ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 413 by tim, Wed Mar 9 17:30:29 2005 UTC vs.
Revision 1287 by gezelter, Wed Sep 10 18:11:32 2008 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57 + #include "UseTheForce/fCutoffPolicy.h"
58 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 + #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61   #include "UseTheForce/doForces_interface.h"
62 < #include "UseTheForce/notifyCutoffs_interface.h"
62 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
65   #include "utils/MemoryUtils.hpp"
66   #include "utils/simError.h"
67   #include "selection/SelectionManager.hpp"
68 + #include "io/ForceFieldOptions.hpp"
69 + #include "UseTheForce/ForceField.hpp"
70  
71 +
72   #ifdef IS_MPI
73   #include "UseTheForce/mpiComponentPlan.h"
74   #include "UseTheForce/DarkSide/simParallel_interface.h"
75   #endif
76  
77   namespace oopse {
78 +  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 +    std::map<int, std::set<int> >::iterator i = container.find(index);
80 +    std::set<int> result;
81 +    if (i != container.end()) {
82 +        result = i->second;
83 +    }
84  
85 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
86 <                                ForceField* ff, Globals* simParams) :
87 <                                forceField_(ff), simParams_(simParams),
88 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
89 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
90 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
91 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
92 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
93 <                                sman_(NULL), fortranInitialized_(false) {
85 >    return result;
86 >  }
87 >  
88 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
89 >    forceField_(ff), simParams_(simParams),
90 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
94 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
95 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
96 >    calcBoxDipole_(false), useAtomicVirial_(true) {
97  
98 <            
99 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
100 <    MoleculeStamp* molStamp;
101 <    int nMolWithSameStamp;
102 <    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
103 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
104 <    CutoffGroupStamp* cgStamp;    
105 <    RigidBodyStamp* rbStamp;
106 <    int nRigidAtoms = 0;
107 <    
108 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
109 <        molStamp = i->first;
110 <        nMolWithSameStamp = i->second;
98 >
99 >      MoleculeStamp* molStamp;
100 >      int nMolWithSameStamp;
101 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
102 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
103 >      CutoffGroupStamp* cgStamp;    
104 >      RigidBodyStamp* rbStamp;
105 >      int nRigidAtoms = 0;
106 >
107 >      std::vector<Component*> components = simParams->getComponents();
108 >      
109 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
110 >        molStamp = (*i)->getMoleculeStamp();
111 >        nMolWithSameStamp = (*i)->getNMol();
112          
113          addMoleculeStamp(molStamp, nMolWithSameStamp);
114  
115          //calculate atoms in molecules
116          nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
117  
97
118          //calculate atoms in cutoff groups
119          int nAtomsInGroups = 0;
120          int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
121          
122          for (int j=0; j < nCutoffGroupsInStamp; j++) {
123 <            cgStamp = molStamp->getCutoffGroup(j);
124 <            nAtomsInGroups += cgStamp->getNMembers();
123 >          cgStamp = molStamp->getCutoffGroupStamp(j);
124 >          nAtomsInGroups += cgStamp->getNMembers();
125          }
126  
127          nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
128 +
129          nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
130  
131          //calculate atoms in rigid bodies
# Line 112 | Line 133 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
133          int nRigidBodiesInStamp = molStamp->getNRigidBodies();
134          
135          for (int j=0; j < nRigidBodiesInStamp; j++) {
136 <            rbStamp = molStamp->getRigidBody(j);
137 <            nAtomsInRigidBodies += rbStamp->getNMembers();
136 >          rbStamp = molStamp->getRigidBodyStamp(j);
137 >          nAtomsInRigidBodies += rbStamp->getNMembers();
138          }
139  
140          nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
141          nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
142          
143 <    }
143 >      }
144  
145 <    //every free atom (atom does not belong to cutoff groups) is a cutoff group
146 <    //therefore the total number of cutoff groups in the system is equal to
147 <    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
148 <    //file plus the number of cutoff groups defined in meta-data file
149 <    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
145 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
146 >      //group therefore the total number of cutoff groups in the system is
147 >      //equal to the total number of atoms minus number of atoms belong to
148 >      //cutoff group defined in meta-data file plus the number of cutoff
149 >      //groups defined in meta-data file
150 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
151  
152 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
153 <    //therefore the total number of  integrable objects in the system is equal to
154 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
155 <    //file plus the number of  rigid bodies defined in meta-data file
156 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
152 >      //every free atom (atom does not belong to rigid bodies) is an
153 >      //integrable object therefore the total number of integrable objects
154 >      //in the system is equal to the total number of atoms minus number of
155 >      //atoms belong to rigid body defined in meta-data file plus the number
156 >      //of rigid bodies defined in meta-data file
157 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
158 >                                                + nGlobalRigidBodies_;
159 >  
160 >      nGlobalMols_ = molStampIds_.size();
161 >      molToProcMap_.resize(nGlobalMols_);
162 >    }
163  
164 <    nGlobalMols_ = molStampIds_.size();
137 <
138 < #ifdef IS_MPI    
139 <    molToProcMap_.resize(nGlobalMols_);
140 < #endif
141 <
142 < }
143 <
144 < SimInfo::~SimInfo() {
164 >  SimInfo::~SimInfo() {
165      std::map<int, Molecule*>::iterator i;
166      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
167 <        delete i->second;
167 >      delete i->second;
168      }
169      molecules_.clear();
170 <    
151 <    MemoryUtils::deletePointers(moleculeStamps_);
152 <    
170 >      
171      delete sman_;
172      delete simParams_;
173      delete forceField_;
174 < }
174 >  }
175  
176 < int SimInfo::getNGlobalConstraints() {
176 >  int SimInfo::getNGlobalConstraints() {
177      int nGlobalConstraints;
178   #ifdef IS_MPI
179      MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
# Line 164 | Line 182 | int SimInfo::getNGlobalConstraints() {
182      nGlobalConstraints =  nConstraints_;
183   #endif
184      return nGlobalConstraints;
185 < }
185 >  }
186  
187 < bool SimInfo::addMolecule(Molecule* mol) {
187 >  bool SimInfo::addMolecule(Molecule* mol) {
188      MoleculeIterator i;
189  
190      i = molecules_.find(mol->getGlobalIndex());
191      if (i == molecules_.end() ) {
192  
193 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
193 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
194          
195 <        nAtoms_ += mol->getNAtoms();
196 <        nBonds_ += mol->getNBonds();
197 <        nBends_ += mol->getNBends();
198 <        nTorsions_ += mol->getNTorsions();
199 <        nRigidBodies_ += mol->getNRigidBodies();
200 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
201 <        nCutoffGroups_ += mol->getNCutoffGroups();
202 <        nConstraints_ += mol->getNConstraintPairs();
195 >      nAtoms_ += mol->getNAtoms();
196 >      nBonds_ += mol->getNBonds();
197 >      nBends_ += mol->getNBends();
198 >      nTorsions_ += mol->getNTorsions();
199 >      nInversions_ += mol->getNInversions();
200 >      nRigidBodies_ += mol->getNRigidBodies();
201 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
202 >      nCutoffGroups_ += mol->getNCutoffGroups();
203 >      nConstraints_ += mol->getNConstraintPairs();
204  
205 <        addExcludePairs(mol);
206 <        
207 <        return true;
205 >      addInteractionPairs(mol);
206 >  
207 >      return true;
208      } else {
209 <        return false;
209 >      return false;
210      }
211 < }
211 >  }
212  
213 < bool SimInfo::removeMolecule(Molecule* mol) {
213 >  bool SimInfo::removeMolecule(Molecule* mol) {
214      MoleculeIterator i;
215      i = molecules_.find(mol->getGlobalIndex());
216  
217      if (i != molecules_.end() ) {
218  
219 <        assert(mol == i->second);
219 >      assert(mol == i->second);
220          
221 <        nAtoms_ -= mol->getNAtoms();
222 <        nBonds_ -= mol->getNBonds();
223 <        nBends_ -= mol->getNBends();
224 <        nTorsions_ -= mol->getNTorsions();
225 <        nRigidBodies_ -= mol->getNRigidBodies();
226 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
227 <        nCutoffGroups_ -= mol->getNCutoffGroups();
228 <        nConstraints_ -= mol->getNConstraintPairs();
221 >      nAtoms_ -= mol->getNAtoms();
222 >      nBonds_ -= mol->getNBonds();
223 >      nBends_ -= mol->getNBends();
224 >      nTorsions_ -= mol->getNTorsions();
225 >      nInversions_ -= mol->getNInversions();
226 >      nRigidBodies_ -= mol->getNRigidBodies();
227 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
228 >      nCutoffGroups_ -= mol->getNCutoffGroups();
229 >      nConstraints_ -= mol->getNConstraintPairs();
230  
231 <        removeExcludePairs(mol);
232 <        molecules_.erase(mol->getGlobalIndex());
231 >      removeInteractionPairs(mol);
232 >      molecules_.erase(mol->getGlobalIndex());
233  
234 <        delete mol;
234 >      delete mol;
235          
236 <        return true;
236 >      return true;
237      } else {
238 <        return false;
238 >      return false;
239      }
240  
241  
242 < }    
242 >  }    
243  
244          
245 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
245 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
246      i = molecules_.begin();
247      return i == molecules_.end() ? NULL : i->second;
248 < }    
248 >  }    
249  
250 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
250 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
251      ++i;
252      return i == molecules_.end() ? NULL : i->second;    
253 < }
253 >  }
254  
255  
256 < void SimInfo::calcNdf() {
256 >  void SimInfo::calcNdf() {
257      int ndf_local;
258      MoleculeIterator i;
259      std::vector<StuntDouble*>::iterator j;
# Line 243 | Line 263 | void SimInfo::calcNdf() {
263      ndf_local = 0;
264      
265      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
266 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
267 <               integrableObject = mol->nextIntegrableObject(j)) {
266 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
267 >           integrableObject = mol->nextIntegrableObject(j)) {
268  
269 <            ndf_local += 3;
269 >        ndf_local += 3;
270  
271 <            if (integrableObject->isDirectional()) {
272 <                if (integrableObject->isLinear()) {
273 <                    ndf_local += 2;
274 <                } else {
275 <                    ndf_local += 3;
276 <                }
277 <            }
271 >        if (integrableObject->isDirectional()) {
272 >          if (integrableObject->isLinear()) {
273 >            ndf_local += 2;
274 >          } else {
275 >            ndf_local += 3;
276 >          }
277 >        }
278              
279 <        }//end for (integrableObject)
280 <    }// end for (mol)
279 >      }
280 >    }
281      
282      // n_constraints is local, so subtract them on each processor
283      ndf_local -= nConstraints_;
# Line 272 | Line 292 | void SimInfo::calcNdf() {
292      // entire system:
293      ndf_ = ndf_ - 3 - nZconstraint_;
294  
295 < }
295 >  }
296  
297 < void SimInfo::calcNdfRaw() {
297 >  int SimInfo::getFdf() {
298 > #ifdef IS_MPI
299 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
300 > #else
301 >    fdf_ = fdf_local;
302 > #endif
303 >    return fdf_;
304 >  }
305 >    
306 >  void SimInfo::calcNdfRaw() {
307      int ndfRaw_local;
308  
309      MoleculeIterator i;
# Line 286 | Line 315 | void SimInfo::calcNdfRaw() {
315      ndfRaw_local = 0;
316      
317      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
318 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
319 <               integrableObject = mol->nextIntegrableObject(j)) {
318 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
319 >           integrableObject = mol->nextIntegrableObject(j)) {
320  
321 <            ndfRaw_local += 3;
321 >        ndfRaw_local += 3;
322  
323 <            if (integrableObject->isDirectional()) {
324 <                if (integrableObject->isLinear()) {
325 <                    ndfRaw_local += 2;
326 <                } else {
327 <                    ndfRaw_local += 3;
328 <                }
329 <            }
323 >        if (integrableObject->isDirectional()) {
324 >          if (integrableObject->isLinear()) {
325 >            ndfRaw_local += 2;
326 >          } else {
327 >            ndfRaw_local += 3;
328 >          }
329 >        }
330              
331 <        }
331 >      }
332      }
333      
334   #ifdef IS_MPI
# Line 307 | Line 336 | void SimInfo::calcNdfRaw() {
336   #else
337      ndfRaw_ = ndfRaw_local;
338   #endif
339 < }
339 >  }
340  
341 < void SimInfo::calcNdfTrans() {
341 >  void SimInfo::calcNdfTrans() {
342      int ndfTrans_local;
343  
344      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 323 | Line 352 | void SimInfo::calcNdfTrans() {
352  
353      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
354  
355 < }
355 >  }
356  
357 < void SimInfo::addExcludePairs(Molecule* mol) {
357 >  void SimInfo::addInteractionPairs(Molecule* mol) {
358 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
359      std::vector<Bond*>::iterator bondIter;
360      std::vector<Bend*>::iterator bendIter;
361      std::vector<Torsion*>::iterator torsionIter;
362 +    std::vector<Inversion*>::iterator inversionIter;
363      Bond* bond;
364      Bend* bend;
365      Torsion* torsion;
366 +    Inversion* inversion;
367      int a;
368      int b;
369      int c;
370      int d;
371 +
372 +    // atomGroups can be used to add special interaction maps between
373 +    // groups of atoms that are in two separate rigid bodies.
374 +    // However, most site-site interactions between two rigid bodies
375 +    // are probably not special, just the ones between the physically
376 +    // bonded atoms.  Interactions *within* a single rigid body should
377 +    // always be excluded.  These are done at the bottom of this
378 +    // function.
379 +
380 +    std::map<int, std::set<int> > atomGroups;
381 +    Molecule::RigidBodyIterator rbIter;
382 +    RigidBody* rb;
383 +    Molecule::IntegrableObjectIterator ii;
384 +    StuntDouble* integrableObject;
385      
386 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
387 <        a = bond->getAtomA()->getGlobalIndex();
388 <        b = bond->getAtomB()->getGlobalIndex();        
389 <        exclude_.addPair(a, b);
386 >    for (integrableObject = mol->beginIntegrableObject(ii);
387 >         integrableObject != NULL;
388 >         integrableObject = mol->nextIntegrableObject(ii)) {
389 >      
390 >      if (integrableObject->isRigidBody()) {
391 >        rb = static_cast<RigidBody*>(integrableObject);
392 >        std::vector<Atom*> atoms = rb->getAtoms();
393 >        std::set<int> rigidAtoms;
394 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
395 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
396 >        }
397 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
398 >          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
399 >        }      
400 >      } else {
401 >        std::set<int> oneAtomSet;
402 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
403 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
404 >      }
405 >    }  
406 >          
407 >    for (bond= mol->beginBond(bondIter); bond != NULL;
408 >         bond = mol->nextBond(bondIter)) {
409 >
410 >      a = bond->getAtomA()->getGlobalIndex();
411 >      b = bond->getAtomB()->getGlobalIndex();  
412 >    
413 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
414 >        oneTwoInteractions_.addPair(a, b);
415 >      } else {
416 >        excludedInteractions_.addPair(a, b);
417 >      }
418      }
419  
420 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
421 <        a = bend->getAtomA()->getGlobalIndex();
348 <        b = bend->getAtomB()->getGlobalIndex();        
349 <        c = bend->getAtomC()->getGlobalIndex();
420 >    for (bend= mol->beginBend(bendIter); bend != NULL;
421 >         bend = mol->nextBend(bendIter)) {
422  
423 <        exclude_.addPair(a, b);
424 <        exclude_.addPair(a, c);
425 <        exclude_.addPair(b, c);        
423 >      a = bend->getAtomA()->getGlobalIndex();
424 >      b = bend->getAtomB()->getGlobalIndex();        
425 >      c = bend->getAtomC()->getGlobalIndex();
426 >      
427 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
428 >        oneTwoInteractions_.addPair(a, b);      
429 >        oneTwoInteractions_.addPair(b, c);
430 >      } else {
431 >        excludedInteractions_.addPair(a, b);
432 >        excludedInteractions_.addPair(b, c);
433 >      }
434 >
435 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
436 >        oneThreeInteractions_.addPair(a, c);      
437 >      } else {
438 >        excludedInteractions_.addPair(a, c);
439 >      }
440      }
441  
442 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
443 <        a = torsion->getAtomA()->getGlobalIndex();
358 <        b = torsion->getAtomB()->getGlobalIndex();        
359 <        c = torsion->getAtomC()->getGlobalIndex();        
360 <        d = torsion->getAtomD()->getGlobalIndex();        
442 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
443 >         torsion = mol->nextTorsion(torsionIter)) {
444  
445 <        exclude_.addPair(a, b);
446 <        exclude_.addPair(a, c);
447 <        exclude_.addPair(a, d);
448 <        exclude_.addPair(b, c);
449 <        exclude_.addPair(b, d);
450 <        exclude_.addPair(c, d);        
445 >      a = torsion->getAtomA()->getGlobalIndex();
446 >      b = torsion->getAtomB()->getGlobalIndex();        
447 >      c = torsion->getAtomC()->getGlobalIndex();        
448 >      d = torsion->getAtomD()->getGlobalIndex();      
449 >  
450 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
451 >        oneTwoInteractions_.addPair(a, b);      
452 >        oneTwoInteractions_.addPair(b, c);
453 >        oneTwoInteractions_.addPair(c, d);
454 >      } else {
455 >        excludedInteractions_.addPair(a, b);
456 >        excludedInteractions_.addPair(b, c);
457 >        excludedInteractions_.addPair(c, d);
458 >      }
459 >
460 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
461 >        oneThreeInteractions_.addPair(a, c);      
462 >        oneThreeInteractions_.addPair(b, d);      
463 >      } else {
464 >        excludedInteractions_.addPair(a, c);
465 >        excludedInteractions_.addPair(b, d);
466 >      }
467 >
468 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
469 >        oneFourInteractions_.addPair(a, d);      
470 >      } else {
471 >        excludedInteractions_.addPair(a, d);
472 >      }
473      }
474  
475 <    
476 < }
475 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
476 >         inversion = mol->nextInversion(inversionIter)) {
477  
478 < void SimInfo::removeExcludePairs(Molecule* mol) {
478 >      a = inversion->getAtomA()->getGlobalIndex();
479 >      b = inversion->getAtomB()->getGlobalIndex();        
480 >      c = inversion->getAtomC()->getGlobalIndex();        
481 >      d = inversion->getAtomD()->getGlobalIndex();        
482 >
483 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
484 >        oneTwoInteractions_.addPair(a, b);      
485 >        oneTwoInteractions_.addPair(a, c);
486 >        oneTwoInteractions_.addPair(a, d);
487 >      } else {
488 >        excludedInteractions_.addPair(a, b);
489 >        excludedInteractions_.addPair(a, c);
490 >        excludedInteractions_.addPair(a, d);
491 >      }
492 >
493 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
494 >        oneThreeInteractions_.addPair(b, c);    
495 >        oneThreeInteractions_.addPair(b, d);    
496 >        oneThreeInteractions_.addPair(c, d);      
497 >      } else {
498 >        excludedInteractions_.addPair(b, c);
499 >        excludedInteractions_.addPair(b, d);
500 >        excludedInteractions_.addPair(c, d);
501 >      }
502 >    }
503 >
504 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
505 >         rb = mol->nextRigidBody(rbIter)) {
506 >      std::vector<Atom*> atoms = rb->getAtoms();
507 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
508 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
509 >          a = atoms[i]->getGlobalIndex();
510 >          b = atoms[j]->getGlobalIndex();
511 >          excludedInteractions_.addPair(a, b);
512 >        }
513 >      }
514 >    }        
515 >
516 >  }
517 >
518 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
519 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
520      std::vector<Bond*>::iterator bondIter;
521      std::vector<Bend*>::iterator bendIter;
522      std::vector<Torsion*>::iterator torsionIter;
523 +    std::vector<Inversion*>::iterator inversionIter;
524      Bond* bond;
525      Bend* bend;
526      Torsion* torsion;
527 +    Inversion* inversion;
528      int a;
529      int b;
530      int c;
531      int d;
532 +
533 +    std::map<int, std::set<int> > atomGroups;
534 +    Molecule::RigidBodyIterator rbIter;
535 +    RigidBody* rb;
536 +    Molecule::IntegrableObjectIterator ii;
537 +    StuntDouble* integrableObject;
538      
539 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
540 <        a = bond->getAtomA()->getGlobalIndex();
541 <        b = bond->getAtomB()->getGlobalIndex();        
542 <        exclude_.removePair(a, b);
539 >    for (integrableObject = mol->beginIntegrableObject(ii);
540 >         integrableObject != NULL;
541 >         integrableObject = mol->nextIntegrableObject(ii)) {
542 >      
543 >      if (integrableObject->isRigidBody()) {
544 >        rb = static_cast<RigidBody*>(integrableObject);
545 >        std::vector<Atom*> atoms = rb->getAtoms();
546 >        std::set<int> rigidAtoms;
547 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
548 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
549 >        }
550 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
551 >          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
552 >        }      
553 >      } else {
554 >        std::set<int> oneAtomSet;
555 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
556 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
557 >      }
558 >    }  
559 >
560 >    for (bond= mol->beginBond(bondIter); bond != NULL;
561 >         bond = mol->nextBond(bondIter)) {
562 >      
563 >      a = bond->getAtomA()->getGlobalIndex();
564 >      b = bond->getAtomB()->getGlobalIndex();  
565 >    
566 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
567 >        oneTwoInteractions_.removePair(a, b);
568 >      } else {
569 >        excludedInteractions_.removePair(a, b);
570 >      }
571      }
572  
573 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
574 <        a = bend->getAtomA()->getGlobalIndex();
393 <        b = bend->getAtomB()->getGlobalIndex();        
394 <        c = bend->getAtomC()->getGlobalIndex();
573 >    for (bend= mol->beginBend(bendIter); bend != NULL;
574 >         bend = mol->nextBend(bendIter)) {
575  
576 <        exclude_.removePair(a, b);
577 <        exclude_.removePair(a, c);
578 <        exclude_.removePair(b, c);        
576 >      a = bend->getAtomA()->getGlobalIndex();
577 >      b = bend->getAtomB()->getGlobalIndex();        
578 >      c = bend->getAtomC()->getGlobalIndex();
579 >      
580 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
581 >        oneTwoInteractions_.removePair(a, b);      
582 >        oneTwoInteractions_.removePair(b, c);
583 >      } else {
584 >        excludedInteractions_.removePair(a, b);
585 >        excludedInteractions_.removePair(b, c);
586 >      }
587 >
588 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
589 >        oneThreeInteractions_.removePair(a, c);      
590 >      } else {
591 >        excludedInteractions_.removePair(a, c);
592 >      }
593      }
594  
595 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
596 <        a = torsion->getAtomA()->getGlobalIndex();
403 <        b = torsion->getAtomB()->getGlobalIndex();        
404 <        c = torsion->getAtomC()->getGlobalIndex();        
405 <        d = torsion->getAtomD()->getGlobalIndex();        
595 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
596 >         torsion = mol->nextTorsion(torsionIter)) {
597  
598 <        exclude_.removePair(a, b);
599 <        exclude_.removePair(a, c);
600 <        exclude_.removePair(a, d);
601 <        exclude_.removePair(b, c);
602 <        exclude_.removePair(b, d);
603 <        exclude_.removePair(c, d);        
598 >      a = torsion->getAtomA()->getGlobalIndex();
599 >      b = torsion->getAtomB()->getGlobalIndex();        
600 >      c = torsion->getAtomC()->getGlobalIndex();        
601 >      d = torsion->getAtomD()->getGlobalIndex();      
602 >  
603 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
604 >        oneTwoInteractions_.removePair(a, b);      
605 >        oneTwoInteractions_.removePair(b, c);
606 >        oneTwoInteractions_.removePair(c, d);
607 >      } else {
608 >        excludedInteractions_.removePair(a, b);
609 >        excludedInteractions_.removePair(b, c);
610 >        excludedInteractions_.removePair(c, d);
611 >      }
612 >
613 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
614 >        oneThreeInteractions_.removePair(a, c);      
615 >        oneThreeInteractions_.removePair(b, d);      
616 >      } else {
617 >        excludedInteractions_.removePair(a, c);
618 >        excludedInteractions_.removePair(b, d);
619 >      }
620 >
621 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
622 >        oneFourInteractions_.removePair(a, d);      
623 >      } else {
624 >        excludedInteractions_.removePair(a, d);
625 >      }
626      }
627  
628 < }
628 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
629 >         inversion = mol->nextInversion(inversionIter)) {
630  
631 +      a = inversion->getAtomA()->getGlobalIndex();
632 +      b = inversion->getAtomB()->getGlobalIndex();        
633 +      c = inversion->getAtomC()->getGlobalIndex();        
634 +      d = inversion->getAtomD()->getGlobalIndex();        
635  
636 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
637 <    int curStampId;
636 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
637 >        oneTwoInteractions_.removePair(a, b);      
638 >        oneTwoInteractions_.removePair(a, c);
639 >        oneTwoInteractions_.removePair(a, d);
640 >      } else {
641 >        excludedInteractions_.removePair(a, b);
642 >        excludedInteractions_.removePair(a, c);
643 >        excludedInteractions_.removePair(a, d);
644 >      }
645  
646 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
647 +        oneThreeInteractions_.removePair(b, c);    
648 +        oneThreeInteractions_.removePair(b, d);    
649 +        oneThreeInteractions_.removePair(c, d);      
650 +      } else {
651 +        excludedInteractions_.removePair(b, c);
652 +        excludedInteractions_.removePair(b, d);
653 +        excludedInteractions_.removePair(c, d);
654 +      }
655 +    }
656 +
657 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
658 +         rb = mol->nextRigidBody(rbIter)) {
659 +      std::vector<Atom*> atoms = rb->getAtoms();
660 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
661 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
662 +          a = atoms[i]->getGlobalIndex();
663 +          b = atoms[j]->getGlobalIndex();
664 +          excludedInteractions_.removePair(a, b);
665 +        }
666 +      }
667 +    }        
668 +    
669 +  }
670 +  
671 +  
672 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
673 +    int curStampId;
674 +    
675      //index from 0
676      curStampId = moleculeStamps_.size();
677  
678      moleculeStamps_.push_back(molStamp);
679      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
680 < }
680 >  }
681  
682 < void SimInfo::update() {
682 >  void SimInfo::update() {
683  
684      setupSimType();
685  
# Line 438 | Line 692 | void SimInfo::update() {
692      //setup fortran force field
693      /** @deprecate */    
694      int isError = 0;
441    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
442    if(isError){
443        sprintf( painCave.errMsg,
444         "ForceField error: There was an error initializing the forceField in fortran.\n" );
445        painCave.isFatal = 1;
446        simError();
447    }
448  
695      
696      setupCutoff();
697 +    
698 +    setupElectrostaticSummationMethod( isError );
699 +    setupSwitchingFunction();
700 +    setupAccumulateBoxDipole();
701  
702 +    if(isError){
703 +      sprintf( painCave.errMsg,
704 +               "ForceField error: There was an error initializing the forceField in fortran.\n" );
705 +      painCave.isFatal = 1;
706 +      simError();
707 +    }
708 +
709      calcNdf();
710      calcNdfRaw();
711      calcNdfTrans();
712  
713      fortranInitialized_ = true;
714 < }
714 >  }
715  
716 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
716 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
717      SimInfo::MoleculeIterator mi;
718      Molecule* mol;
719      Molecule::AtomIterator ai;
# Line 465 | Line 722 | std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
722  
723      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
724  
725 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
726 <            atomTypes.insert(atom->getAtomType());
727 <        }
725 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
726 >        atomTypes.insert(atom->getAtomType());
727 >      }
728          
729      }
730  
731      return atomTypes;        
732 < }
732 >  }
733  
734 < void SimInfo::setupSimType() {
734 >  void SimInfo::setupSimType() {
735      std::set<AtomType*>::iterator i;
736      std::set<AtomType*> atomTypes;
737      atomTypes = getUniqueAtomTypes();
# Line 482 | Line 739 | void SimInfo::setupSimType() {
739      int useLennardJones = 0;
740      int useElectrostatic = 0;
741      int useEAM = 0;
742 +    int useSC = 0;
743      int useCharge = 0;
744      int useDirectional = 0;
745      int useDipole = 0;
746      int useGayBerne = 0;
747      int useSticky = 0;
748 +    int useStickyPower = 0;
749      int useShape = 0;
750      int useFLARB = 0; //it is not in AtomType yet
751      int useDirectionalAtom = 0;    
752      int useElectrostatics = 0;
753      //usePBC and useRF are from simParams
754 <    int usePBC = simParams_->getPBC();
755 <    int useRF = simParams_->getUseRF();
754 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
755 >    int useRF;
756 >    int useSF;
757 >    int useSP;
758 >    int useBoxDipole;
759  
760 +    std::string myMethod;
761 +
762 +    // set the useRF logical
763 +    useRF = 0;
764 +    useSF = 0;
765 +    useSP = 0;
766 +
767 +
768 +    if (simParams_->haveElectrostaticSummationMethod()) {
769 +      std::string myMethod = simParams_->getElectrostaticSummationMethod();
770 +      toUpper(myMethod);
771 +      if (myMethod == "REACTION_FIELD"){
772 +        useRF = 1;
773 +      } else if (myMethod == "SHIFTED_FORCE"){
774 +        useSF = 1;
775 +      } else if (myMethod == "SHIFTED_POTENTIAL"){
776 +        useSP = 1;
777 +      }
778 +    }
779 +    
780 +    if (simParams_->haveAccumulateBoxDipole())
781 +      if (simParams_->getAccumulateBoxDipole())
782 +        useBoxDipole = 1;
783 +
784 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
785 +
786      //loop over all of the atom types
787      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
788 <        useLennardJones |= (*i)->isLennardJones();
789 <        useElectrostatic |= (*i)->isElectrostatic();
790 <        useEAM |= (*i)->isEAM();
791 <        useCharge |= (*i)->isCharge();
792 <        useDirectional |= (*i)->isDirectional();
793 <        useDipole |= (*i)->isDipole();
794 <        useGayBerne |= (*i)->isGayBerne();
795 <        useSticky |= (*i)->isSticky();
796 <        useShape |= (*i)->isShape();
788 >      useLennardJones |= (*i)->isLennardJones();
789 >      useElectrostatic |= (*i)->isElectrostatic();
790 >      useEAM |= (*i)->isEAM();
791 >      useSC |= (*i)->isSC();
792 >      useCharge |= (*i)->isCharge();
793 >      useDirectional |= (*i)->isDirectional();
794 >      useDipole |= (*i)->isDipole();
795 >      useGayBerne |= (*i)->isGayBerne();
796 >      useSticky |= (*i)->isSticky();
797 >      useStickyPower |= (*i)->isStickyPower();
798 >      useShape |= (*i)->isShape();
799      }
800  
801 <    if (useSticky || useDipole || useGayBerne || useShape) {
802 <        useDirectionalAtom = 1;
801 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
802 >      useDirectionalAtom = 1;
803      }
804  
805      if (useCharge || useDipole) {
806 <        useElectrostatics = 1;
806 >      useElectrostatics = 1;
807      }
808  
809   #ifdef IS_MPI    
# Line 540 | Line 830 | void SimInfo::setupSimType() {
830      temp = useSticky;
831      MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
832  
833 +    temp = useStickyPower;
834 +    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
835 +    
836      temp = useGayBerne;
837      MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
838  
839      temp = useEAM;
840      MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
841  
842 +    temp = useSC;
843 +    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
844 +    
845      temp = useShape;
846      MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
847  
# Line 554 | Line 850 | void SimInfo::setupSimType() {
850  
851      temp = useRF;
852      MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
853 <    
853 >
854 >    temp = useSF;
855 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
856 >
857 >    temp = useSP;
858 >    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
859 >
860 >    temp = useBoxDipole;
861 >    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
862 >
863 >    temp = useAtomicVirial_;
864 >    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
865 >
866   #endif
867  
868      fInfo_.SIM_uses_PBC = usePBC;    
# Line 564 | Line 872 | void SimInfo::setupSimType() {
872      fInfo_.SIM_uses_Charges = useCharge;
873      fInfo_.SIM_uses_Dipoles = useDipole;
874      fInfo_.SIM_uses_Sticky = useSticky;
875 +    fInfo_.SIM_uses_StickyPower = useStickyPower;
876      fInfo_.SIM_uses_GayBerne = useGayBerne;
877      fInfo_.SIM_uses_EAM = useEAM;
878 +    fInfo_.SIM_uses_SC = useSC;
879      fInfo_.SIM_uses_Shapes = useShape;
880      fInfo_.SIM_uses_FLARB = useFLARB;
881      fInfo_.SIM_uses_RF = useRF;
882 +    fInfo_.SIM_uses_SF = useSF;
883 +    fInfo_.SIM_uses_SP = useSP;
884 +    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
885 +    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
886 +  }
887  
888 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
574 <
575 <        if (simParams_->haveDielectric()) {
576 <            fInfo_.dielect = simParams_->getDielectric();
577 <        } else {
578 <            sprintf(painCave.errMsg,
579 <                    "SimSetup Error: No Dielectric constant was set.\n"
580 <                    "\tYou are trying to use Reaction Field without"
581 <                    "\tsetting a dielectric constant!\n");
582 <            painCave.isFatal = 1;
583 <            simError();
584 <        }
585 <        
586 <    } else {
587 <        fInfo_.dielect = 0.0;
588 <    }
589 <
590 < }
591 <
592 < void SimInfo::setupFortranSim() {
888 >  void SimInfo::setupFortranSim() {
889      int isError;
890 <    int nExclude;
890 >    int nExclude, nOneTwo, nOneThree, nOneFour;
891      std::vector<int> fortranGlobalGroupMembership;
892      
597    nExclude = exclude_.getSize();
893      isError = 0;
894  
895      //globalGroupMembership_ is filled by SimCreator    
896      for (int i = 0; i < nGlobalAtoms_; i++) {
897 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
897 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
898      }
899  
900      //calculate mass ratio of cutoff group
901 <    std::vector<double> mfact;
901 >    std::vector<RealType> mfact;
902      SimInfo::MoleculeIterator mi;
903      Molecule* mol;
904      Molecule::CutoffGroupIterator ci;
905      CutoffGroup* cg;
906      Molecule::AtomIterator ai;
907      Atom* atom;
908 <    double totalMass;
908 >    RealType totalMass;
909  
910      //to avoid memory reallocation, reserve enough space for mfact
911      mfact.reserve(getNCutoffGroups());
912      
913      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
914 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
914 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
915  
916 <            totalMass = cg->getMass();
917 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
918 <                        mfact.push_back(atom->getMass()/totalMass);
919 <            }
920 <
921 <        }      
916 >        totalMass = cg->getMass();
917 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
918 >          // Check for massless groups - set mfact to 1 if true
919 >          if (totalMass != 0)
920 >            mfact.push_back(atom->getMass()/totalMass);
921 >          else
922 >            mfact.push_back( 1.0 );
923 >        }
924 >      }      
925      }
926  
927      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
# Line 633 | Line 931 | void SimInfo::setupFortranSim() {
931      identArray.reserve(getNAtoms());
932      
933      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
934 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
935 <            identArray.push_back(atom->getIdent());
936 <        }
934 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
935 >        identArray.push_back(atom->getIdent());
936 >      }
937      }    
938  
939      //fill molMembershipArray
940      //molMembershipArray is filled by SimCreator    
941      std::vector<int> molMembershipArray(nGlobalAtoms_);
942      for (int i = 0; i < nGlobalAtoms_; i++) {
943 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
943 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
944      }
945      
946      //setup fortran simulation
649    //gloalExcludes and molMembershipArray should go away (They are never used)
650    //why the hell fortran need to know molecule?
651    //OOPSE = Object-Obfuscated Parallel Simulation Engine
652    int nGlobalExcludes = 0;
653    int* globalExcludes = NULL;
654    int* excludeList = exclude_.getExcludeList();
655    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
656                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
657                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
947  
948 <    if( isError ){
948 >    nExclude = excludedInteractions_.getSize();
949 >    nOneTwo = oneTwoInteractions_.getSize();
950 >    nOneThree = oneThreeInteractions_.getSize();
951 >    nOneFour = oneFourInteractions_.getSize();
952  
953 <        sprintf( painCave.errMsg,
954 <                 "There was an error setting the simulation information in fortran.\n" );
955 <        painCave.isFatal = 1;
956 <        painCave.severity = OOPSE_ERROR;
957 <        simError();
958 <    }
953 >    std::cerr << "exculdes:\n";
954 >    std::cerr << excludedInteractions_;
955 >    std::cerr << "\noneTwo:\n";
956 >    std::cerr << oneTwoInteractions_;
957 >    std::cerr << "\noneThree:\n";
958 >    std::cerr << oneThreeInteractions_;
959 >    std::cerr << "\noneFour:\n";
960 >    std::cerr << oneFourInteractions_;
961  
962 < #ifdef IS_MPI
962 >    int* excludeList = excludedInteractions_.getPairList();
963 >    int* oneTwoList = oneTwoInteractions_.getPairList();
964 >    int* oneThreeList = oneThreeInteractions_.getPairList();
965 >    int* oneFourList = oneFourInteractions_.getPairList();
966 >
967 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
968 >                   &nExclude, excludeList,
969 >                   &nOneTwo, oneTwoList,
970 >                   &nOneThree, oneThreeList,
971 >                   &nOneFour, oneFourList,
972 >                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
973 >                   &fortranGlobalGroupMembership[0], &isError);
974 >    
975 >    if( isError ){
976 >      
977 >      sprintf( painCave.errMsg,
978 >               "There was an error setting the simulation information in fortran.\n" );
979 >      painCave.isFatal = 1;
980 >      painCave.severity = OOPSE_ERROR;
981 >      simError();
982 >    }
983 >    
984 >    
985      sprintf( checkPointMsg,
986 <       "succesfully sent the simulation information to fortran.\n");
987 <    MPIcheckPoint();
988 < #endif // is_mpi
989 < }
986 >             "succesfully sent the simulation information to fortran.\n");
987 >    
988 >    errorCheckPoint();
989 >    
990 >    // Setup number of neighbors in neighbor list if present
991 >    if (simParams_->haveNeighborListNeighbors()) {
992 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
993 >      setNeighbors(&nlistNeighbors);
994 >    }
995 >  
996  
997 +  }
998  
999 < #ifdef IS_MPI
1000 < void SimInfo::setupFortranParallel() {
1001 <    
999 >
1000 >  void SimInfo::setupFortranParallel() {
1001 > #ifdef IS_MPI    
1002      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
1003      std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
1004      std::vector<int> localToGlobalCutoffGroupIndex;
# Line 690 | Line 1013 | void SimInfo::setupFortranParallel() {
1013  
1014      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
1015  
1016 <        //local index(index in DataStorge) of atom is important
1017 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1018 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1019 <        }
1016 >      //local index(index in DataStorge) of atom is important
1017 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1018 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1019 >      }
1020  
1021 <        //local index of cutoff group is trivial, it only depends on the order of travesing
1022 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1023 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1024 <        }        
1021 >      //local index of cutoff group is trivial, it only depends on the order of travesing
1022 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1023 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1024 >      }        
1025          
1026      }
1027  
# Line 718 | Line 1041 | void SimInfo::setupFortranParallel() {
1041                      &localToGlobalCutoffGroupIndex[0], &isError);
1042  
1043      if (isError) {
1044 <        sprintf(painCave.errMsg,
1045 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
1046 <        painCave.isFatal = 1;
1047 <        simError();
1044 >      sprintf(painCave.errMsg,
1045 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
1046 >      painCave.isFatal = 1;
1047 >      simError();
1048      }
1049  
1050      sprintf(checkPointMsg, " mpiRefresh successful.\n");
1051 <    MPIcheckPoint();
1051 >    errorCheckPoint();
1052  
730
731 }
732
1053   #endif
1054 +  }
1055  
1056 < double SimInfo::calcMaxCutoffRadius() {
1056 >  void SimInfo::setupCutoff() {          
1057 >    
1058 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
1059  
1060 +    // Check the cutoff policy
1061 +    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1062  
1063 <    std::set<AtomType*> atomTypes;
1064 <    std::set<AtomType*>::iterator i;
1065 <    std::vector<double> cutoffRadius;
1063 >    // Set LJ shifting bools to false
1064 >    ljsp_ = false;
1065 >    ljsf_ = false;
1066  
1067 <    //get the unique atom types
1068 <    atomTypes = getUniqueAtomTypes();
1069 <
1070 <    //query the max cutoff radius among these atom types
1071 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
747 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
1067 >    std::string myPolicy;
1068 >    if (forceFieldOptions_.haveCutoffPolicy()){
1069 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
1070 >    }else if (simParams_->haveCutoffPolicy()) {
1071 >      myPolicy = simParams_->getCutoffPolicy();
1072      }
1073  
1074 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
1075 < #ifdef IS_MPI
1076 <    //pick the max cutoff radius among the processors
1077 < #endif
1074 >    if (!myPolicy.empty()){
1075 >      toUpper(myPolicy);
1076 >      if (myPolicy == "MIX") {
1077 >        cp = MIX_CUTOFF_POLICY;
1078 >      } else {
1079 >        if (myPolicy == "MAX") {
1080 >          cp = MAX_CUTOFF_POLICY;
1081 >        } else {
1082 >          if (myPolicy == "TRADITIONAL") {            
1083 >            cp = TRADITIONAL_CUTOFF_POLICY;
1084 >          } else {
1085 >            // throw error        
1086 >            sprintf( painCave.errMsg,
1087 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1088 >            painCave.isFatal = 1;
1089 >            simError();
1090 >          }    
1091 >        }          
1092 >      }
1093 >    }          
1094 >    notifyFortranCutoffPolicy(&cp);
1095  
1096 <    return maxCutoffRadius;
1097 < }
1096 >    // Check the Skin Thickness for neighborlists
1097 >    RealType skin;
1098 >    if (simParams_->haveSkinThickness()) {
1099 >      skin = simParams_->getSkinThickness();
1100 >      notifyFortranSkinThickness(&skin);
1101 >    }            
1102 >        
1103 >    // Check if the cutoff was set explicitly:
1104 >    if (simParams_->haveCutoffRadius()) {
1105 >      rcut_ = simParams_->getCutoffRadius();
1106 >      if (simParams_->haveSwitchingRadius()) {
1107 >        rsw_  = simParams_->getSwitchingRadius();
1108 >      } else {
1109 >        if (fInfo_.SIM_uses_Charges |
1110 >            fInfo_.SIM_uses_Dipoles |
1111 >            fInfo_.SIM_uses_RF) {
1112 >          
1113 >          rsw_ = 0.85 * rcut_;
1114 >          sprintf(painCave.errMsg,
1115 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1116 >                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1117 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1118 >        painCave.isFatal = 0;
1119 >        simError();
1120 >        } else {
1121 >          rsw_ = rcut_;
1122 >          sprintf(painCave.errMsg,
1123 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1124 >                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1125 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1126 >          painCave.isFatal = 0;
1127 >          simError();
1128 >        }
1129 >      }
1130  
1131 < void SimInfo::getCutoff(double& rcut, double& rsw) {
1132 <    
1133 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1131 >      if (simParams_->haveElectrostaticSummationMethod()) {
1132 >        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1133 >        toUpper(myMethod);
1134          
1135 <        if (!simParams_->haveRcut()){
1136 <            sprintf(painCave.errMsg,
1135 >        if (myMethod == "SHIFTED_POTENTIAL") {
1136 >          ljsp_ = true;
1137 >        } else if (myMethod == "SHIFTED_FORCE") {
1138 >          ljsf_ = true;
1139 >        }
1140 >      }
1141 >      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1142 >      
1143 >    } else {
1144 >      
1145 >      // For electrostatic atoms, we'll assume a large safe value:
1146 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1147 >        sprintf(painCave.errMsg,
1148                  "SimCreator Warning: No value was set for the cutoffRadius.\n"
1149                  "\tOOPSE will use a default value of 15.0 angstroms"
1150                  "\tfor the cutoffRadius.\n");
1151 <            painCave.isFatal = 0;
1152 <            simError();
1153 <            rcut = 15.0;
1154 <        } else{
1155 <            rcut = simParams_->getRcut();
1151 >        painCave.isFatal = 0;
1152 >        simError();
1153 >        rcut_ = 15.0;
1154 >      
1155 >        if (simParams_->haveElectrostaticSummationMethod()) {
1156 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1157 >          toUpper(myMethod);
1158 >      
1159 >      // For the time being, we're tethering the LJ shifted behavior to the
1160 >      // electrostaticSummationMethod keyword options
1161 >          if (myMethod == "SHIFTED_POTENTIAL") {
1162 >            ljsp_ = true;
1163 >          } else if (myMethod == "SHIFTED_FORCE") {
1164 >            ljsf_ = true;
1165 >          }
1166 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1167 >            if (simParams_->haveSwitchingRadius()){
1168 >              sprintf(painCave.errMsg,
1169 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
1170 >                      "\teven though the electrostaticSummationMethod was\n"
1171 >                      "\tset to %s\n", myMethod.c_str());
1172 >              painCave.isFatal = 1;
1173 >              simError();            
1174 >            }
1175 >          }
1176          }
1177 <
1178 <        if (!simParams_->haveRsw()){
1179 <            sprintf(painCave.errMsg,
1180 <                "SimCreator Warning: No value was set for switchingRadius.\n"
1181 <                "\tOOPSE will use a default value of\n"
1182 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
1183 <            painCave.isFatal = 0;
1184 <            simError();
1185 <            rsw = 0.95 * rcut;
1186 <        } else{
1187 <            rsw = simParams_->getRsw();
1177 >      
1178 >        if (simParams_->haveSwitchingRadius()){
1179 >          rsw_ = simParams_->getSwitchingRadius();
1180 >        } else {        
1181 >          sprintf(painCave.errMsg,
1182 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1183 >                  "\tOOPSE will use a default value of\n"
1184 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1185 >          painCave.isFatal = 0;
1186 >          simError();
1187 >          rsw_ = 0.85 * rcut_;
1188          }
1189  
1190 <    } else {
1191 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
1192 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
1190 >        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1191 >
1192 >      } else {
1193 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1194 >        // We'll punt and let fortran figure out the cutoffs later.
1195          
1196 <        if (simParams_->haveRcut()) {
791 <            rcut = simParams_->getRcut();
792 <        } else {
793 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
794 <            rcut = calcMaxCutoffRadius();
795 <        }
1196 >        notifyFortranYouAreOnYourOwn();
1197  
1198 <        if (simParams_->haveRsw()) {
798 <            rsw  = simParams_->getRsw();
799 <        } else {
800 <            rsw = rcut;
801 <        }
802 <    
1198 >      }
1199      }
1200 < }
1200 >  }
1201  
1202 < void SimInfo::setupCutoff() {
1203 <    getCutoff(rcut_, rsw_);    
1204 <    double rnblist = rcut_ + 1; // skin of neighbor list
1202 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1203 >    
1204 >    int errorOut;
1205 >    int esm =  NONE;
1206 >    int sm = UNDAMPED;
1207 >    RealType alphaVal;
1208 >    RealType dielectric;
1209 >    
1210 >    errorOut = isError;
1211  
1212 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
1213 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
1214 < }
1212 >    if (simParams_->haveElectrostaticSummationMethod()) {
1213 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1214 >      toUpper(myMethod);
1215 >      if (myMethod == "NONE") {
1216 >        esm = NONE;
1217 >      } else {
1218 >        if (myMethod == "SWITCHING_FUNCTION") {
1219 >          esm = SWITCHING_FUNCTION;
1220 >        } else {
1221 >          if (myMethod == "SHIFTED_POTENTIAL") {
1222 >            esm = SHIFTED_POTENTIAL;
1223 >          } else {
1224 >            if (myMethod == "SHIFTED_FORCE") {            
1225 >              esm = SHIFTED_FORCE;
1226 >            } else {
1227 >              if (myMethod == "REACTION_FIELD") {
1228 >                esm = REACTION_FIELD;
1229 >                dielectric = simParams_->getDielectric();
1230 >                if (!simParams_->haveDielectric()) {
1231 >                  // throw warning
1232 >                  sprintf( painCave.errMsg,
1233 >                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1234 >                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1235 >                  painCave.isFatal = 0;
1236 >                  simError();
1237 >                }
1238 >              } else {
1239 >                // throw error        
1240 >                sprintf( painCave.errMsg,
1241 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1242 >                         "\t(Input file specified %s .)\n"
1243 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1244 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1245 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1246 >                painCave.isFatal = 1;
1247 >                simError();
1248 >              }    
1249 >            }          
1250 >          }
1251 >        }
1252 >      }
1253 >    }
1254 >    
1255 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1256 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1257 >      toUpper(myScreen);
1258 >      if (myScreen == "UNDAMPED") {
1259 >        sm = UNDAMPED;
1260 >      } else {
1261 >        if (myScreen == "DAMPED") {
1262 >          sm = DAMPED;
1263 >          if (!simParams_->haveDampingAlpha()) {
1264 >            // first set a cutoff dependent alpha value
1265 >            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1266 >            alphaVal = 0.5125 - rcut_* 0.025;
1267 >            // for values rcut > 20.5, alpha is zero
1268 >            if (alphaVal < 0) alphaVal = 0;
1269  
1270 < void SimInfo::addProperty(GenericData* genData) {
1271 <    properties_.addProperty(genData);  
1272 < }
1273 <
1274 < void SimInfo::removeProperty(const std::string& propName) {
1275 <    properties_.removeProperty(propName);  
1276 < }
1277 <
1278 < void SimInfo::clearProperties() {
1279 <    properties_.clearProperties();
1280 < }
1281 <
1282 < std::vector<std::string> SimInfo::getPropertyNames() {
1283 <    return properties_.getPropertyNames();  
1284 < }
1285 <      
1286 < std::vector<GenericData*> SimInfo::getProperties() {
1287 <    return properties_.getProperties();
1288 < }
1289 <
1290 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1291 <    return properties_.getPropertyByName(propName);
836 < }
837 <
838 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
839 <    //if (sman_ == sman_) {
840 <    //    return;
841 <    //}
1270 >            // throw warning
1271 >            sprintf( painCave.errMsg,
1272 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1273 >                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1274 >            painCave.isFatal = 0;
1275 >            simError();
1276 >          } else {
1277 >            alphaVal = simParams_->getDampingAlpha();
1278 >          }
1279 >          
1280 >        } else {
1281 >          // throw error        
1282 >          sprintf( painCave.errMsg,
1283 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1284 >                   "\t(Input file specified %s .)\n"
1285 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1286 >                   "or \"damped\".\n", myScreen.c_str() );
1287 >          painCave.isFatal = 1;
1288 >          simError();
1289 >        }
1290 >      }
1291 >    }
1292      
1293 <    //delete sman_;
1293 >    // let's pass some summation method variables to fortran
1294 >    setElectrostaticSummationMethod( &esm );
1295 >    setFortranElectrostaticMethod( &esm );
1296 >    setScreeningMethod( &sm );
1297 >    setDampingAlpha( &alphaVal );
1298 >    setReactionFieldDielectric( &dielectric );
1299 >    initFortranFF( &errorOut );
1300 >  }
1301 >
1302 >  void SimInfo::setupSwitchingFunction() {    
1303 >    int ft = CUBIC;
1304 >
1305 >    if (simParams_->haveSwitchingFunctionType()) {
1306 >      std::string funcType = simParams_->getSwitchingFunctionType();
1307 >      toUpper(funcType);
1308 >      if (funcType == "CUBIC") {
1309 >        ft = CUBIC;
1310 >      } else {
1311 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1312 >          ft = FIFTH_ORDER_POLY;
1313 >        } else {
1314 >          // throw error        
1315 >          sprintf( painCave.errMsg,
1316 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1317 >          painCave.isFatal = 1;
1318 >          simError();
1319 >        }          
1320 >      }
1321 >    }
1322 >
1323 >    // send switching function notification to switcheroo
1324 >    setFunctionType(&ft);
1325 >
1326 >  }
1327 >
1328 >  void SimInfo::setupAccumulateBoxDipole() {    
1329 >
1330 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1331 >    if ( simParams_->haveAccumulateBoxDipole() )
1332 >      if ( simParams_->getAccumulateBoxDipole() ) {
1333 >        setAccumulateBoxDipole();
1334 >        calcBoxDipole_ = true;
1335 >      }
1336 >
1337 >  }
1338 >
1339 >  void SimInfo::addProperty(GenericData* genData) {
1340 >    properties_.addProperty(genData);  
1341 >  }
1342 >
1343 >  void SimInfo::removeProperty(const std::string& propName) {
1344 >    properties_.removeProperty(propName);  
1345 >  }
1346 >
1347 >  void SimInfo::clearProperties() {
1348 >    properties_.clearProperties();
1349 >  }
1350 >
1351 >  std::vector<std::string> SimInfo::getPropertyNames() {
1352 >    return properties_.getPropertyNames();  
1353 >  }
1354 >      
1355 >  std::vector<GenericData*> SimInfo::getProperties() {
1356 >    return properties_.getProperties();
1357 >  }
1358 >
1359 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1360 >    return properties_.getPropertyByName(propName);
1361 >  }
1362 >
1363 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1364 >    if (sman_ == sman) {
1365 >      return;
1366 >    }    
1367 >    delete sman_;
1368      sman_ = sman;
1369  
1370      Molecule* mol;
# Line 852 | Line 1376 | void SimInfo::setSnapshotManager(SnapshotManager* sman
1376  
1377      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1378          
1379 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1380 <            atom->setSnapshotManager(sman_);
1381 <        }
1379 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1380 >        atom->setSnapshotManager(sman_);
1381 >      }
1382          
1383 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1384 <            rb->setSnapshotManager(sman_);
1385 <        }
1383 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1384 >        rb->setSnapshotManager(sman_);
1385 >      }
1386      }    
1387      
1388 < }
1388 >  }
1389  
1390 < Vector3d SimInfo::getComVel(){
1390 >  Vector3d SimInfo::getComVel(){
1391      SimInfo::MoleculeIterator i;
1392      Molecule* mol;
1393  
1394      Vector3d comVel(0.0);
1395 <    double totalMass = 0.0;
1395 >    RealType totalMass = 0.0;
1396      
1397  
1398      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1399 <        double mass = mol->getMass();
1400 <        totalMass += mass;
1401 <        comVel += mass * mol->getComVel();
1399 >      RealType mass = mol->getMass();
1400 >      totalMass += mass;
1401 >      comVel += mass * mol->getComVel();
1402      }  
1403  
1404   #ifdef IS_MPI
1405 <    double tmpMass = totalMass;
1405 >    RealType tmpMass = totalMass;
1406      Vector3d tmpComVel(comVel);    
1407 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1408 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1407 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1408 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1409   #endif
1410  
1411      comVel /= totalMass;
1412  
1413      return comVel;
1414 < }
1414 >  }
1415  
1416 < Vector3d SimInfo::getCom(){
1416 >  Vector3d SimInfo::getCom(){
1417      SimInfo::MoleculeIterator i;
1418      Molecule* mol;
1419  
1420      Vector3d com(0.0);
1421 <    double totalMass = 0.0;
1421 >    RealType totalMass = 0.0;
1422      
1423      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1424 <        double mass = mol->getMass();
1425 <        totalMass += mass;
1426 <        com += mass * mol->getCom();
1424 >      RealType mass = mol->getMass();
1425 >      totalMass += mass;
1426 >      com += mass * mol->getCom();
1427      }  
1428  
1429   #ifdef IS_MPI
1430 <    double tmpMass = totalMass;
1430 >    RealType tmpMass = totalMass;
1431      Vector3d tmpCom(com);    
1432 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1433 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1432 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1433 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1434   #endif
1435  
1436      com /= totalMass;
1437  
1438      return com;
1439  
1440 < }        
1440 >  }        
1441  
1442 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1442 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1443  
1444      return o;
1445 < }
1445 >  }
1446 >  
1447 >  
1448 >   /*
1449 >   Returns center of mass and center of mass velocity in one function call.
1450 >   */
1451 >  
1452 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1453 >      SimInfo::MoleculeIterator i;
1454 >      Molecule* mol;
1455 >      
1456 >    
1457 >      RealType totalMass = 0.0;
1458 >    
1459  
1460 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1461 +         RealType mass = mol->getMass();
1462 +         totalMass += mass;
1463 +         com += mass * mol->getCom();
1464 +         comVel += mass * mol->getComVel();          
1465 +      }  
1466 +      
1467 + #ifdef IS_MPI
1468 +      RealType tmpMass = totalMass;
1469 +      Vector3d tmpCom(com);  
1470 +      Vector3d tmpComVel(comVel);
1471 +      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1472 +      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1473 +      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1474 + #endif
1475 +      
1476 +      com /= totalMass;
1477 +      comVel /= totalMass;
1478 +   }        
1479 +  
1480 +   /*
1481 +   Return intertia tensor for entire system and angular momentum Vector.
1482 +
1483 +
1484 +       [  Ixx -Ixy  -Ixz ]
1485 +  J =| -Iyx  Iyy  -Iyz |
1486 +       [ -Izx -Iyz   Izz ]
1487 +    */
1488 +
1489 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1490 +      
1491 +
1492 +      RealType xx = 0.0;
1493 +      RealType yy = 0.0;
1494 +      RealType zz = 0.0;
1495 +      RealType xy = 0.0;
1496 +      RealType xz = 0.0;
1497 +      RealType yz = 0.0;
1498 +      Vector3d com(0.0);
1499 +      Vector3d comVel(0.0);
1500 +      
1501 +      getComAll(com, comVel);
1502 +      
1503 +      SimInfo::MoleculeIterator i;
1504 +      Molecule* mol;
1505 +      
1506 +      Vector3d thisq(0.0);
1507 +      Vector3d thisv(0.0);
1508 +
1509 +      RealType thisMass = 0.0;
1510 +    
1511 +      
1512 +      
1513 +  
1514 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1515 +        
1516 +         thisq = mol->getCom()-com;
1517 +         thisv = mol->getComVel()-comVel;
1518 +         thisMass = mol->getMass();
1519 +         // Compute moment of intertia coefficients.
1520 +         xx += thisq[0]*thisq[0]*thisMass;
1521 +         yy += thisq[1]*thisq[1]*thisMass;
1522 +         zz += thisq[2]*thisq[2]*thisMass;
1523 +        
1524 +         // compute products of intertia
1525 +         xy += thisq[0]*thisq[1]*thisMass;
1526 +         xz += thisq[0]*thisq[2]*thisMass;
1527 +         yz += thisq[1]*thisq[2]*thisMass;
1528 +            
1529 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1530 +            
1531 +      }  
1532 +      
1533 +      
1534 +      inertiaTensor(0,0) = yy + zz;
1535 +      inertiaTensor(0,1) = -xy;
1536 +      inertiaTensor(0,2) = -xz;
1537 +      inertiaTensor(1,0) = -xy;
1538 +      inertiaTensor(1,1) = xx + zz;
1539 +      inertiaTensor(1,2) = -yz;
1540 +      inertiaTensor(2,0) = -xz;
1541 +      inertiaTensor(2,1) = -yz;
1542 +      inertiaTensor(2,2) = xx + yy;
1543 +      
1544 + #ifdef IS_MPI
1545 +      Mat3x3d tmpI(inertiaTensor);
1546 +      Vector3d tmpAngMom;
1547 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1548 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1549 + #endif
1550 +              
1551 +      return;
1552 +   }
1553 +
1554 +   //Returns the angular momentum of the system
1555 +   Vector3d SimInfo::getAngularMomentum(){
1556 +      
1557 +      Vector3d com(0.0);
1558 +      Vector3d comVel(0.0);
1559 +      Vector3d angularMomentum(0.0);
1560 +      
1561 +      getComAll(com,comVel);
1562 +      
1563 +      SimInfo::MoleculeIterator i;
1564 +      Molecule* mol;
1565 +      
1566 +      Vector3d thisr(0.0);
1567 +      Vector3d thisp(0.0);
1568 +      
1569 +      RealType thisMass;
1570 +      
1571 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1572 +        thisMass = mol->getMass();
1573 +        thisr = mol->getCom()-com;
1574 +        thisp = (mol->getComVel()-comVel)*thisMass;
1575 +        
1576 +        angularMomentum += cross( thisr, thisp );
1577 +        
1578 +      }  
1579 +      
1580 + #ifdef IS_MPI
1581 +      Vector3d tmpAngMom;
1582 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1583 + #endif
1584 +      
1585 +      return angularMomentum;
1586 +   }
1587 +  
1588 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1589 +    return IOIndexToIntegrableObject.at(index);
1590 +  }
1591 +  
1592 +  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1593 +    IOIndexToIntegrableObject= v;
1594 +  }
1595 +
1596 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1597 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1598 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1599 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1600 +  */
1601 +  void SimInfo::getGyrationalVolume(RealType &volume){
1602 +    Mat3x3d intTensor;
1603 +    RealType det;
1604 +    Vector3d dummyAngMom;
1605 +    RealType sysconstants;
1606 +    RealType geomCnst;
1607 +
1608 +    geomCnst = 3.0/2.0;
1609 +    /* Get the inertial tensor and angular momentum for free*/
1610 +    getInertiaTensor(intTensor,dummyAngMom);
1611 +    
1612 +    det = intTensor.determinant();
1613 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1614 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1615 +    return;
1616 +  }
1617 +
1618 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1619 +    Mat3x3d intTensor;
1620 +    Vector3d dummyAngMom;
1621 +    RealType sysconstants;
1622 +    RealType geomCnst;
1623 +
1624 +    geomCnst = 3.0/2.0;
1625 +    /* Get the inertial tensor and angular momentum for free*/
1626 +    getInertiaTensor(intTensor,dummyAngMom);
1627 +    
1628 +    detI = intTensor.determinant();
1629 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1630 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1631 +    return;
1632 +  }
1633 + /*
1634 +   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1635 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1636 +      sdByGlobalIndex_ = v;
1637 +    }
1638 +
1639 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1640 +      //assert(index < nAtoms_ + nRigidBodies_);
1641 +      return sdByGlobalIndex_.at(index);
1642 +    }  
1643 + */  
1644   }//end namespace oopse
1645  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines