ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 749 by tim, Wed Nov 16 23:10:02 2005 UTC vs.
Revision 1103 by chuckv, Fri Dec 29 20:21:53 2006 UTC

# Line 53 | Line 53
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57   #include "UseTheForce/fCutoffPolicy.h"
58   #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59   #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60   #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61   #include "UseTheForce/doForces_interface.h"
62 + #include "UseTheForce/DarkSide/neighborLists_interface.h"
63   #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 #include "UseTheForce/notifyCutoffs_interface.h"
64   #include "UseTheForce/DarkSide/switcheroo_interface.h"
65   #include "utils/MemoryUtils.hpp"
66   #include "utils/simError.h"
67   #include "selection/SelectionManager.hpp"
68 + #include "io/ForceFieldOptions.hpp"
69 + #include "UseTheForce/ForceField.hpp"
70  
71 +
72   #ifdef IS_MPI
73   #include "UseTheForce/mpiComponentPlan.h"
74   #include "UseTheForce/DarkSide/simParallel_interface.h"
# Line 81 | Line 85 | namespace oopse {
85      return result;
86    }
87    
88 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
89 <                   ForceField* ff, Globals* simParams) :
90 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
87 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
88 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
89 >    forceField_(ff), simParams_(simParams),
90 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
94      nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
95 <    sman_(NULL), fortranInitialized_(false) {
95 >    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) {
96  
94            
95      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
97        MoleculeStamp* molStamp;
98        int nMolWithSameStamp;
99        int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
# Line 100 | Line 101 | namespace oopse {
101        CutoffGroupStamp* cgStamp;    
102        RigidBodyStamp* rbStamp;
103        int nRigidAtoms = 0;
104 <    
105 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
106 <        molStamp = i->first;
107 <        nMolWithSameStamp = i->second;
104 >      std::vector<Component*> components = simParams->getComponents();
105 >      
106 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
107 >        molStamp = (*i)->getMoleculeStamp();
108 >        nMolWithSameStamp = (*i)->getNMol();
109          
110          addMoleculeStamp(molStamp, nMolWithSameStamp);
111  
112          //calculate atoms in molecules
113          nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
114  
113
115          //calculate atoms in cutoff groups
116          int nAtomsInGroups = 0;
117          int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
118          
119          for (int j=0; j < nCutoffGroupsInStamp; j++) {
120 <          cgStamp = molStamp->getCutoffGroup(j);
120 >          cgStamp = molStamp->getCutoffGroupStamp(j);
121            nAtomsInGroups += cgStamp->getNMembers();
122          }
123  
# Line 129 | Line 130 | namespace oopse {
130          int nRigidBodiesInStamp = molStamp->getNRigidBodies();
131          
132          for (int j=0; j < nRigidBodiesInStamp; j++) {
133 <          rbStamp = molStamp->getRigidBody(j);
133 >          rbStamp = molStamp->getRigidBodyStamp(j);
134            nAtomsInRigidBodies += rbStamp->getNMembers();
135          }
136  
# Line 168 | Line 169 | namespace oopse {
169      }
170      molecules_.clear();
171        
171    delete stamps_;
172      delete sman_;
173      delete simParams_;
174      delete forceField_;
# Line 275 | Line 275 | namespace oopse {
275            }
276          }
277              
278 <      }//end for (integrableObject)
279 <    }// end for (mol)
278 >      }
279 >    }
280      
281      // n_constraints is local, so subtract them on each processor
282      ndf_local -= nConstraints_;
# Line 293 | Line 293 | namespace oopse {
293  
294    }
295  
296 +  int SimInfo::getFdf() {
297 + #ifdef IS_MPI
298 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
299 + #else
300 +    fdf_ = fdf_local;
301 + #endif
302 +    return fdf_;
303 +  }
304 +    
305    void SimInfo::calcNdfRaw() {
306      int ndfRaw_local;
307  
# Line 593 | Line 602 | namespace oopse {
602      //setup fortran force field
603      /** @deprecate */    
604      int isError = 0;
605 +    
606 +    setupCutoff();
607      
608      setupElectrostaticSummationMethod( isError );
609      setupSwitchingFunction();
610 +    setupAccumulateBoxDipole();
611  
612      if(isError){
613        sprintf( painCave.errMsg,
# Line 603 | Line 615 | namespace oopse {
615        painCave.isFatal = 1;
616        simError();
617      }
606  
607    
608    setupCutoff();
618  
619      calcNdf();
620      calcNdfRaw();
# Line 655 | Line 664 | namespace oopse {
664      int usePBC = simParams_->getUsePeriodicBoundaryConditions();
665      int useRF;
666      int useSF;
667 +    int useSP;
668 +    int useBoxDipole;
669      std::string myMethod;
670  
671      // set the useRF logical
672      useRF = 0;
673      useSF = 0;
674 +    useSP = 0;
675  
676  
677      if (simParams_->haveElectrostaticSummationMethod()) {
678        std::string myMethod = simParams_->getElectrostaticSummationMethod();
679        toUpper(myMethod);
680 <      if (myMethod == "REACTION_FIELD") {
681 <        useRF=1;
682 <      } else {
683 <        if (myMethod == "SHIFTED_FORCE") {
684 <          useSF = 1;
685 <        }
680 >      if (myMethod == "REACTION_FIELD"){
681 >        useRF = 1;
682 >      } else if (myMethod == "SHIFTED_FORCE"){
683 >        useSF = 1;
684 >      } else if (myMethod == "SHIFTED_POTENTIAL"){
685 >        useSP = 1;
686        }
687      }
688 +    
689 +    if (simParams_->haveAccumulateBoxDipole())
690 +      if (simParams_->getAccumulateBoxDipole())
691 +        useBoxDipole = 1;
692  
693      //loop over all of the atom types
694      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
# Line 743 | Line 759 | namespace oopse {
759      MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
760  
761      temp = useSF;
762 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
762 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
763  
764 +    temp = useSP;
765 +    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
766 +
767 +    temp = useBoxDipole;
768 +    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
769 +
770   #endif
771  
772      fInfo_.SIM_uses_PBC = usePBC;    
# Line 762 | Line 784 | namespace oopse {
784      fInfo_.SIM_uses_FLARB = useFLARB;
785      fInfo_.SIM_uses_RF = useRF;
786      fInfo_.SIM_uses_SF = useSF;
787 <
788 <    if( myMethod == "REACTION_FIELD") {
767 <      
768 <      if (simParams_->haveDielectric()) {
769 <        fInfo_.dielect = simParams_->getDielectric();
770 <      } else {
771 <        sprintf(painCave.errMsg,
772 <                "SimSetup Error: No Dielectric constant was set.\n"
773 <                "\tYou are trying to use Reaction Field without"
774 <                "\tsetting a dielectric constant!\n");
775 <        painCave.isFatal = 1;
776 <        simError();
777 <      }      
778 <    }
779 <
787 >    fInfo_.SIM_uses_SP = useSP;
788 >    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
789    }
790  
791    void SimInfo::setupFortranSim() {
# Line 793 | Line 802 | namespace oopse {
802      }
803  
804      //calculate mass ratio of cutoff group
805 <    std::vector<double> mfact;
805 >    std::vector<RealType> mfact;
806      SimInfo::MoleculeIterator mi;
807      Molecule* mol;
808      Molecule::CutoffGroupIterator ci;
809      CutoffGroup* cg;
810      Molecule::AtomIterator ai;
811      Atom* atom;
812 <    double totalMass;
812 >    RealType totalMass;
813  
814      //to avoid memory reallocation, reserve enough space for mfact
815      mfact.reserve(getNCutoffGroups());
# Line 861 | Line 870 | namespace oopse {
870               "succesfully sent the simulation information to fortran.\n");
871      MPIcheckPoint();
872   #endif // is_mpi
873 +
874 +    // Setup number of neighbors in neighbor list if present
875 +    if (simParams_->haveNeighborListNeighbors()) {
876 +      setNeighbors(simParams_->getNeighborListNeighbors());
877 +    }
878 +  
879 +
880    }
881  
882  
# Line 923 | Line 939 | namespace oopse {
939  
940   #endif
941  
942 <  double SimInfo::calcMaxCutoffRadius() {
942 >  void SimInfo::setupCutoff() {          
943 >    
944 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
945  
946 +    // Check the cutoff policy
947 +    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
948  
949 <    std::set<AtomType*> atomTypes;
950 <    std::set<AtomType*>::iterator i;
951 <    std::vector<double> cutoffRadius;
952 <
953 <    //get the unique atom types
934 <    atomTypes = getUniqueAtomTypes();
935 <
936 <    //query the max cutoff radius among these atom types
937 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
938 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
949 >    std::string myPolicy;
950 >    if (forceFieldOptions_.haveCutoffPolicy()){
951 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
952 >    }else if (simParams_->haveCutoffPolicy()) {
953 >      myPolicy = simParams_->getCutoffPolicy();
954      }
955  
956 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
942 < #ifdef IS_MPI
943 <    //pick the max cutoff radius among the processors
944 < #endif
945 <
946 <    return maxCutoffRadius;
947 <  }
948 <
949 <  void SimInfo::getCutoff(double& rcut, double& rsw) {
950 <    
951 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
952 <        
953 <      if (!simParams_->haveCutoffRadius()){
954 <        sprintf(painCave.errMsg,
955 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
956 <                "\tOOPSE will use a default value of 15.0 angstroms"
957 <                "\tfor the cutoffRadius.\n");
958 <        painCave.isFatal = 0;
959 <        simError();
960 <        rcut = 15.0;
961 <      } else{
962 <        rcut = simParams_->getCutoffRadius();
963 <      }
964 <
965 <      if (!simParams_->haveSwitchingRadius()){
966 <        sprintf(painCave.errMsg,
967 <                "SimCreator Warning: No value was set for switchingRadius.\n"
968 <                "\tOOPSE will use a default value of\n"
969 <                "\t0.85 * cutoffRadius for the switchingRadius\n");
970 <        painCave.isFatal = 0;
971 <        simError();
972 <        rsw = 0.85 * rcut;
973 <      } else{
974 <        rsw = simParams_->getSwitchingRadius();
975 <      }
976 <
977 <    } else {
978 <      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
979 <      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
980 <        
981 <      if (simParams_->haveCutoffRadius()) {
982 <        rcut = simParams_->getCutoffRadius();
983 <      } else {
984 <        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
985 <        rcut = calcMaxCutoffRadius();
986 <      }
987 <
988 <      if (simParams_->haveSwitchingRadius()) {
989 <        rsw  = simParams_->getSwitchingRadius();
990 <      } else {
991 <        rsw = rcut;
992 <      }
993 <    
994 <    }
995 <  }
996 <
997 <  void SimInfo::setupCutoff() {    
998 <    getCutoff(rcut_, rsw_);    
999 <    double rnblist = rcut_ + 1; // skin of neighbor list
1000 <
1001 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
1002 <    
1003 <    int cp =  TRADITIONAL_CUTOFF_POLICY;
1004 <    if (simParams_->haveCutoffPolicy()) {
1005 <      std::string myPolicy = simParams_->getCutoffPolicy();
956 >    if (!myPolicy.empty()){
957        toUpper(myPolicy);
958        if (myPolicy == "MIX") {
959          cp = MIX_CUTOFF_POLICY;
# Line 1021 | Line 972 | namespace oopse {
972            }    
973          }          
974        }
975 <    }
975 >    }          
976 >    notifyFortranCutoffPolicy(&cp);
977  
978 <
978 >    // Check the Skin Thickness for neighborlists
979 >    RealType skin;
980      if (simParams_->haveSkinThickness()) {
981 <      double skinThickness = simParams_->getSkinThickness();
982 <    }
981 >      skin = simParams_->getSkinThickness();
982 >      notifyFortranSkinThickness(&skin);
983 >    }            
984 >        
985 >    // Check if the cutoff was set explicitly:
986 >    if (simParams_->haveCutoffRadius()) {
987 >      rcut_ = simParams_->getCutoffRadius();
988 >      if (simParams_->haveSwitchingRadius()) {
989 >        rsw_  = simParams_->getSwitchingRadius();
990 >      } else {
991 >        if (fInfo_.SIM_uses_Charges |
992 >            fInfo_.SIM_uses_Dipoles |
993 >            fInfo_.SIM_uses_RF) {
994 >          
995 >          rsw_ = 0.85 * rcut_;
996 >          sprintf(painCave.errMsg,
997 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
998 >                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
999 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1000 >        painCave.isFatal = 0;
1001 >        simError();
1002 >        } else {
1003 >          rsw_ = rcut_;
1004 >          sprintf(painCave.errMsg,
1005 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1006 >                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1007 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1008 >          painCave.isFatal = 0;
1009 >          simError();
1010 >        }
1011 >      }
1012 >      
1013 >      notifyFortranCutoffs(&rcut_, &rsw_);
1014 >      
1015 >    } else {
1016 >      
1017 >      // For electrostatic atoms, we'll assume a large safe value:
1018 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1019 >        sprintf(painCave.errMsg,
1020 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1021 >                "\tOOPSE will use a default value of 15.0 angstroms"
1022 >                "\tfor the cutoffRadius.\n");
1023 >        painCave.isFatal = 0;
1024 >        simError();
1025 >        rcut_ = 15.0;
1026 >      
1027 >        if (simParams_->haveElectrostaticSummationMethod()) {
1028 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1029 >          toUpper(myMethod);
1030 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1031 >            if (simParams_->haveSwitchingRadius()){
1032 >              sprintf(painCave.errMsg,
1033 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
1034 >                      "\teven though the electrostaticSummationMethod was\n"
1035 >                      "\tset to %s\n", myMethod.c_str());
1036 >              painCave.isFatal = 1;
1037 >              simError();            
1038 >            }
1039 >          }
1040 >        }
1041 >      
1042 >        if (simParams_->haveSwitchingRadius()){
1043 >          rsw_ = simParams_->getSwitchingRadius();
1044 >        } else {        
1045 >          sprintf(painCave.errMsg,
1046 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1047 >                  "\tOOPSE will use a default value of\n"
1048 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1049 >          painCave.isFatal = 0;
1050 >          simError();
1051 >          rsw_ = 0.85 * rcut_;
1052 >        }
1053 >        notifyFortranCutoffs(&rcut_, &rsw_);
1054 >      } else {
1055 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1056 >        // We'll punt and let fortran figure out the cutoffs later.
1057 >        
1058 >        notifyFortranYouAreOnYourOwn();
1059  
1060 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
1061 <    // also send cutoff notification to electrostatics
1033 <    setElectrostaticCutoffRadius(&rcut_, &rsw_);
1060 >      }
1061 >    }
1062    }
1063  
1064    void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
# Line 1038 | Line 1066 | namespace oopse {
1066      int errorOut;
1067      int esm =  NONE;
1068      int sm = UNDAMPED;
1069 <    double alphaVal;
1070 <    double dielectric;
1071 <
1069 >    RealType alphaVal;
1070 >    RealType dielectric;
1071 >    
1072      errorOut = isError;
1045    alphaVal = simParams_->getDampingAlpha();
1046    dielectric = simParams_->getDielectric();
1073  
1074      if (simParams_->haveElectrostaticSummationMethod()) {
1075        std::string myMethod = simParams_->getElectrostaticSummationMethod();
# Line 1060 | Line 1086 | namespace oopse {
1086              if (myMethod == "SHIFTED_FORCE") {            
1087                esm = SHIFTED_FORCE;
1088              } else {
1089 <              if (myMethod == "REACTION_FIELD") {            
1089 >              if (myMethod == "REACTION_FIELD") {
1090                  esm = REACTION_FIELD;
1091 +                dielectric = simParams_->getDielectric();
1092 +                if (!simParams_->haveDielectric()) {
1093 +                  // throw warning
1094 +                  sprintf( painCave.errMsg,
1095 +                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1096 +                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1097 +                  painCave.isFatal = 0;
1098 +                  simError();
1099 +                }
1100                } else {
1101                  // throw error        
1102                  sprintf( painCave.errMsg,
1103 <                         "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"shifted_potential\", \"shifted_force\", or \"reaction_field\".", myMethod.c_str() );
1103 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1104 >                         "\t(Input file specified %s .)\n"
1105 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1106 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1107 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1108                  painCave.isFatal = 1;
1109                  simError();
1110                }    
# Line 1084 | Line 1123 | namespace oopse {
1123          if (myScreen == "DAMPED") {
1124            sm = DAMPED;
1125            if (!simParams_->haveDampingAlpha()) {
1126 <            //throw error
1126 >            // first set a cutoff dependent alpha value
1127 >            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1128 >            alphaVal = 0.5125 - rcut_* 0.025;
1129 >            // for values rcut > 20.5, alpha is zero
1130 >            if (alphaVal < 0) alphaVal = 0;
1131 >
1132 >            // throw warning
1133              sprintf( painCave.errMsg,
1134 <                     "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used.", alphaVal);
1134 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1135 >                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1136              painCave.isFatal = 0;
1137              simError();
1138 +          } else {
1139 +            alphaVal = simParams_->getDampingAlpha();
1140            }
1141 +          
1142          } else {
1143            // throw error        
1144            sprintf( painCave.errMsg,
1145 <                   "SimInfo error: Unknown electrostaticScreeningMethod. (Input file specified %s .)\n\telectrostaticScreeningMethod must be one of: \"undamped\" or \"damped\".", myScreen.c_str() );
1145 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1146 >                   "\t(Input file specified %s .)\n"
1147 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1148 >                   "or \"damped\".\n", myScreen.c_str() );
1149            painCave.isFatal = 1;
1150            simError();
1151          }
# Line 1102 | Line 1154 | namespace oopse {
1154      
1155      // let's pass some summation method variables to fortran
1156      setElectrostaticSummationMethod( &esm );
1157 +    setFortranElectrostaticMethod( &esm );
1158      setScreeningMethod( &sm );
1159      setDampingAlpha( &alphaVal );
1160      setReactionFieldDielectric( &dielectric );
1161 <    initFortranFF( &esm, &errorOut );
1161 >    initFortranFF( &errorOut );
1162    }
1163  
1164    void SimInfo::setupSwitchingFunction() {    
# Line 1134 | Line 1187 | namespace oopse {
1187  
1188    }
1189  
1190 +  void SimInfo::setupAccumulateBoxDipole() {    
1191 +
1192 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1193 +    if ( simParams_->haveAccumulateBoxDipole() )
1194 +      if ( simParams_->getAccumulateBoxDipole() ) {
1195 +        setAccumulateBoxDipole();
1196 +        calcBoxDipole_ = true;
1197 +      }
1198 +
1199 +  }
1200 +
1201    void SimInfo::addProperty(GenericData* genData) {
1202      properties_.addProperty(genData);  
1203    }
# Line 1190 | Line 1254 | namespace oopse {
1254      Molecule* mol;
1255  
1256      Vector3d comVel(0.0);
1257 <    double totalMass = 0.0;
1257 >    RealType totalMass = 0.0;
1258      
1259  
1260      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1261 <      double mass = mol->getMass();
1261 >      RealType mass = mol->getMass();
1262        totalMass += mass;
1263        comVel += mass * mol->getComVel();
1264      }  
1265  
1266   #ifdef IS_MPI
1267 <    double tmpMass = totalMass;
1267 >    RealType tmpMass = totalMass;
1268      Vector3d tmpComVel(comVel);    
1269 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1270 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1269 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1270 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1271   #endif
1272  
1273      comVel /= totalMass;
# Line 1216 | Line 1280 | namespace oopse {
1280      Molecule* mol;
1281  
1282      Vector3d com(0.0);
1283 <    double totalMass = 0.0;
1283 >    RealType totalMass = 0.0;
1284      
1285      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1286 <      double mass = mol->getMass();
1286 >      RealType mass = mol->getMass();
1287        totalMass += mass;
1288        com += mass * mol->getCom();
1289      }  
1290  
1291   #ifdef IS_MPI
1292 <    double tmpMass = totalMass;
1292 >    RealType tmpMass = totalMass;
1293      Vector3d tmpCom(com);    
1294 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1295 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1294 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1295 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1296   #endif
1297  
1298      com /= totalMass;
# Line 1252 | Line 1316 | namespace oopse {
1316        Molecule* mol;
1317        
1318      
1319 <      double totalMass = 0.0;
1319 >      RealType totalMass = 0.0;
1320      
1321  
1322        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1323 <         double mass = mol->getMass();
1323 >         RealType mass = mol->getMass();
1324           totalMass += mass;
1325           com += mass * mol->getCom();
1326           comVel += mass * mol->getComVel();          
1327        }  
1328        
1329   #ifdef IS_MPI
1330 <      double tmpMass = totalMass;
1330 >      RealType tmpMass = totalMass;
1331        Vector3d tmpCom(com);  
1332        Vector3d tmpComVel(comVel);
1333 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1334 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1335 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1333 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1334 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1335 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1336   #endif
1337        
1338        com /= totalMass;
# Line 1287 | Line 1351 | namespace oopse {
1351     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1352        
1353  
1354 <      double xx = 0.0;
1355 <      double yy = 0.0;
1356 <      double zz = 0.0;
1357 <      double xy = 0.0;
1358 <      double xz = 0.0;
1359 <      double yz = 0.0;
1354 >      RealType xx = 0.0;
1355 >      RealType yy = 0.0;
1356 >      RealType zz = 0.0;
1357 >      RealType xy = 0.0;
1358 >      RealType xz = 0.0;
1359 >      RealType yz = 0.0;
1360        Vector3d com(0.0);
1361        Vector3d comVel(0.0);
1362        
# Line 1304 | Line 1368 | namespace oopse {
1368        Vector3d thisq(0.0);
1369        Vector3d thisv(0.0);
1370  
1371 <      double thisMass = 0.0;
1371 >      RealType thisMass = 0.0;
1372      
1373        
1374        
# Line 1342 | Line 1406 | namespace oopse {
1406   #ifdef IS_MPI
1407        Mat3x3d tmpI(inertiaTensor);
1408        Vector3d tmpAngMom;
1409 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1410 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1409 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1410 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1411   #endif
1412                
1413        return;
# Line 1364 | Line 1428 | namespace oopse {
1428        Vector3d thisr(0.0);
1429        Vector3d thisp(0.0);
1430        
1431 <      double thisMass;
1431 >      RealType thisMass;
1432        
1433        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1434          thisMass = mol->getMass();
# Line 1377 | Line 1441 | namespace oopse {
1441        
1442   #ifdef IS_MPI
1443        Vector3d tmpAngMom;
1444 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1444 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1445   #endif
1446        
1447        return angularMomentum;
1448     }
1449    
1450 <  
1450 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1451 >    return IOIndexToIntegrableObject.at(index);
1452 >  }
1453 >  
1454 >  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1455 >    IOIndexToIntegrableObject= v;
1456 >  }
1457 >
1458 >  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1459 >     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1460 >     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1461 >     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1462 >  */
1463 >  void SimInfo::getGyrationalVolume(RealType &volume){
1464 >    Mat3x3d intTensor;
1465 >    RealType det;
1466 >    Vector3d dummyAngMom;
1467 >    RealType sysconstants;
1468 >    RealType geomCnst;
1469 >
1470 >    geomCnst = 3.0/2.0;
1471 >    /* Get the inertial tensor and angular momentum for free*/
1472 >    getInertiaTensor(intTensor,dummyAngMom);
1473 >    
1474 >    det = intTensor.determinant();
1475 >    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1476 >    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1477 >    return;
1478 >  }
1479 >
1480 >  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1481 >    Mat3x3d intTensor;
1482 >    Vector3d dummyAngMom;
1483 >    RealType sysconstants;
1484 >    RealType geomCnst;
1485 >
1486 >    geomCnst = 3.0/2.0;
1487 >    /* Get the inertial tensor and angular momentum for free*/
1488 >    getInertiaTensor(intTensor,dummyAngMom);
1489 >    
1490 >    detI = intTensor.determinant();
1491 >    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1492 >    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1493 >    return;
1494 >  }
1495 > /*
1496 >   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1497 >      assert( v.size() == nAtoms_ + nRigidBodies_);
1498 >      sdByGlobalIndex_ = v;
1499 >    }
1500 >
1501 >    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1502 >      //assert(index < nAtoms_ + nRigidBodies_);
1503 >      return sdByGlobalIndex_.at(index);
1504 >    }  
1505 > */  
1506   }//end namespace oopse
1507  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines