if (myPolicy == "MIX") {
1066 <        cp = MIX_CUTOFF_POLICY;
1067 <      } else {
1068 <        if (myPolicy == "MAX") {
1069 <          cp = MAX_CUTOFF_POLICY;
1070 <        } else {
1071 <          if (myPolicy == "TRADITIONAL") {            
1072 <            cp = TRADITIONAL_CUTOFF_POLICY;
1073 <          } else {
1074 <            // throw error        
1075 <            sprintf( painCave.errMsg,
1076 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1077 <            painCave.isFatal = 1;
1078 <            simError();
1079 <          }    
1080 <        }          
1081 <      }
1082 <    }          
1083 <    notifyFortranCutoffPolicy(&cp);
1084 <
1085 <    // Check the Skin Thickness for neighborlists
1086 <    RealType skin;
1087 <    if (simParams_->haveSkinThickness()) {
1088 <      skin = simParams_->getSkinThickness();
1089 <      notifyFortranSkinThickness(&skin);
1090 <    }            
1091 <        
1092 <    // Check if the cutoff was set explicitly:
1093 <    if (simParams_->haveCutoffRadius()) {
1094 <      rcut_ = simParams_->getCutoffRadius();
1095 <      if (simParams_->haveSwitchingRadius()) {
1096 <        rsw_  = simParams_->getSwitchingRadius();
1097 <      } else {
1098 <        if (fInfo_.SIM_uses_Charges |
1099 <            fInfo_.SIM_uses_Dipoles |
1100 <            fInfo_.SIM_uses_RF) {
1101 <          
1102 <          rsw_ = 0.85 * rcut_;
1103 <          sprintf(painCave.errMsg,
1104 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1105 <                  "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
1106 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1107 <        painCave.isFatal = 0;
1108 <        simError();
1109 <        } else {
1110 <          rsw_ = rcut_;
1111 <          sprintf(painCave.errMsg,
1112 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1113 <                  "\tOpenMD will use the same value as the cutoffRadius.\n"
1114 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1115 <          painCave.isFatal = 0;
1116 <          simError();
1117 <        }
1118 <      }
1119 <
1120 <      if (simParams_->haveElectrostaticSummationMethod()) {
1121 <        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1122 <        toUpper(myMethod);
1123 <        
1124 <        if (myMethod == "SHIFTED_POTENTIAL") {
1125 <          ljsp_ = 1;
1126 <        } else if (myMethod == "SHIFTED_FORCE") {
1127 <          ljsf_ = 1;
1128 <        }
1129 <      }
1130 <
1131 <      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1132 <      
1133 <    } else {
1134 <      
1135 <      // For electrostatic atoms, we'll assume a large safe value:
1136 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1137 <        sprintf(painCave.errMsg,
1138 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1139 <                "\tOpenMD will use a default value of 15.0 angstroms"
1140 <                "\tfor the cutoffRadius.\n");
1141 <        painCave.isFatal = 0;
1142 <        simError();
1143 <        rcut_ = 15.0;
1144 <      
1145 <        if (simParams_->haveElectrostaticSummationMethod()) {
1146 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1147 <          toUpper(myMethod);
1148 <          
1149 <          // For the time being, we're tethering the LJ shifted behavior to the
1150 <          // electrostaticSummationMethod keyword options
1151 <          if (myMethod == "SHIFTED_POTENTIAL") {
1152 <            ljsp_ = 1;
1153 <          } else if (myMethod == "SHIFTED_FORCE") {
1154 <            ljsf_ = 1;
1155 <          }
1156 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1157 <            if (simParams_->haveSwitchingRadius()){
1158 <              sprintf(painCave.errMsg,
1159 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1160 <                      "\teven though the electrostaticSummationMethod was\n"
1161 <                      "\tset to %s\n", myMethod.c_str());
1162 <              painCave.isFatal = 1;
1163 <              simError();            
1164 <            }
1165 <          }
1166 <        }
1167 <      
1168 <        if (simParams_->haveSwitchingRadius()){
1169 <          rsw_ = simParams_->getSwitchingRadius();
1170 <        } else {        
1171 <          sprintf(painCave.errMsg,
1172 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1173 <                  "\tOpenMD will use a default value of\n"
1174 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1175 <          painCave.isFatal = 0;
1176 <          simError();
1177 <          rsw_ = 0.85 * rcut_;
1178 <        }
1179 <
1180 <        Electrostatic::setElectrostaticCutoffRadius(rcut_, rsw_);
1181 <        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1182 <
1183 <      } else {
1184 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1185 <        // We'll punt and let fortran figure out the cutoffs later.
1186 <        
1187 <        notifyFortranYouAreOnYourOwn();
1188 <
1189 <      }
1190 <    }
1191 <  }
1192 <
1193 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1194 <    
1195 <    int errorOut;
1196 <    ElectrostaticSummationMethod esm = NONE;
1197 <    ElectrostaticScreeningMethod sm = UNDAMPED;
1198 <    RealType alphaVal;
1199 <    RealType dielectric;
991 >  void SimInfo::setupSwitchingFunction() {    
992 >    int ft = CUBIC;
993      
1201    errorOut = isError;
1202
1203    if (simParams_->haveElectrostaticSummationMethod()) {
1204      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1205      toUpper(myMethod);
1206      if (myMethod == "NONE") {
1207        esm = NONE;
1208      } else {
1209        if (myMethod == "SWITCHING_FUNCTION") {
1210          esm = SWITCHING_FUNCTION;
1211        } else {
1212          if (myMethod == "SHIFTED_POTENTIAL") {
1213            esm = SHIFTED_POTENTIAL;
1214          } else {
1215            if (myMethod == "SHIFTED_FORCE") {            
1216              esm = SHIFTED_FORCE;
1217            } else {
1218              if (myMethod == "REACTION_FIELD") {
1219                esm = REACTION_FIELD;
1220                dielectric = simParams_->getDielectric();
1221                if (!simParams_->haveDielectric()) {
1222                  // throw warning
1223                  sprintf( painCave.errMsg,
1224                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1225                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1226                  painCave.isFatal = 0;
1227                  simError();
1228                }
1229              } else {
1230                // throw error        
1231                sprintf( painCave.errMsg,
1232                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1233                         "\t(Input file specified %s .)\n"
1234                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1235                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1236                         "\t\"reaction_field\".\n", myMethod.c_str() );
1237                painCave.isFatal = 1;
1238                simError();
1239              }    
1240            }          
1241          }
1242        }
1243      }
1244    }
1245    
1246    if (simParams_->haveElectrostaticScreeningMethod()) {
1247      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1248      toUpper(myScreen);
1249      if (myScreen == "UNDAMPED") {
1250        sm = UNDAMPED;
1251      } else {
1252        if (myScreen == "DAMPED") {
1253          sm = DAMPED;
1254          if (!simParams_->haveDampingAlpha()) {
1255            // first set a cutoff dependent alpha value
1256            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1257            alphaVal = 0.5125 - rcut_* 0.025;
1258            // for values rcut > 20.5, alpha is zero
1259            if (alphaVal < 0) alphaVal = 0;
1260
1261            // throw warning
1262            sprintf( painCave.errMsg,
1263                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1264                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1265            painCave.isFatal = 0;
1266            simError();
1267          } else {
1268            alphaVal = simParams_->getDampingAlpha();
1269          }
1270          
1271        } else {
1272          // throw error        
1273          sprintf( painCave.errMsg,
1274                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1275                   "\t(Input file specified %s .)\n"
1276                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1277                   "or \"damped\".\n", myScreen.c_str() );
1278          painCave.isFatal = 1;
1279          simError();
1280        }
1281      }
1282    }
1283    
1284
1285    Electrostatic::setElectrostaticSummationMethod( esm );
1286    Electrostatic::setElectrostaticScreeningMethod( sm );
1287    Electrostatic::setDampingAlpha( alphaVal );
1288    Electrostatic::setReactionFieldDielectric( dielectric );
1289    initFortranFF( &errorOut );
1290  }
1291
1292  void SimInfo::setupSwitchingFunction() {    
1293    int ft = CUBIC;
1294
994      if (simParams_->haveSwitchingFunctionType()) {
995 <      std::string funcType = simParams_->getSwitchingFunctionType();
995 >      string funcType = simParams_->getSwitchingFunctionType();
996        toUpper(funcType);
997        if (funcType == "CUBIC") {
998          ft = CUBIC;
# Line 1303 | Line 1002 | namespace OpenMD {
1002          } else {
1003            // throw error        
1004            sprintf( painCave.errMsg,
1005 <                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1005 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n"
1006 >                   "\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".",
1007 >                   funcType.c_str() );
1008            painCave.isFatal = 1;
1009            simError();
1010          }          
# Line 1320 | Line 1021 | namespace OpenMD {
1021      // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1022      if ( simParams_->haveAccumulateBoxDipole() )
1023        if ( simParams_->getAccumulateBoxDipole() ) {
1323        setAccumulateBoxDipole();
1024          calcBoxDipole_ = true;
1025        }
1026  
# Line 1330 | Line 1030 | namespace OpenMD {
1030      properties_.addProperty(genData);  
1031    }
1032  
1033 <  void SimInfo::removeProperty(const std::string& propName) {
1033 >  void SimInfo::removeProperty(const string& propName) {
1034      properties_.removeProperty(propName);  
1035    }
1036  
# Line 1338 | Line 1038 | namespace OpenMD {
1038      properties_.clearProperties();
1039    }
1040  
1041 <  std::vector<std::string> SimInfo::getPropertyNames() {
1041 >  vector<string> SimInfo::getPropertyNames() {
1042      return properties_.getPropertyNames();  
1043    }
1044        
1045 <  std::vector<GenericData*> SimInfo::getProperties() {
1045 >  vector<GenericData*> SimInfo::getProperties() {
1046      return properties_.getProperties();
1047    }
1048  
1049 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1049 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
1050      return properties_.getPropertyByName(propName);
1051    }
1052  
# Line 1429 | Line 1129 | namespace OpenMD {
1129  
1130    }        
1131  
1132 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1132 >  ostream& operator <<(ostream& o, SimInfo& info) {
1133  
1134      return o;
1135    }
# Line 1472 | Line 1172 | namespace OpenMD {
1172  
1173  
1174         [  Ixx -Ixy  -Ixz ]
1175 <  J =| -Iyx  Iyy  -Iyz |
1175 >    J =| -Iyx  Iyy  -Iyz |
1176         [ -Izx -Iyz   Izz ]
1177      */
1178  
# Line 1579 | Line 1279 | namespace OpenMD {
1279      return IOIndexToIntegrableObject.at(index);
1280    }
1281    
1282 <  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1282 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1283      IOIndexToIntegrableObject= v;
1284    }
1285  
# Line 1621 | Line 1321 | namespace OpenMD {
1321      return;
1322    }
1323   /*
1324 <   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1324 >   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1325        assert( v.size() == nAtoms_ + nRigidBodies_);
1326        sdByGlobalIndex_ = v;
1327      }
# Line 1631 | Line 1331 | namespace OpenMD {
1331        return sdByGlobalIndex_.at(index);
1332      }  
1333   */  
1334 +  int SimInfo::getNGlobalConstraints() {
1335 +    int nGlobalConstraints;
1336 + #ifdef IS_MPI
1337 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1338 +                  MPI_COMM_WORLD);    
1339 + #else
1340 +    nGlobalConstraints =  nConstraints_;
1341 + #endif
1342 +    return nGlobalConstraints;
1343 +  }
1344 +
1345   }//end namespace OpenMD
1346  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines