53 |
|
#include "brains/SimInfo.hpp" |
54 |
|
#include "math/Vector3.hpp" |
55 |
|
#include "primitives/Molecule.hpp" |
56 |
+ |
#include "primitives/StuntDouble.hpp" |
57 |
|
#include "UseTheForce/fCutoffPolicy.h" |
58 |
|
#include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" |
59 |
|
#include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h" |
60 |
|
#include "UseTheForce/DarkSide/fSwitchingFunctionType.h" |
61 |
|
#include "UseTheForce/doForces_interface.h" |
62 |
+ |
#include "UseTheForce/DarkSide/neighborLists_interface.h" |
63 |
|
#include "UseTheForce/DarkSide/electrostatic_interface.h" |
64 |
|
#include "UseTheForce/DarkSide/switcheroo_interface.h" |
65 |
|
#include "utils/MemoryUtils.hpp" |
66 |
|
#include "utils/simError.h" |
67 |
|
#include "selection/SelectionManager.hpp" |
68 |
+ |
#include "io/ForceFieldOptions.hpp" |
69 |
+ |
#include "UseTheForce/ForceField.hpp" |
70 |
|
|
71 |
+ |
|
72 |
|
#ifdef IS_MPI |
73 |
|
#include "UseTheForce/mpiComponentPlan.h" |
74 |
|
#include "UseTheForce/DarkSide/simParallel_interface.h" |
85 |
|
return result; |
86 |
|
} |
87 |
|
|
88 |
< |
SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, |
89 |
< |
ForceField* ff, Globals* simParams) : |
90 |
< |
stamps_(stamps), forceField_(ff), simParams_(simParams), |
86 |
< |
ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
88 |
> |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
89 |
> |
forceField_(ff), simParams_(simParams), |
90 |
> |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
91 |
|
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
92 |
|
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
93 |
|
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0), |
94 |
|
nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0), |
95 |
< |
sman_(NULL), fortranInitialized_(false) { |
95 |
> |
sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false), |
96 |
> |
useAtomicVirial_(true) { |
97 |
|
|
93 |
– |
|
94 |
– |
std::vector<std::pair<MoleculeStamp*, int> >::iterator i; |
98 |
|
MoleculeStamp* molStamp; |
99 |
|
int nMolWithSameStamp; |
100 |
|
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
102 |
|
CutoffGroupStamp* cgStamp; |
103 |
|
RigidBodyStamp* rbStamp; |
104 |
|
int nRigidAtoms = 0; |
105 |
< |
|
106 |
< |
for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) { |
107 |
< |
molStamp = i->first; |
108 |
< |
nMolWithSameStamp = i->second; |
105 |
> |
std::vector<Component*> components = simParams->getComponents(); |
106 |
> |
|
107 |
> |
for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
108 |
> |
molStamp = (*i)->getMoleculeStamp(); |
109 |
> |
nMolWithSameStamp = (*i)->getNMol(); |
110 |
|
|
111 |
|
addMoleculeStamp(molStamp, nMolWithSameStamp); |
112 |
|
|
113 |
|
//calculate atoms in molecules |
114 |
|
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
115 |
|
|
112 |
– |
|
116 |
|
//calculate atoms in cutoff groups |
117 |
|
int nAtomsInGroups = 0; |
118 |
|
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
119 |
|
|
120 |
|
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
121 |
< |
cgStamp = molStamp->getCutoffGroup(j); |
121 |
> |
cgStamp = molStamp->getCutoffGroupStamp(j); |
122 |
|
nAtomsInGroups += cgStamp->getNMembers(); |
123 |
|
} |
124 |
|
|
131 |
|
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
132 |
|
|
133 |
|
for (int j=0; j < nRigidBodiesInStamp; j++) { |
134 |
< |
rbStamp = molStamp->getRigidBody(j); |
134 |
> |
rbStamp = molStamp->getRigidBodyStamp(j); |
135 |
|
nAtomsInRigidBodies += rbStamp->getNMembers(); |
136 |
|
} |
137 |
|
|
170 |
|
} |
171 |
|
molecules_.clear(); |
172 |
|
|
170 |
– |
delete stamps_; |
173 |
|
delete sman_; |
174 |
|
delete simParams_; |
175 |
|
delete forceField_; |
276 |
|
} |
277 |
|
} |
278 |
|
|
279 |
< |
}//end for (integrableObject) |
280 |
< |
}// end for (mol) |
279 |
> |
} |
280 |
> |
} |
281 |
|
|
282 |
|
// n_constraints is local, so subtract them on each processor |
283 |
|
ndf_local -= nConstraints_; |
294 |
|
|
295 |
|
} |
296 |
|
|
297 |
+ |
int SimInfo::getFdf() { |
298 |
+ |
#ifdef IS_MPI |
299 |
+ |
MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
300 |
+ |
#else |
301 |
+ |
fdf_ = fdf_local; |
302 |
+ |
#endif |
303 |
+ |
return fdf_; |
304 |
+ |
} |
305 |
+ |
|
306 |
|
void SimInfo::calcNdfRaw() { |
307 |
|
int ndfRaw_local; |
308 |
|
|
604 |
|
/** @deprecate */ |
605 |
|
int isError = 0; |
606 |
|
|
607 |
+ |
setupCutoff(); |
608 |
+ |
|
609 |
|
setupElectrostaticSummationMethod( isError ); |
610 |
|
setupSwitchingFunction(); |
611 |
+ |
setupAccumulateBoxDipole(); |
612 |
|
|
613 |
|
if(isError){ |
614 |
|
sprintf( painCave.errMsg, |
616 |
|
painCave.isFatal = 1; |
617 |
|
simError(); |
618 |
|
} |
605 |
– |
|
606 |
– |
|
607 |
– |
setupCutoff(); |
619 |
|
|
620 |
|
calcNdf(); |
621 |
|
calcNdfRaw(); |
665 |
|
int usePBC = simParams_->getUsePeriodicBoundaryConditions(); |
666 |
|
int useRF; |
667 |
|
int useSF; |
668 |
+ |
int useSP; |
669 |
+ |
int useBoxDipole; |
670 |
+ |
|
671 |
|
std::string myMethod; |
672 |
|
|
673 |
|
// set the useRF logical |
674 |
|
useRF = 0; |
675 |
|
useSF = 0; |
676 |
+ |
useSP = 0; |
677 |
|
|
678 |
|
|
679 |
|
if (simParams_->haveElectrostaticSummationMethod()) { |
680 |
|
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
681 |
|
toUpper(myMethod); |
682 |
< |
if (myMethod == "REACTION_FIELD") { |
683 |
< |
useRF=1; |
684 |
< |
} else { |
685 |
< |
if (myMethod == "SHIFTED_FORCE") { |
686 |
< |
useSF = 1; |
687 |
< |
} |
682 |
> |
if (myMethod == "REACTION_FIELD"){ |
683 |
> |
useRF = 1; |
684 |
> |
} else if (myMethod == "SHIFTED_FORCE"){ |
685 |
> |
useSF = 1; |
686 |
> |
} else if (myMethod == "SHIFTED_POTENTIAL"){ |
687 |
> |
useSP = 1; |
688 |
|
} |
689 |
|
} |
690 |
+ |
|
691 |
+ |
if (simParams_->haveAccumulateBoxDipole()) |
692 |
+ |
if (simParams_->getAccumulateBoxDipole()) |
693 |
+ |
useBoxDipole = 1; |
694 |
|
|
695 |
+ |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
696 |
+ |
|
697 |
|
//loop over all of the atom types |
698 |
|
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
699 |
|
useLennardJones |= (*i)->isLennardJones(); |
763 |
|
MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
764 |
|
|
765 |
|
temp = useSF; |
766 |
< |
MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
766 |
> |
MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
767 |
|
|
768 |
+ |
temp = useSP; |
769 |
+ |
MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
770 |
+ |
|
771 |
+ |
temp = useBoxDipole; |
772 |
+ |
MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
773 |
+ |
|
774 |
+ |
temp = useAtomicVirial_; |
775 |
+ |
MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
776 |
+ |
|
777 |
|
#endif |
778 |
|
|
779 |
|
fInfo_.SIM_uses_PBC = usePBC; |
791 |
|
fInfo_.SIM_uses_FLARB = useFLARB; |
792 |
|
fInfo_.SIM_uses_RF = useRF; |
793 |
|
fInfo_.SIM_uses_SF = useSF; |
794 |
< |
|
795 |
< |
if( myMethod == "REACTION_FIELD") { |
796 |
< |
|
767 |
< |
if (simParams_->haveDielectric()) { |
768 |
< |
fInfo_.dielect = simParams_->getDielectric(); |
769 |
< |
} else { |
770 |
< |
sprintf(painCave.errMsg, |
771 |
< |
"SimSetup Error: No Dielectric constant was set.\n" |
772 |
< |
"\tYou are trying to use Reaction Field without" |
773 |
< |
"\tsetting a dielectric constant!\n"); |
774 |
< |
painCave.isFatal = 1; |
775 |
< |
simError(); |
776 |
< |
} |
777 |
< |
} |
778 |
< |
|
794 |
> |
fInfo_.SIM_uses_SP = useSP; |
795 |
> |
fInfo_.SIM_uses_BoxDipole = useBoxDipole; |
796 |
> |
fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_; |
797 |
|
} |
798 |
|
|
799 |
|
void SimInfo::setupFortranSim() { |
810 |
|
} |
811 |
|
|
812 |
|
//calculate mass ratio of cutoff group |
813 |
< |
std::vector<double> mfact; |
813 |
> |
std::vector<RealType> mfact; |
814 |
|
SimInfo::MoleculeIterator mi; |
815 |
|
Molecule* mol; |
816 |
|
Molecule::CutoffGroupIterator ci; |
817 |
|
CutoffGroup* cg; |
818 |
|
Molecule::AtomIterator ai; |
819 |
|
Atom* atom; |
820 |
< |
double totalMass; |
820 |
> |
RealType totalMass; |
821 |
|
|
822 |
|
//to avoid memory reallocation, reserve enough space for mfact |
823 |
|
mfact.reserve(getNCutoffGroups()); |
878 |
|
"succesfully sent the simulation information to fortran.\n"); |
879 |
|
MPIcheckPoint(); |
880 |
|
#endif // is_mpi |
881 |
+ |
|
882 |
+ |
// Setup number of neighbors in neighbor list if present |
883 |
+ |
if (simParams_->haveNeighborListNeighbors()) { |
884 |
+ |
int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
885 |
+ |
setNeighbors(&nlistNeighbors); |
886 |
+ |
} |
887 |
+ |
|
888 |
+ |
|
889 |
|
} |
890 |
|
|
891 |
|
|
950 |
|
|
951 |
|
void SimInfo::setupCutoff() { |
952 |
|
|
953 |
+ |
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
954 |
+ |
|
955 |
|
// Check the cutoff policy |
956 |
< |
int cp = TRADITIONAL_CUTOFF_POLICY; |
957 |
< |
if (simParams_->haveCutoffPolicy()) { |
958 |
< |
std::string myPolicy = simParams_->getCutoffPolicy(); |
956 |
> |
int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default |
957 |
> |
|
958 |
> |
// Set LJ shifting bools to false |
959 |
> |
ljsp_ = false; |
960 |
> |
ljsf_ = false; |
961 |
> |
|
962 |
> |
std::string myPolicy; |
963 |
> |
if (forceFieldOptions_.haveCutoffPolicy()){ |
964 |
> |
myPolicy = forceFieldOptions_.getCutoffPolicy(); |
965 |
> |
}else if (simParams_->haveCutoffPolicy()) { |
966 |
> |
myPolicy = simParams_->getCutoffPolicy(); |
967 |
> |
} |
968 |
> |
|
969 |
> |
if (!myPolicy.empty()){ |
970 |
|
toUpper(myPolicy); |
971 |
|
if (myPolicy == "MIX") { |
972 |
|
cp = MIX_CUTOFF_POLICY; |
989 |
|
notifyFortranCutoffPolicy(&cp); |
990 |
|
|
991 |
|
// Check the Skin Thickness for neighborlists |
992 |
< |
double skin; |
992 |
> |
RealType skin; |
993 |
|
if (simParams_->haveSkinThickness()) { |
994 |
|
skin = simParams_->getSkinThickness(); |
995 |
|
notifyFortranSkinThickness(&skin); |
1001 |
|
if (simParams_->haveSwitchingRadius()) { |
1002 |
|
rsw_ = simParams_->getSwitchingRadius(); |
1003 |
|
} else { |
1004 |
< |
rsw_ = rcut_; |
1004 |
> |
if (fInfo_.SIM_uses_Charges | |
1005 |
> |
fInfo_.SIM_uses_Dipoles | |
1006 |
> |
fInfo_.SIM_uses_RF) { |
1007 |
> |
|
1008 |
> |
rsw_ = 0.85 * rcut_; |
1009 |
> |
sprintf(painCave.errMsg, |
1010 |
> |
"SimCreator Warning: No value was set for the switchingRadius.\n" |
1011 |
> |
"\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n" |
1012 |
> |
"\tswitchingRadius = %f. for this simulation\n", rsw_); |
1013 |
> |
painCave.isFatal = 0; |
1014 |
> |
simError(); |
1015 |
> |
} else { |
1016 |
> |
rsw_ = rcut_; |
1017 |
> |
sprintf(painCave.errMsg, |
1018 |
> |
"SimCreator Warning: No value was set for the switchingRadius.\n" |
1019 |
> |
"\tOOPSE will use the same value as the cutoffRadius.\n" |
1020 |
> |
"\tswitchingRadius = %f. for this simulation\n", rsw_); |
1021 |
> |
painCave.isFatal = 0; |
1022 |
> |
simError(); |
1023 |
> |
} |
1024 |
|
} |
1025 |
< |
notifyFortranCutoffs(&rcut_, &rsw_); |
1025 |
> |
|
1026 |
> |
if (simParams_->haveElectrostaticSummationMethod()) { |
1027 |
> |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1028 |
> |
toUpper(myMethod); |
1029 |
> |
|
1030 |
> |
if (myMethod == "SHIFTED_POTENTIAL") { |
1031 |
> |
ljsp_ = true; |
1032 |
> |
} else if (myMethod == "SHIFTED_FORCE") { |
1033 |
> |
ljsf_ = true; |
1034 |
> |
} |
1035 |
> |
} |
1036 |
> |
notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); |
1037 |
|
|
1038 |
|
} else { |
1039 |
|
|
1050 |
|
if (simParams_->haveElectrostaticSummationMethod()) { |
1051 |
|
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1052 |
|
toUpper(myMethod); |
1053 |
< |
if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") { |
1053 |
> |
|
1054 |
> |
// For the time being, we're tethering the LJ shifted behavior to the |
1055 |
> |
// electrostaticSummationMethod keyword options |
1056 |
> |
if (myMethod == "SHIFTED_POTENTIAL") { |
1057 |
> |
ljsp_ = true; |
1058 |
> |
} else if (myMethod == "SHIFTED_FORCE") { |
1059 |
> |
ljsf_ = true; |
1060 |
> |
} |
1061 |
> |
if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") { |
1062 |
|
if (simParams_->haveSwitchingRadius()){ |
1063 |
|
sprintf(painCave.errMsg, |
1064 |
|
"SimInfo Warning: A value was set for the switchingRadius\n" |
1081 |
|
simError(); |
1082 |
|
rsw_ = 0.85 * rcut_; |
1083 |
|
} |
1084 |
< |
notifyFortranCutoffs(&rcut_, &rsw_); |
1084 |
> |
|
1085 |
> |
notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); |
1086 |
> |
|
1087 |
|
} else { |
1088 |
|
// We didn't set rcut explicitly, and we don't have electrostatic atoms, so |
1089 |
|
// We'll punt and let fortran figure out the cutoffs later. |
1099 |
|
int errorOut; |
1100 |
|
int esm = NONE; |
1101 |
|
int sm = UNDAMPED; |
1102 |
< |
double alphaVal; |
1103 |
< |
double dielectric; |
1104 |
< |
|
1102 |
> |
RealType alphaVal; |
1103 |
> |
RealType dielectric; |
1104 |
> |
|
1105 |
|
errorOut = isError; |
1027 |
– |
alphaVal = simParams_->getDampingAlpha(); |
1028 |
– |
dielectric = simParams_->getDielectric(); |
1106 |
|
|
1107 |
|
if (simParams_->haveElectrostaticSummationMethod()) { |
1108 |
|
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1119 |
|
if (myMethod == "SHIFTED_FORCE") { |
1120 |
|
esm = SHIFTED_FORCE; |
1121 |
|
} else { |
1122 |
< |
if (myMethod == "REACTION_FIELD") { |
1122 |
> |
if (myMethod == "REACTION_FIELD") { |
1123 |
|
esm = REACTION_FIELD; |
1124 |
+ |
dielectric = simParams_->getDielectric(); |
1125 |
+ |
if (!simParams_->haveDielectric()) { |
1126 |
+ |
// throw warning |
1127 |
+ |
sprintf( painCave.errMsg, |
1128 |
+ |
"SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n" |
1129 |
+ |
"\tA default value of %f will be used for the dielectric.\n", dielectric); |
1130 |
+ |
painCave.isFatal = 0; |
1131 |
+ |
simError(); |
1132 |
+ |
} |
1133 |
|
} else { |
1134 |
|
// throw error |
1135 |
|
sprintf( painCave.errMsg, |
1156 |
|
if (myScreen == "DAMPED") { |
1157 |
|
sm = DAMPED; |
1158 |
|
if (!simParams_->haveDampingAlpha()) { |
1159 |
< |
//throw error |
1159 |
> |
// first set a cutoff dependent alpha value |
1160 |
> |
// we assume alpha depends linearly with rcut from 0 to 20.5 ang |
1161 |
> |
alphaVal = 0.5125 - rcut_* 0.025; |
1162 |
> |
// for values rcut > 20.5, alpha is zero |
1163 |
> |
if (alphaVal < 0) alphaVal = 0; |
1164 |
> |
|
1165 |
> |
// throw warning |
1166 |
|
sprintf( painCave.errMsg, |
1167 |
|
"SimInfo warning: dampingAlpha was not specified in the input file.\n" |
1168 |
< |
"\tA default value of %f (1/ang) will be used.\n", alphaVal); |
1168 |
> |
"\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_); |
1169 |
|
painCave.isFatal = 0; |
1170 |
|
simError(); |
1171 |
+ |
} else { |
1172 |
+ |
alphaVal = simParams_->getDampingAlpha(); |
1173 |
|
} |
1174 |
+ |
|
1175 |
|
} else { |
1176 |
|
// throw error |
1177 |
|
sprintf( painCave.errMsg, |
1187 |
|
|
1188 |
|
// let's pass some summation method variables to fortran |
1189 |
|
setElectrostaticSummationMethod( &esm ); |
1190 |
< |
notifyFortranElectrostaticMethod( &esm ); |
1190 |
> |
setFortranElectrostaticMethod( &esm ); |
1191 |
|
setScreeningMethod( &sm ); |
1192 |
|
setDampingAlpha( &alphaVal ); |
1193 |
|
setReactionFieldDielectric( &dielectric ); |
1220 |
|
|
1221 |
|
} |
1222 |
|
|
1223 |
+ |
void SimInfo::setupAccumulateBoxDipole() { |
1224 |
+ |
|
1225 |
+ |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
1226 |
+ |
if ( simParams_->haveAccumulateBoxDipole() ) |
1227 |
+ |
if ( simParams_->getAccumulateBoxDipole() ) { |
1228 |
+ |
setAccumulateBoxDipole(); |
1229 |
+ |
calcBoxDipole_ = true; |
1230 |
+ |
} |
1231 |
+ |
|
1232 |
+ |
} |
1233 |
+ |
|
1234 |
|
void SimInfo::addProperty(GenericData* genData) { |
1235 |
|
properties_.addProperty(genData); |
1236 |
|
} |
1287 |
|
Molecule* mol; |
1288 |
|
|
1289 |
|
Vector3d comVel(0.0); |
1290 |
< |
double totalMass = 0.0; |
1290 |
> |
RealType totalMass = 0.0; |
1291 |
|
|
1292 |
|
|
1293 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1294 |
< |
double mass = mol->getMass(); |
1294 |
> |
RealType mass = mol->getMass(); |
1295 |
|
totalMass += mass; |
1296 |
|
comVel += mass * mol->getComVel(); |
1297 |
|
} |
1298 |
|
|
1299 |
|
#ifdef IS_MPI |
1300 |
< |
double tmpMass = totalMass; |
1300 |
> |
RealType tmpMass = totalMass; |
1301 |
|
Vector3d tmpComVel(comVel); |
1302 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1303 |
< |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1302 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1303 |
> |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1304 |
|
#endif |
1305 |
|
|
1306 |
|
comVel /= totalMass; |
1313 |
|
Molecule* mol; |
1314 |
|
|
1315 |
|
Vector3d com(0.0); |
1316 |
< |
double totalMass = 0.0; |
1316 |
> |
RealType totalMass = 0.0; |
1317 |
|
|
1318 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1319 |
< |
double mass = mol->getMass(); |
1319 |
> |
RealType mass = mol->getMass(); |
1320 |
|
totalMass += mass; |
1321 |
|
com += mass * mol->getCom(); |
1322 |
|
} |
1323 |
|
|
1324 |
|
#ifdef IS_MPI |
1325 |
< |
double tmpMass = totalMass; |
1325 |
> |
RealType tmpMass = totalMass; |
1326 |
|
Vector3d tmpCom(com); |
1327 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1328 |
< |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1327 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1328 |
> |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1329 |
|
#endif |
1330 |
|
|
1331 |
|
com /= totalMass; |
1349 |
|
Molecule* mol; |
1350 |
|
|
1351 |
|
|
1352 |
< |
double totalMass = 0.0; |
1352 |
> |
RealType totalMass = 0.0; |
1353 |
|
|
1354 |
|
|
1355 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1356 |
< |
double mass = mol->getMass(); |
1356 |
> |
RealType mass = mol->getMass(); |
1357 |
|
totalMass += mass; |
1358 |
|
com += mass * mol->getCom(); |
1359 |
|
comVel += mass * mol->getComVel(); |
1360 |
|
} |
1361 |
|
|
1362 |
|
#ifdef IS_MPI |
1363 |
< |
double tmpMass = totalMass; |
1363 |
> |
RealType tmpMass = totalMass; |
1364 |
|
Vector3d tmpCom(com); |
1365 |
|
Vector3d tmpComVel(comVel); |
1366 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1367 |
< |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1368 |
< |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1366 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1367 |
> |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1368 |
> |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1369 |
|
#endif |
1370 |
|
|
1371 |
|
com /= totalMass; |
1384 |
|
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1385 |
|
|
1386 |
|
|
1387 |
< |
double xx = 0.0; |
1388 |
< |
double yy = 0.0; |
1389 |
< |
double zz = 0.0; |
1390 |
< |
double xy = 0.0; |
1391 |
< |
double xz = 0.0; |
1392 |
< |
double yz = 0.0; |
1387 |
> |
RealType xx = 0.0; |
1388 |
> |
RealType yy = 0.0; |
1389 |
> |
RealType zz = 0.0; |
1390 |
> |
RealType xy = 0.0; |
1391 |
> |
RealType xz = 0.0; |
1392 |
> |
RealType yz = 0.0; |
1393 |
|
Vector3d com(0.0); |
1394 |
|
Vector3d comVel(0.0); |
1395 |
|
|
1401 |
|
Vector3d thisq(0.0); |
1402 |
|
Vector3d thisv(0.0); |
1403 |
|
|
1404 |
< |
double thisMass = 0.0; |
1404 |
> |
RealType thisMass = 0.0; |
1405 |
|
|
1406 |
|
|
1407 |
|
|
1439 |
|
#ifdef IS_MPI |
1440 |
|
Mat3x3d tmpI(inertiaTensor); |
1441 |
|
Vector3d tmpAngMom; |
1442 |
< |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1443 |
< |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1442 |
> |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1443 |
> |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1444 |
|
#endif |
1445 |
|
|
1446 |
|
return; |
1461 |
|
Vector3d thisr(0.0); |
1462 |
|
Vector3d thisp(0.0); |
1463 |
|
|
1464 |
< |
double thisMass; |
1464 |
> |
RealType thisMass; |
1465 |
|
|
1466 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1467 |
|
thisMass = mol->getMass(); |
1474 |
|
|
1475 |
|
#ifdef IS_MPI |
1476 |
|
Vector3d tmpAngMom; |
1477 |
< |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1477 |
> |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1478 |
|
#endif |
1479 |
|
|
1480 |
|
return angularMomentum; |
1481 |
|
} |
1482 |
|
|
1483 |
< |
|
1483 |
> |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1484 |
> |
return IOIndexToIntegrableObject.at(index); |
1485 |
> |
} |
1486 |
> |
|
1487 |
> |
void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) { |
1488 |
> |
IOIndexToIntegrableObject= v; |
1489 |
> |
} |
1490 |
> |
|
1491 |
> |
/* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1492 |
> |
based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1493 |
> |
where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1494 |
> |
V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1495 |
> |
*/ |
1496 |
> |
void SimInfo::getGyrationalVolume(RealType &volume){ |
1497 |
> |
Mat3x3d intTensor; |
1498 |
> |
RealType det; |
1499 |
> |
Vector3d dummyAngMom; |
1500 |
> |
RealType sysconstants; |
1501 |
> |
RealType geomCnst; |
1502 |
> |
|
1503 |
> |
geomCnst = 3.0/2.0; |
1504 |
> |
/* Get the inertial tensor and angular momentum for free*/ |
1505 |
> |
getInertiaTensor(intTensor,dummyAngMom); |
1506 |
> |
|
1507 |
> |
det = intTensor.determinant(); |
1508 |
> |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1509 |
> |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1510 |
> |
return; |
1511 |
> |
} |
1512 |
> |
|
1513 |
> |
void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1514 |
> |
Mat3x3d intTensor; |
1515 |
> |
Vector3d dummyAngMom; |
1516 |
> |
RealType sysconstants; |
1517 |
> |
RealType geomCnst; |
1518 |
> |
|
1519 |
> |
geomCnst = 3.0/2.0; |
1520 |
> |
/* Get the inertial tensor and angular momentum for free*/ |
1521 |
> |
getInertiaTensor(intTensor,dummyAngMom); |
1522 |
> |
|
1523 |
> |
detI = intTensor.determinant(); |
1524 |
> |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1525 |
> |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1526 |
> |
return; |
1527 |
> |
} |
1528 |
> |
/* |
1529 |
> |
void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) { |
1530 |
> |
assert( v.size() == nAtoms_ + nRigidBodies_); |
1531 |
> |
sdByGlobalIndex_ = v; |
1532 |
> |
} |
1533 |
> |
|
1534 |
> |
StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
1535 |
> |
//assert(index < nAtoms_ + nRigidBodies_); |
1536 |
> |
return sdByGlobalIndex_.at(index); |
1537 |
> |
} |
1538 |
> |
*/ |
1539 |
|
}//end namespace oopse |
1540 |
|
|