ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 1126 by gezelter, Fri Apr 6 21:53:43 2007 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51 > #include <map>
52  
53 < #include "SimInfo.hpp"
54 < #define __C
55 < #include "fSimulation.h"
56 < #include "simError.h"
53 > #include "brains/SimInfo.hpp"
54 > #include "math/Vector3.hpp"
55 > #include "primitives/Molecule.hpp"
56 > #include "primitives/StuntDouble.hpp"
57 > #include "UseTheForce/fCutoffPolicy.h"
58 > #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 > #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 > #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 > #include "UseTheForce/doForces_interface.h"
62 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
65 > #include "utils/MemoryUtils.hpp"
66 > #include "utils/simError.h"
67 > #include "selection/SelectionManager.hpp"
68 > #include "io/ForceFieldOptions.hpp"
69 > #include "UseTheForce/ForceField.hpp"
70  
13 #include "fortranWrappers.hpp"
71  
15 #include "MatVec3.h"
16
72   #ifdef IS_MPI
73 < #include "mpiSimulation.hpp"
74 < #endif
73 > #include "UseTheForce/mpiComponentPlan.h"
74 > #include "UseTheForce/DarkSide/simParallel_interface.h"
75 > #endif
76  
77 < inline double roundMe( double x ){
78 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
79 < }
80 <          
81 < inline double min( double a, double b ){
82 <  return (a < b ) ? a : b;
83 < }
77 > namespace oopse {
78 >  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 >    std::map<int, std::set<int> >::iterator i = container.find(index);
80 >    std::set<int> result;
81 >    if (i != container.end()) {
82 >        result = i->second;
83 >    }
84  
85 < SimInfo* currentInfo;
86 <
31 < SimInfo::SimInfo(){
32 <
33 <  n_constraints = 0;
34 <  nZconstraints = 0;
35 <  n_oriented = 0;
36 <  n_dipoles = 0;
37 <  ndf = 0;
38 <  ndfRaw = 0;
39 <  nZconstraints = 0;
40 <  the_integrator = NULL;
41 <  setTemp = 0;
42 <  thermalTime = 0.0;
43 <  currentTime = 0.0;
44 <  rCut = 0.0;
45 <  rSw = 0.0;
46 <
47 <  haveRcut = 0;
48 <  haveRsw = 0;
49 <  boxIsInit = 0;
85 >    return result;
86 >  }
87    
88 <  resetTime = 1e99;
88 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
89 >    forceField_(ff), simParams_(simParams),
90 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
94 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
95 >    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false),
96 >    useAtomicVirial_(true) {
97  
98 <  orthoRhombic = 0;
99 <  orthoTolerance = 1E-6;
100 <  useInitXSstate = true;
98 >      MoleculeStamp* molStamp;
99 >      int nMolWithSameStamp;
100 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
101 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
102 >      CutoffGroupStamp* cgStamp;    
103 >      RigidBodyStamp* rbStamp;
104 >      int nRigidAtoms = 0;
105 >      std::vector<Component*> components = simParams->getComponents();
106 >      
107 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
108 >        molStamp = (*i)->getMoleculeStamp();
109 >        nMolWithSameStamp = (*i)->getNMol();
110 >        
111 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
112  
113 <  usePBC = 0;
114 <  useLJ = 0;
59 <  useSticky = 0;
60 <  useCharges = 0;
61 <  useDipoles = 0;
62 <  useReactionField = 0;
63 <  useGB = 0;
64 <  useEAM = 0;
65 <  useSolidThermInt = 0;
66 <  useLiquidThermInt = 0;
113 >        //calculate atoms in molecules
114 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
115  
116 <  haveCutoffGroups = false;
116 >        //calculate atoms in cutoff groups
117 >        int nAtomsInGroups = 0;
118 >        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
119 >        
120 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
121 >          cgStamp = molStamp->getCutoffGroupStamp(j);
122 >          nAtomsInGroups += cgStamp->getNMembers();
123 >        }
124  
125 <  excludes = Exclude::Instance();
125 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
126  
127 <  myConfiguration = new SimState();
127 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
128  
129 <  has_minimizer = false;
130 <  the_minimizer =NULL;
129 >        //calculate atoms in rigid bodies
130 >        int nAtomsInRigidBodies = 0;
131 >        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
132 >        
133 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
134 >          rbStamp = molStamp->getRigidBodyStamp(j);
135 >          nAtomsInRigidBodies += rbStamp->getNMembers();
136 >        }
137  
138 <  ngroup = 0;
138 >        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
139 >        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
140 >        
141 >      }
142  
143 <  wrapMeSimInfo( this );
144 < }
143 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
144 >      //group therefore the total number of cutoff groups in the system is
145 >      //equal to the total number of atoms minus number of atoms belong to
146 >      //cutoff group defined in meta-data file plus the number of cutoff
147 >      //groups defined in meta-data file
148 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
149  
150 <
151 < SimInfo::~SimInfo(){
152 <
153 <  delete myConfiguration;
154 <
155 <  map<string, GenericData*>::iterator i;
150 >      //every free atom (atom does not belong to rigid bodies) is an
151 >      //integrable object therefore the total number of integrable objects
152 >      //in the system is equal to the total number of atoms minus number of
153 >      //atoms belong to rigid body defined in meta-data file plus the number
154 >      //of rigid bodies defined in meta-data file
155 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
156 >                                                + nGlobalRigidBodies_;
157    
158 <  for(i = properties.begin(); i != properties.end(); i++)
90 <    delete (*i).second;
158 >      nGlobalMols_ = molStampIds_.size();
159  
160 < }
160 > #ifdef IS_MPI    
161 >      molToProcMap_.resize(nGlobalMols_);
162 > #endif
163  
164 < void SimInfo::setBox(double newBox[3]) {
95 <  
96 <  int i, j;
97 <  double tempMat[3][3];
164 >    }
165  
166 <  for(i=0; i<3; i++)
167 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
166 >  SimInfo::~SimInfo() {
167 >    std::map<int, Molecule*>::iterator i;
168 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
169 >      delete i->second;
170 >    }
171 >    molecules_.clear();
172 >      
173 >    delete sman_;
174 >    delete simParams_;
175 >    delete forceField_;
176 >  }
177  
178 <  tempMat[0][0] = newBox[0];
179 <  tempMat[1][1] = newBox[1];
180 <  tempMat[2][2] = newBox[2];
178 >  int SimInfo::getNGlobalConstraints() {
179 >    int nGlobalConstraints;
180 > #ifdef IS_MPI
181 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
182 >                  MPI_COMM_WORLD);    
183 > #else
184 >    nGlobalConstraints =  nConstraints_;
185 > #endif
186 >    return nGlobalConstraints;
187 >  }
188  
189 <  setBoxM( tempMat );
189 >  bool SimInfo::addMolecule(Molecule* mol) {
190 >    MoleculeIterator i;
191  
192 < }
192 >    i = molecules_.find(mol->getGlobalIndex());
193 >    if (i == molecules_.end() ) {
194  
195 < void SimInfo::setBoxM( double theBox[3][3] ){
196 <  
197 <  int i, j;
198 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
199 <                         // ordering in the array is as follows:
200 <                         // [ 0 3 6 ]
201 <                         // [ 1 4 7 ]
202 <                         // [ 2 5 8 ]
203 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
204 <
205 <  if( !boxIsInit ) boxIsInit = 1;
206 <
207 <  for(i=0; i < 3; i++)
208 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
209 <  
210 <  calcBoxL();
126 <  calcHmatInv();
127 <
128 <  for(i=0; i < 3; i++) {
129 <    for (j=0; j < 3; j++) {
130 <      FortranHmat[3*j + i] = Hmat[i][j];
131 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
195 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
196 >        
197 >      nAtoms_ += mol->getNAtoms();
198 >      nBonds_ += mol->getNBonds();
199 >      nBends_ += mol->getNBends();
200 >      nTorsions_ += mol->getNTorsions();
201 >      nRigidBodies_ += mol->getNRigidBodies();
202 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
203 >      nCutoffGroups_ += mol->getNCutoffGroups();
204 >      nConstraints_ += mol->getNConstraintPairs();
205 >
206 >      addExcludePairs(mol);
207 >        
208 >      return true;
209 >    } else {
210 >      return false;
211      }
212    }
213  
214 <  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
215 <
216 < }
138 <
214 >  bool SimInfo::removeMolecule(Molecule* mol) {
215 >    MoleculeIterator i;
216 >    i = molecules_.find(mol->getGlobalIndex());
217  
218 < void SimInfo::getBoxM (double theBox[3][3]) {
218 >    if (i != molecules_.end() ) {
219  
220 <  int i, j;
221 <  for(i=0; i<3; i++)
222 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
223 < }
220 >      assert(mol == i->second);
221 >        
222 >      nAtoms_ -= mol->getNAtoms();
223 >      nBonds_ -= mol->getNBonds();
224 >      nBends_ -= mol->getNBends();
225 >      nTorsions_ -= mol->getNTorsions();
226 >      nRigidBodies_ -= mol->getNRigidBodies();
227 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
228 >      nCutoffGroups_ -= mol->getNCutoffGroups();
229 >      nConstraints_ -= mol->getNConstraintPairs();
230  
231 +      removeExcludePairs(mol);
232 +      molecules_.erase(mol->getGlobalIndex());
233  
234 < void SimInfo::scaleBox(double scale) {
235 <  double theBox[3][3];
236 <  int i, j;
234 >      delete mol;
235 >        
236 >      return true;
237 >    } else {
238 >      return false;
239 >    }
240  
152  // cerr << "Scaling box by " << scale << "\n";
241  
242 <  for(i=0; i<3; i++)
155 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
242 >  }    
243  
244 <  setBoxM(theBox);
244 >        
245 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
246 >    i = molecules_.begin();
247 >    return i == molecules_.end() ? NULL : i->second;
248 >  }    
249  
250 < }
250 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
251 >    ++i;
252 >    return i == molecules_.end() ? NULL : i->second;    
253 >  }
254  
161 void SimInfo::calcHmatInv( void ) {
162  
163  int oldOrtho;
164  int i,j;
165  double smallDiag;
166  double tol;
167  double sanity[3][3];
255  
256 <  invertMat3( Hmat, HmatInv );
256 >  void SimInfo::calcNdf() {
257 >    int ndf_local;
258 >    MoleculeIterator i;
259 >    std::vector<StuntDouble*>::iterator j;
260 >    Molecule* mol;
261 >    StuntDouble* integrableObject;
262  
263 <  // check to see if Hmat is orthorhombic
264 <  
265 <  oldOrtho = orthoRhombic;
263 >    ndf_local = 0;
264 >    
265 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
266 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
267 >           integrableObject = mol->nextIntegrableObject(j)) {
268  
269 <  smallDiag = fabs(Hmat[0][0]);
176 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
177 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
178 <  tol = smallDiag * orthoTolerance;
269 >        ndf_local += 3;
270  
271 <  orthoRhombic = 1;
272 <  
273 <  for (i = 0; i < 3; i++ ) {
274 <    for (j = 0 ; j < 3; j++) {
275 <      if (i != j) {
276 <        if (orthoRhombic) {
277 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
278 <        }        
271 >        if (integrableObject->isDirectional()) {
272 >          if (integrableObject->isLinear()) {
273 >            ndf_local += 2;
274 >          } else {
275 >            ndf_local += 3;
276 >          }
277 >        }
278 >            
279        }
280      }
190  }
191
192  if( oldOrtho != orthoRhombic ){
281      
282 <    if( orthoRhombic ) {
283 <      sprintf( painCave.errMsg,
196 <               "OOPSE is switching from the default Non-Orthorhombic\n"
197 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
198 <               "\tThis is usually a good thing, but if you wan't the\n"
199 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
200 <               "\tvariable ( currently set to %G ) smaller.\n",
201 <               orthoTolerance);
202 <      painCave.severity = OOPSE_INFO;
203 <      simError();
204 <    }
205 <    else {
206 <      sprintf( painCave.errMsg,
207 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
208 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
209 <               "\tThis is usually because the box has deformed under\n"
210 <               "\tNPTf integration. If you wan't to live on the edge with\n"
211 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
212 <               "\tvariable ( currently set to %G ) larger.\n",
213 <               orthoTolerance);
214 <      painCave.severity = OOPSE_WARNING;
215 <      simError();
216 <    }
217 <  }
218 < }
282 >    // n_constraints is local, so subtract them on each processor
283 >    ndf_local -= nConstraints_;
284  
285 < void SimInfo::calcBoxL( void ){
286 <
287 <  double dx, dy, dz, dsq;
288 <
289 <  // boxVol = Determinant of Hmat
225 <
226 <  boxVol = matDet3( Hmat );
227 <
228 <  // boxLx
229 <  
230 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
231 <  dsq = dx*dx + dy*dy + dz*dz;
232 <  boxL[0] = sqrt( dsq );
233 <  //maxCutoff = 0.5 * boxL[0];
234 <
235 <  // boxLy
236 <  
237 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
238 <  dsq = dx*dx + dy*dy + dz*dz;
239 <  boxL[1] = sqrt( dsq );
240 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
241 <
242 <
243 <  // boxLz
244 <  
245 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
246 <  dsq = dx*dx + dy*dy + dz*dz;
247 <  boxL[2] = sqrt( dsq );
248 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
249 <
250 <  //calculate the max cutoff
251 <  maxCutoff =  calcMaxCutOff();
252 <  
253 <  checkCutOffs();
254 <
255 < }
256 <
257 <
258 < double SimInfo::calcMaxCutOff(){
259 <
260 <  double ri[3], rj[3], rk[3];
261 <  double rij[3], rjk[3], rki[3];
262 <  double minDist;
263 <
264 <  ri[0] = Hmat[0][0];
265 <  ri[1] = Hmat[1][0];
266 <  ri[2] = Hmat[2][0];
267 <
268 <  rj[0] = Hmat[0][1];
269 <  rj[1] = Hmat[1][1];
270 <  rj[2] = Hmat[2][1];
271 <
272 <  rk[0] = Hmat[0][2];
273 <  rk[1] = Hmat[1][2];
274 <  rk[2] = Hmat[2][2];
275 <    
276 <  crossProduct3(ri, rj, rij);
277 <  distXY = dotProduct3(rk,rij) / norm3(rij);
278 <
279 <  crossProduct3(rj,rk, rjk);
280 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
281 <
282 <  crossProduct3(rk,ri, rki);
283 <  distZX = dotProduct3(rj,rki) / norm3(rki);
284 <
285 <  minDist = min(min(distXY, distYZ), distZX);
286 <  return minDist/2;
287 <  
288 < }
289 <
290 < void SimInfo::wrapVector( double thePos[3] ){
291 <
292 <  int i;
293 <  double scaled[3];
294 <
295 <  if( !orthoRhombic ){
296 <    // calc the scaled coordinates.
297 <  
298 <
299 <    matVecMul3(HmatInv, thePos, scaled);
300 <    
301 <    for(i=0; i<3; i++)
302 <      scaled[i] -= roundMe(scaled[i]);
303 <    
304 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
305 <    
306 <    matVecMul3(Hmat, scaled, thePos);
307 <
308 <  }
309 <  else{
310 <    // calc the scaled coordinates.
311 <    
312 <    for(i=0; i<3; i++)
313 <      scaled[i] = thePos[i]*HmatInv[i][i];
314 <    
315 <    // wrap the scaled coordinates
316 <    
317 <    for(i=0; i<3; i++)
318 <      scaled[i] -= roundMe(scaled[i]);
319 <    
320 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
321 <    
322 <    for(i=0; i<3; i++)
323 <      thePos[i] = scaled[i]*Hmat[i][i];
324 <  }
325 <    
326 < }
327 <
285 > #ifdef IS_MPI
286 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
287 > #else
288 >    ndf_ = ndf_local;
289 > #endif
290  
291 < int SimInfo::getNDF(){
292 <  int ndf_local;
291 >    // nZconstraints_ is global, as are the 3 COM translations for the
292 >    // entire system:
293 >    ndf_ = ndf_ - 3 - nZconstraint_;
294  
332  ndf_local = 0;
333  
334  for(int i = 0; i < integrableObjects.size(); i++){
335    ndf_local += 3;
336    if (integrableObjects[i]->isDirectional()) {
337      if (integrableObjects[i]->isLinear())
338        ndf_local += 2;
339      else
340        ndf_local += 3;
341    }
295    }
296  
297 <  // n_constraints is local, so subtract them on each processor:
345 <
346 <  ndf_local -= n_constraints;
347 <
297 >  int SimInfo::getFdf() {
298   #ifdef IS_MPI
299 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
299 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
300   #else
301 <  ndf = ndf_local;
301 >    fdf_ = fdf_local;
302   #endif
303 +    return fdf_;
304 +  }
305 +    
306 +  void SimInfo::calcNdfRaw() {
307 +    int ndfRaw_local;
308  
309 <  // nZconstraints is global, as are the 3 COM translations for the
310 <  // entire system:
309 >    MoleculeIterator i;
310 >    std::vector<StuntDouble*>::iterator j;
311 >    Molecule* mol;
312 >    StuntDouble* integrableObject;
313  
314 <  ndf = ndf - 3 - nZconstraints;
314 >    // Raw degrees of freedom that we have to set
315 >    ndfRaw_local = 0;
316 >    
317 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
318 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
319 >           integrableObject = mol->nextIntegrableObject(j)) {
320  
321 <  return ndf;
360 < }
321 >        ndfRaw_local += 3;
322  
323 < int SimInfo::getNDFraw() {
324 <  int ndfRaw_local;
325 <
326 <  // Raw degrees of freedom that we have to set
327 <  ndfRaw_local = 0;
328 <
329 <  for(int i = 0; i < integrableObjects.size(); i++){
330 <    ndfRaw_local += 3;
331 <    if (integrableObjects[i]->isDirectional()) {
371 <       if (integrableObjects[i]->isLinear())
372 <        ndfRaw_local += 2;
373 <      else
374 <        ndfRaw_local += 3;
323 >        if (integrableObject->isDirectional()) {
324 >          if (integrableObject->isLinear()) {
325 >            ndfRaw_local += 2;
326 >          } else {
327 >            ndfRaw_local += 3;
328 >          }
329 >        }
330 >            
331 >      }
332      }
376  }
333      
334   #ifdef IS_MPI
335 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
335 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
336   #else
337 <  ndfRaw = ndfRaw_local;
337 >    ndfRaw_ = ndfRaw_local;
338   #endif
339 +  }
340  
341 <  return ndfRaw;
342 < }
341 >  void SimInfo::calcNdfTrans() {
342 >    int ndfTrans_local;
343  
344 < int SimInfo::getNDFtranslational() {
388 <  int ndfTrans_local;
344 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
345  
390  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
346  
392
347   #ifdef IS_MPI
348 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
348 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
349   #else
350 <  ndfTrans = ndfTrans_local;
350 >    ndfTrans_ = ndfTrans_local;
351   #endif
352  
353 <  ndfTrans = ndfTrans - 3 - nZconstraints;
353 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
354 >
355 >  }
356  
357 <  return ndfTrans;
358 < }
357 >  void SimInfo::addExcludePairs(Molecule* mol) {
358 >    std::vector<Bond*>::iterator bondIter;
359 >    std::vector<Bend*>::iterator bendIter;
360 >    std::vector<Torsion*>::iterator torsionIter;
361 >    Bond* bond;
362 >    Bend* bend;
363 >    Torsion* torsion;
364 >    int a;
365 >    int b;
366 >    int c;
367 >    int d;
368  
369 < int SimInfo::getTotIntegrableObjects() {
405 <  int nObjs_local;
406 <  int nObjs;
369 >    std::map<int, std::set<int> > atomGroups;
370  
371 <  nObjs_local =  integrableObjects.size();
371 >    Molecule::RigidBodyIterator rbIter;
372 >    RigidBody* rb;
373 >    Molecule::IntegrableObjectIterator ii;
374 >    StuntDouble* integrableObject;
375 >    
376 >    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
377 >           integrableObject = mol->nextIntegrableObject(ii)) {
378  
379 +      if (integrableObject->isRigidBody()) {
380 +          rb = static_cast<RigidBody*>(integrableObject);
381 +          std::vector<Atom*> atoms = rb->getAtoms();
382 +          std::set<int> rigidAtoms;
383 +          for (int i = 0; i < atoms.size(); ++i) {
384 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
385 +          }
386 +          for (int i = 0; i < atoms.size(); ++i) {
387 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
388 +          }      
389 +      } else {
390 +        std::set<int> oneAtomSet;
391 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
392 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
393 +      }
394 +    }  
395  
396 < #ifdef IS_MPI
397 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
398 < #else
399 <  nObjs = nObjs_local;
400 < #endif
396 >    
397 >    
398 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
399 >      a = bond->getAtomA()->getGlobalIndex();
400 >      b = bond->getAtomB()->getGlobalIndex();        
401 >      exclude_.addPair(a, b);
402 >    }
403  
404 +    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
405 +      a = bend->getAtomA()->getGlobalIndex();
406 +      b = bend->getAtomB()->getGlobalIndex();        
407 +      c = bend->getAtomC()->getGlobalIndex();
408 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
409 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
410 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
411  
412 <  return nObjs;
413 < }
412 >      exclude_.addPairs(rigidSetA, rigidSetB);
413 >      exclude_.addPairs(rigidSetA, rigidSetC);
414 >      exclude_.addPairs(rigidSetB, rigidSetC);
415 >      
416 >      //exclude_.addPair(a, b);
417 >      //exclude_.addPair(a, c);
418 >      //exclude_.addPair(b, c);        
419 >    }
420  
421 < void SimInfo::refreshSim(){
421 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
422 >      a = torsion->getAtomA()->getGlobalIndex();
423 >      b = torsion->getAtomB()->getGlobalIndex();        
424 >      c = torsion->getAtomC()->getGlobalIndex();        
425 >      d = torsion->getAtomD()->getGlobalIndex();        
426 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
427 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
428 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
429 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
430  
431 <  simtype fInfo;
432 <  int isError;
433 <  int n_global;
434 <  int* excl;
431 >      exclude_.addPairs(rigidSetA, rigidSetB);
432 >      exclude_.addPairs(rigidSetA, rigidSetC);
433 >      exclude_.addPairs(rigidSetA, rigidSetD);
434 >      exclude_.addPairs(rigidSetB, rigidSetC);
435 >      exclude_.addPairs(rigidSetB, rigidSetD);
436 >      exclude_.addPairs(rigidSetC, rigidSetD);
437  
438 <  fInfo.dielect = 0.0;
438 >      /*
439 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
440 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
441 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
442 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
443 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
444 >      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
445 >        
446 >      
447 >      exclude_.addPair(a, b);
448 >      exclude_.addPair(a, c);
449 >      exclude_.addPair(a, d);
450 >      exclude_.addPair(b, c);
451 >      exclude_.addPair(b, d);
452 >      exclude_.addPair(c, d);        
453 >      */
454 >    }
455  
456 <  if( useDipoles ){
457 <    if( useReactionField )fInfo.dielect = dielectric;
458 <  }
456 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
457 >      std::vector<Atom*> atoms = rb->getAtoms();
458 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
459 >        for (int j = i + 1; j < atoms.size(); ++j) {
460 >          a = atoms[i]->getGlobalIndex();
461 >          b = atoms[j]->getGlobalIndex();
462 >          exclude_.addPair(a, b);
463 >        }
464 >      }
465 >    }        
466 >
467 >  }
468 >
469 >  void SimInfo::removeExcludePairs(Molecule* mol) {
470 >    std::vector<Bond*>::iterator bondIter;
471 >    std::vector<Bend*>::iterator bendIter;
472 >    std::vector<Torsion*>::iterator torsionIter;
473 >    Bond* bond;
474 >    Bend* bend;
475 >    Torsion* torsion;
476 >    int a;
477 >    int b;
478 >    int c;
479 >    int d;
480 >
481 >    std::map<int, std::set<int> > atomGroups;
482 >
483 >    Molecule::RigidBodyIterator rbIter;
484 >    RigidBody* rb;
485 >    Molecule::IntegrableObjectIterator ii;
486 >    StuntDouble* integrableObject;
487 >    
488 >    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
489 >           integrableObject = mol->nextIntegrableObject(ii)) {
490 >
491 >      if (integrableObject->isRigidBody()) {
492 >          rb = static_cast<RigidBody*>(integrableObject);
493 >          std::vector<Atom*> atoms = rb->getAtoms();
494 >          std::set<int> rigidAtoms;
495 >          for (int i = 0; i < atoms.size(); ++i) {
496 >            rigidAtoms.insert(atoms[i]->getGlobalIndex());
497 >          }
498 >          for (int i = 0; i < atoms.size(); ++i) {
499 >            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
500 >          }      
501 >      } else {
502 >        std::set<int> oneAtomSet;
503 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
504 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
505 >      }
506 >    }  
507 >
508 >    
509 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
510 >      a = bond->getAtomA()->getGlobalIndex();
511 >      b = bond->getAtomB()->getGlobalIndex();        
512 >      exclude_.removePair(a, b);
513 >    }
514 >
515 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
516 >      a = bend->getAtomA()->getGlobalIndex();
517 >      b = bend->getAtomB()->getGlobalIndex();        
518 >      c = bend->getAtomC()->getGlobalIndex();
519 >
520 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
521 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
522 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
523 >
524 >      exclude_.removePairs(rigidSetA, rigidSetB);
525 >      exclude_.removePairs(rigidSetA, rigidSetC);
526 >      exclude_.removePairs(rigidSetB, rigidSetC);
527 >      
528 >      //exclude_.removePair(a, b);
529 >      //exclude_.removePair(a, c);
530 >      //exclude_.removePair(b, c);        
531 >    }
532 >
533 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
534 >      a = torsion->getAtomA()->getGlobalIndex();
535 >      b = torsion->getAtomB()->getGlobalIndex();        
536 >      c = torsion->getAtomC()->getGlobalIndex();        
537 >      d = torsion->getAtomD()->getGlobalIndex();        
538 >
539 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
540 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
541 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
542 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
543 >
544 >      exclude_.removePairs(rigidSetA, rigidSetB);
545 >      exclude_.removePairs(rigidSetA, rigidSetC);
546 >      exclude_.removePairs(rigidSetA, rigidSetD);
547 >      exclude_.removePairs(rigidSetB, rigidSetC);
548 >      exclude_.removePairs(rigidSetB, rigidSetD);
549 >      exclude_.removePairs(rigidSetC, rigidSetD);
550 >
551 >      /*
552 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
553 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
554 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
555 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
556 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
557 >      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
558 >
559 >      
560 >      exclude_.removePair(a, b);
561 >      exclude_.removePair(a, c);
562 >      exclude_.removePair(a, d);
563 >      exclude_.removePair(b, c);
564 >      exclude_.removePair(b, d);
565 >      exclude_.removePair(c, d);        
566 >      */
567 >    }
568 >
569 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
570 >      std::vector<Atom*> atoms = rb->getAtoms();
571 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
572 >        for (int j = i + 1; j < atoms.size(); ++j) {
573 >          a = atoms[i]->getGlobalIndex();
574 >          b = atoms[j]->getGlobalIndex();
575 >          exclude_.removePair(a, b);
576 >        }
577 >      }
578 >    }        
579 >
580 >  }
581 >
582 >
583 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
584 >    int curStampId;
585 >
586 >    //index from 0
587 >    curStampId = moleculeStamps_.size();
588 >
589 >    moleculeStamps_.push_back(molStamp);
590 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
591 >  }
592 >
593 >  void SimInfo::update() {
594 >
595 >    setupSimType();
596 >
597 > #ifdef IS_MPI
598 >    setupFortranParallel();
599 > #endif
600 >
601 >    setupFortranSim();
602 >
603 >    //setup fortran force field
604 >    /** @deprecate */    
605 >    int isError = 0;
606 >    
607 >    setupCutoff();
608 >    
609 >    setupElectrostaticSummationMethod( isError );
610 >    setupSwitchingFunction();
611 >    setupAccumulateBoxDipole();
612 >
613 >    if(isError){
614 >      sprintf( painCave.errMsg,
615 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
616 >      painCave.isFatal = 1;
617 >      simError();
618 >    }
619 >
620 >    calcNdf();
621 >    calcNdfRaw();
622 >    calcNdfTrans();
623 >
624 >    fortranInitialized_ = true;
625 >  }
626 >
627 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
628 >    SimInfo::MoleculeIterator mi;
629 >    Molecule* mol;
630 >    Molecule::AtomIterator ai;
631 >    Atom* atom;
632 >    std::set<AtomType*> atomTypes;
633 >
634 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
635 >
636 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
637 >        atomTypes.insert(atom->getAtomType());
638 >      }
639 >        
640 >    }
641 >
642 >    return atomTypes;        
643 >  }
644 >
645 >  void SimInfo::setupSimType() {
646 >    std::set<AtomType*>::iterator i;
647 >    std::set<AtomType*> atomTypes;
648 >    atomTypes = getUniqueAtomTypes();
649 >    
650 >    int useLennardJones = 0;
651 >    int useElectrostatic = 0;
652 >    int useEAM = 0;
653 >    int useSC = 0;
654 >    int useCharge = 0;
655 >    int useDirectional = 0;
656 >    int useDipole = 0;
657 >    int useGayBerne = 0;
658 >    int useSticky = 0;
659 >    int useStickyPower = 0;
660 >    int useShape = 0;
661 >    int useFLARB = 0; //it is not in AtomType yet
662 >    int useDirectionalAtom = 0;    
663 >    int useElectrostatics = 0;
664 >    //usePBC and useRF are from simParams
665 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
666 >    int useRF;
667 >    int useSF;
668 >    int useSP;
669 >    int useBoxDipole;
670 >
671 >    std::string myMethod;
672 >
673 >    // set the useRF logical
674 >    useRF = 0;
675 >    useSF = 0;
676 >    useSP = 0;
677 >
678 >
679 >    if (simParams_->haveElectrostaticSummationMethod()) {
680 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
681 >      toUpper(myMethod);
682 >      if (myMethod == "REACTION_FIELD"){
683 >        useRF = 1;
684 >      } else if (myMethod == "SHIFTED_FORCE"){
685 >        useSF = 1;
686 >      } else if (myMethod == "SHIFTED_POTENTIAL"){
687 >        useSP = 1;
688 >      }
689 >    }
690 >    
691 >    if (simParams_->haveAccumulateBoxDipole())
692 >      if (simParams_->getAccumulateBoxDipole())
693 >        useBoxDipole = 1;
694 >
695 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
696 >
697 >    //loop over all of the atom types
698 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
699 >      useLennardJones |= (*i)->isLennardJones();
700 >      useElectrostatic |= (*i)->isElectrostatic();
701 >      useEAM |= (*i)->isEAM();
702 >      useSC |= (*i)->isSC();
703 >      useCharge |= (*i)->isCharge();
704 >      useDirectional |= (*i)->isDirectional();
705 >      useDipole |= (*i)->isDipole();
706 >      useGayBerne |= (*i)->isGayBerne();
707 >      useSticky |= (*i)->isSticky();
708 >      useStickyPower |= (*i)->isStickyPower();
709 >      useShape |= (*i)->isShape();
710 >    }
711 >
712 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
713 >      useDirectionalAtom = 1;
714 >    }
715 >
716 >    if (useCharge || useDipole) {
717 >      useElectrostatics = 1;
718 >    }
719 >
720 > #ifdef IS_MPI    
721 >    int temp;
722 >
723 >    temp = usePBC;
724 >    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
725 >
726 >    temp = useDirectionalAtom;
727 >    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
728 >
729 >    temp = useLennardJones;
730 >    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
731 >
732 >    temp = useElectrostatics;
733 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
734 >
735 >    temp = useCharge;
736 >    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
737 >
738 >    temp = useDipole;
739 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
740 >
741 >    temp = useSticky;
742 >    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
743 >
744 >    temp = useStickyPower;
745 >    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
746 >    
747 >    temp = useGayBerne;
748 >    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
749 >
750 >    temp = useEAM;
751 >    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
752  
753 <  fInfo.SIM_uses_PBC = usePBC;
754 <  //fInfo.SIM_uses_LJ = 0;
755 <  fInfo.SIM_uses_LJ = useLJ;
756 <  fInfo.SIM_uses_sticky = useSticky;
757 <  //fInfo.SIM_uses_sticky = 0;
439 <  fInfo.SIM_uses_charges = useCharges;
440 <  fInfo.SIM_uses_dipoles = useDipoles;
441 <  //fInfo.SIM_uses_dipoles = 0;
442 <  fInfo.SIM_uses_RF = useReactionField;
443 <  //fInfo.SIM_uses_RF = 0;
444 <  fInfo.SIM_uses_GB = useGB;
445 <  fInfo.SIM_uses_EAM = useEAM;
753 >    temp = useSC;
754 >    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
755 >    
756 >    temp = useShape;
757 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
758  
759 <  n_exclude = excludes->getSize();
760 <  excl = excludes->getFortranArray();
761 <  
762 < #ifdef IS_MPI
763 <  n_global = mpiSim->getNAtomsGlobal();
764 < #else
765 <  n_global = n_atoms;
759 >    temp = useFLARB;
760 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
761 >
762 >    temp = useRF;
763 >    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
764 >
765 >    temp = useSF;
766 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
767 >
768 >    temp = useSP;
769 >    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
770 >
771 >    temp = useBoxDipole;
772 >    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
773 >
774 >    temp = useAtomicVirial_;
775 >    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
776 >
777   #endif
455  
456  isError = 0;
457  
458  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
459  //it may not be a good idea to pass the address of first element in vector
460  //since c++ standard does not require vector to be stored continuously in meomory
461  //Most of the compilers will organize the memory of vector continuously
462  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
463                  &nGlobalExcludes, globalExcludes, molMembershipArray,
464                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
778  
779 <  if( isError ){
780 <    
781 <    sprintf( painCave.errMsg,
782 <             "There was an error setting the simulation information in fortran.\n" );
783 <    painCave.isFatal = 1;
784 <    painCave.severity = OOPSE_ERROR;
785 <    simError();
779 >    fInfo_.SIM_uses_PBC = usePBC;    
780 >    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
781 >    fInfo_.SIM_uses_LennardJones = useLennardJones;
782 >    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
783 >    fInfo_.SIM_uses_Charges = useCharge;
784 >    fInfo_.SIM_uses_Dipoles = useDipole;
785 >    fInfo_.SIM_uses_Sticky = useSticky;
786 >    fInfo_.SIM_uses_StickyPower = useStickyPower;
787 >    fInfo_.SIM_uses_GayBerne = useGayBerne;
788 >    fInfo_.SIM_uses_EAM = useEAM;
789 >    fInfo_.SIM_uses_SC = useSC;
790 >    fInfo_.SIM_uses_Shapes = useShape;
791 >    fInfo_.SIM_uses_FLARB = useFLARB;
792 >    fInfo_.SIM_uses_RF = useRF;
793 >    fInfo_.SIM_uses_SF = useSF;
794 >    fInfo_.SIM_uses_SP = useSP;
795 >    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
796 >    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
797    }
474  
475 #ifdef IS_MPI
476  sprintf( checkPointMsg,
477           "succesfully sent the simulation information to fortran.\n");
478  MPIcheckPoint();
479 #endif // is_mpi
480  
481  this->ndf = this->getNDF();
482  this->ndfRaw = this->getNDFraw();
483  this->ndfTrans = this->getNDFtranslational();
484 }
798  
799 < void SimInfo::setDefaultRcut( double theRcut ){
800 <  
801 <  haveRcut = 1;
802 <  rCut = theRcut;
803 <  rList = rCut + 1.0;
804 <  
805 <  notifyFortranCutOffs( &rCut, &rSw, &rList );
493 < }
799 >  void SimInfo::setupFortranSim() {
800 >    int isError;
801 >    int nExclude;
802 >    std::vector<int> fortranGlobalGroupMembership;
803 >    
804 >    nExclude = exclude_.getSize();
805 >    isError = 0;
806  
807 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
807 >    //globalGroupMembership_ is filled by SimCreator    
808 >    for (int i = 0; i < nGlobalAtoms_; i++) {
809 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
810 >    }
811  
812 <  rSw = theRsw;
813 <  setDefaultRcut( theRcut );
814 < }
812 >    //calculate mass ratio of cutoff group
813 >    std::vector<RealType> mfact;
814 >    SimInfo::MoleculeIterator mi;
815 >    Molecule* mol;
816 >    Molecule::CutoffGroupIterator ci;
817 >    CutoffGroup* cg;
818 >    Molecule::AtomIterator ai;
819 >    Atom* atom;
820 >    RealType totalMass;
821  
822 +    //to avoid memory reallocation, reserve enough space for mfact
823 +    mfact.reserve(getNCutoffGroups());
824 +    
825 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
826 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
827  
828 < void SimInfo::checkCutOffs( void ){
829 <  
830 <  if( boxIsInit ){
828 >        totalMass = cg->getMass();
829 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
830 >          // Check for massless groups - set mfact to 1 if true
831 >          if (totalMass != 0)
832 >            mfact.push_back(atom->getMass()/totalMass);
833 >          else
834 >            mfact.push_back( 1.0 );
835 >        }
836 >
837 >      }      
838 >    }
839 >
840 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
841 >    std::vector<int> identArray;
842 >
843 >    //to avoid memory reallocation, reserve enough space identArray
844 >    identArray.reserve(getNAtoms());
845      
846 <    //we need to check cutOffs against the box
846 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
847 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
848 >        identArray.push_back(atom->getIdent());
849 >      }
850 >    }    
851 >
852 >    //fill molMembershipArray
853 >    //molMembershipArray is filled by SimCreator    
854 >    std::vector<int> molMembershipArray(nGlobalAtoms_);
855 >    for (int i = 0; i < nGlobalAtoms_; i++) {
856 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
857 >    }
858      
859 <    if( rCut > maxCutoff ){
859 >    //setup fortran simulation
860 >    int nGlobalExcludes = 0;
861 >    int* globalExcludes = NULL;
862 >    int* excludeList = exclude_.getExcludeList();
863 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
864 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
865 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
866 >
867 >    if( isError ){
868 >
869        sprintf( painCave.errMsg,
870 <               "cutoffRadius is too large for the current periodic box.\n"
511 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
512 <               "\tThis is larger than half of at least one of the\n"
513 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
514 <               "\n"
515 <               "\t[ %G %G %G ]\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n",
518 <               rCut, currentTime,
519 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
520 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
521 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
522 <      painCave.severity = OOPSE_ERROR;
870 >               "There was an error setting the simulation information in fortran.\n" );
871        painCave.isFatal = 1;
872 +      painCave.severity = OOPSE_ERROR;
873        simError();
874 <    }    
526 <  } else {
527 <    // initialize this stuff before using it, OK?
528 <    sprintf( painCave.errMsg,
529 <             "Trying to check cutoffs without a box.\n"
530 <             "\tOOPSE should have better programmers than that.\n" );
531 <    painCave.severity = OOPSE_ERROR;
532 <    painCave.isFatal = 1;
533 <    simError();      
534 <  }
535 <  
536 < }
874 >    }
875  
876 < void SimInfo::addProperty(GenericData* prop){
876 > #ifdef IS_MPI
877 >    sprintf( checkPointMsg,
878 >             "succesfully sent the simulation information to fortran.\n");
879 >    MPIcheckPoint();
880 > #endif // is_mpi
881  
882 <  map<string, GenericData*>::iterator result;
883 <  result = properties.find(prop->getID());
884 <  
885 <  //we can't simply use  properties[prop->getID()] = prop,
886 <  //it will cause memory leak if we already contain a propery which has the same name of prop
887 <  
888 <  if(result != properties.end()){
547 <    
548 <    delete (*result).second;
549 <    (*result).second = prop;
550 <      
882 >    // Setup number of neighbors in neighbor list if present
883 >    if (simParams_->haveNeighborListNeighbors()) {
884 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
885 >      setNeighbors(&nlistNeighbors);
886 >    }
887 >  
888 >
889    }
552  else{
890  
554    properties[prop->getID()] = prop;
891  
892 <  }
892 > #ifdef IS_MPI
893 >  void SimInfo::setupFortranParallel() {
894      
895 < }
895 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
896 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
897 >    std::vector<int> localToGlobalCutoffGroupIndex;
898 >    SimInfo::MoleculeIterator mi;
899 >    Molecule::AtomIterator ai;
900 >    Molecule::CutoffGroupIterator ci;
901 >    Molecule* mol;
902 >    Atom* atom;
903 >    CutoffGroup* cg;
904 >    mpiSimData parallelData;
905 >    int isError;
906  
907 < GenericData* SimInfo::getProperty(const string& propName){
561 <
562 <  map<string, GenericData*>::iterator result;
563 <  
564 <  //string lowerCaseName = ();
565 <  
566 <  result = properties.find(propName);
567 <  
568 <  if(result != properties.end())
569 <    return (*result).second;  
570 <  else  
571 <    return NULL;  
572 < }
907 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
908  
909 +      //local index(index in DataStorge) of atom is important
910 +      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
911 +        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
912 +      }
913  
914 < void SimInfo::getFortranGroupArrays(SimInfo* info,
915 <                                    vector<int>& FglobalGroupMembership,
916 <                                    vector<double>& mfact){
917 <  
918 <  Molecule* myMols;
919 <  Atom** myAtoms;
581 <  int numAtom;
582 <  double mtot;
583 <  int numMol;
584 <  int numCutoffGroups;
585 <  CutoffGroup* myCutoffGroup;
586 <  vector<CutoffGroup*>::iterator iterCutoff;
587 <  Atom* cutoffAtom;
588 <  vector<Atom*>::iterator iterAtom;
589 <  int atomIndex;
590 <  double totalMass;
591 <  
592 <  mfact.clear();
593 <  FglobalGroupMembership.clear();
594 <  
914 >      //local index of cutoff group is trivial, it only depends on the order of travesing
915 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
916 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
917 >      }        
918 >        
919 >    }
920  
921 <  // Fix the silly fortran indexing problem
922 < #ifdef IS_MPI
923 <  numAtom = mpiSim->getNAtomsGlobal();
924 < #else
925 <  numAtom = n_atoms;
921 >    //fill up mpiSimData struct
922 >    parallelData.nMolGlobal = getNGlobalMolecules();
923 >    parallelData.nMolLocal = getNMolecules();
924 >    parallelData.nAtomsGlobal = getNGlobalAtoms();
925 >    parallelData.nAtomsLocal = getNAtoms();
926 >    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
927 >    parallelData.nGroupsLocal = getNCutoffGroups();
928 >    parallelData.myNode = worldRank;
929 >    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
930 >
931 >    //pass mpiSimData struct and index arrays to fortran
932 >    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
933 >                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
934 >                    &localToGlobalCutoffGroupIndex[0], &isError);
935 >
936 >    if (isError) {
937 >      sprintf(painCave.errMsg,
938 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
939 >      painCave.isFatal = 1;
940 >      simError();
941 >    }
942 >
943 >    sprintf(checkPointMsg, " mpiRefresh successful.\n");
944 >    MPIcheckPoint();
945 >
946 >
947 >  }
948 >
949   #endif
602  for (int i = 0; i < numAtom; i++)
603    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
604  
950  
951 <  myMols = info->molecules;
952 <  numMol = info->n_mol;
953 <  for(int i  = 0; i < numMol; i++){
609 <    numCutoffGroups = myMols[i].getNCutoffGroups();
610 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
611 <        myCutoffGroup != NULL;
612 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
951 >  void SimInfo::setupCutoff() {          
952 >    
953 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
954  
955 <      totalMass = myCutoffGroup->getMass();
955 >    // Check the cutoff policy
956 >    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
957 >
958 >    std::string myPolicy;
959 >    if (forceFieldOptions_.haveCutoffPolicy()){
960 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
961 >    }else if (simParams_->haveCutoffPolicy()) {
962 >      myPolicy = simParams_->getCutoffPolicy();
963 >    }
964 >
965 >    if (!myPolicy.empty()){
966 >      toUpper(myPolicy);
967 >      if (myPolicy == "MIX") {
968 >        cp = MIX_CUTOFF_POLICY;
969 >      } else {
970 >        if (myPolicy == "MAX") {
971 >          cp = MAX_CUTOFF_POLICY;
972 >        } else {
973 >          if (myPolicy == "TRADITIONAL") {            
974 >            cp = TRADITIONAL_CUTOFF_POLICY;
975 >          } else {
976 >            // throw error        
977 >            sprintf( painCave.errMsg,
978 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
979 >            painCave.isFatal = 1;
980 >            simError();
981 >          }    
982 >        }          
983 >      }
984 >    }          
985 >    notifyFortranCutoffPolicy(&cp);
986 >
987 >    // Check the Skin Thickness for neighborlists
988 >    RealType skin;
989 >    if (simParams_->haveSkinThickness()) {
990 >      skin = simParams_->getSkinThickness();
991 >      notifyFortranSkinThickness(&skin);
992 >    }            
993 >        
994 >    // Check if the cutoff was set explicitly:
995 >    if (simParams_->haveCutoffRadius()) {
996 >      rcut_ = simParams_->getCutoffRadius();
997 >      if (simParams_->haveSwitchingRadius()) {
998 >        rsw_  = simParams_->getSwitchingRadius();
999 >      } else {
1000 >        if (fInfo_.SIM_uses_Charges |
1001 >            fInfo_.SIM_uses_Dipoles |
1002 >            fInfo_.SIM_uses_RF) {
1003 >          
1004 >          rsw_ = 0.85 * rcut_;
1005 >          sprintf(painCave.errMsg,
1006 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1007 >                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1008 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1009 >        painCave.isFatal = 0;
1010 >        simError();
1011 >        } else {
1012 >          rsw_ = rcut_;
1013 >          sprintf(painCave.errMsg,
1014 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1015 >                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1016 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1017 >          painCave.isFatal = 0;
1018 >          simError();
1019 >        }
1020 >      }
1021        
1022 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
1023 <          cutoffAtom != NULL;
1024 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
1025 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
1026 <      }  
1022 >      notifyFortranCutoffs(&rcut_, &rsw_);
1023 >      
1024 >    } else {
1025 >      
1026 >      // For electrostatic atoms, we'll assume a large safe value:
1027 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1028 >        sprintf(painCave.errMsg,
1029 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1030 >                "\tOOPSE will use a default value of 15.0 angstroms"
1031 >                "\tfor the cutoffRadius.\n");
1032 >        painCave.isFatal = 0;
1033 >        simError();
1034 >        rcut_ = 15.0;
1035 >      
1036 >        if (simParams_->haveElectrostaticSummationMethod()) {
1037 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1038 >          toUpper(myMethod);
1039 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1040 >            if (simParams_->haveSwitchingRadius()){
1041 >              sprintf(painCave.errMsg,
1042 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
1043 >                      "\teven though the electrostaticSummationMethod was\n"
1044 >                      "\tset to %s\n", myMethod.c_str());
1045 >              painCave.isFatal = 1;
1046 >              simError();            
1047 >            }
1048 >          }
1049 >        }
1050 >      
1051 >        if (simParams_->haveSwitchingRadius()){
1052 >          rsw_ = simParams_->getSwitchingRadius();
1053 >        } else {        
1054 >          sprintf(painCave.errMsg,
1055 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1056 >                  "\tOOPSE will use a default value of\n"
1057 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1058 >          painCave.isFatal = 0;
1059 >          simError();
1060 >          rsw_ = 0.85 * rcut_;
1061 >        }
1062 >        notifyFortranCutoffs(&rcut_, &rsw_);
1063 >      } else {
1064 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1065 >        // We'll punt and let fortran figure out the cutoffs later.
1066 >        
1067 >        notifyFortranYouAreOnYourOwn();
1068 >
1069 >      }
1070      }
1071    }
1072  
1073 < }
1073 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1074 >    
1075 >    int errorOut;
1076 >    int esm =  NONE;
1077 >    int sm = UNDAMPED;
1078 >    RealType alphaVal;
1079 >    RealType dielectric;
1080 >    
1081 >    errorOut = isError;
1082 >
1083 >    if (simParams_->haveElectrostaticSummationMethod()) {
1084 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1085 >      toUpper(myMethod);
1086 >      if (myMethod == "NONE") {
1087 >        esm = NONE;
1088 >      } else {
1089 >        if (myMethod == "SWITCHING_FUNCTION") {
1090 >          esm = SWITCHING_FUNCTION;
1091 >        } else {
1092 >          if (myMethod == "SHIFTED_POTENTIAL") {
1093 >            esm = SHIFTED_POTENTIAL;
1094 >          } else {
1095 >            if (myMethod == "SHIFTED_FORCE") {            
1096 >              esm = SHIFTED_FORCE;
1097 >            } else {
1098 >              if (myMethod == "REACTION_FIELD") {
1099 >                esm = REACTION_FIELD;
1100 >                dielectric = simParams_->getDielectric();
1101 >                if (!simParams_->haveDielectric()) {
1102 >                  // throw warning
1103 >                  sprintf( painCave.errMsg,
1104 >                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1105 >                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1106 >                  painCave.isFatal = 0;
1107 >                  simError();
1108 >                }
1109 >              } else {
1110 >                // throw error        
1111 >                sprintf( painCave.errMsg,
1112 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1113 >                         "\t(Input file specified %s .)\n"
1114 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1115 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1116 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1117 >                painCave.isFatal = 1;
1118 >                simError();
1119 >              }    
1120 >            }          
1121 >          }
1122 >        }
1123 >      }
1124 >    }
1125 >    
1126 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1127 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1128 >      toUpper(myScreen);
1129 >      if (myScreen == "UNDAMPED") {
1130 >        sm = UNDAMPED;
1131 >      } else {
1132 >        if (myScreen == "DAMPED") {
1133 >          sm = DAMPED;
1134 >          if (!simParams_->haveDampingAlpha()) {
1135 >            // first set a cutoff dependent alpha value
1136 >            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1137 >            alphaVal = 0.5125 - rcut_* 0.025;
1138 >            // for values rcut > 20.5, alpha is zero
1139 >            if (alphaVal < 0) alphaVal = 0;
1140 >
1141 >            // throw warning
1142 >            sprintf( painCave.errMsg,
1143 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1144 >                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1145 >            painCave.isFatal = 0;
1146 >            simError();
1147 >          } else {
1148 >            alphaVal = simParams_->getDampingAlpha();
1149 >          }
1150 >          
1151 >        } else {
1152 >          // throw error        
1153 >          sprintf( painCave.errMsg,
1154 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1155 >                   "\t(Input file specified %s .)\n"
1156 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1157 >                   "or \"damped\".\n", myScreen.c_str() );
1158 >          painCave.isFatal = 1;
1159 >          simError();
1160 >        }
1161 >      }
1162 >    }
1163 >    
1164 >    // let's pass some summation method variables to fortran
1165 >    setElectrostaticSummationMethod( &esm );
1166 >    setFortranElectrostaticMethod( &esm );
1167 >    setScreeningMethod( &sm );
1168 >    setDampingAlpha( &alphaVal );
1169 >    setReactionFieldDielectric( &dielectric );
1170 >    initFortranFF( &errorOut );
1171 >  }
1172 >
1173 >  void SimInfo::setupSwitchingFunction() {    
1174 >    int ft = CUBIC;
1175 >
1176 >    if (simParams_->haveSwitchingFunctionType()) {
1177 >      std::string funcType = simParams_->getSwitchingFunctionType();
1178 >      toUpper(funcType);
1179 >      if (funcType == "CUBIC") {
1180 >        ft = CUBIC;
1181 >      } else {
1182 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1183 >          ft = FIFTH_ORDER_POLY;
1184 >        } else {
1185 >          // throw error        
1186 >          sprintf( painCave.errMsg,
1187 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1188 >          painCave.isFatal = 1;
1189 >          simError();
1190 >        }          
1191 >      }
1192 >    }
1193 >
1194 >    // send switching function notification to switcheroo
1195 >    setFunctionType(&ft);
1196 >
1197 >  }
1198 >
1199 >  void SimInfo::setupAccumulateBoxDipole() {    
1200 >
1201 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1202 >    if ( simParams_->haveAccumulateBoxDipole() )
1203 >      if ( simParams_->getAccumulateBoxDipole() ) {
1204 >        setAccumulateBoxDipole();
1205 >        calcBoxDipole_ = true;
1206 >      }
1207 >
1208 >  }
1209 >
1210 >  void SimInfo::addProperty(GenericData* genData) {
1211 >    properties_.addProperty(genData);  
1212 >  }
1213 >
1214 >  void SimInfo::removeProperty(const std::string& propName) {
1215 >    properties_.removeProperty(propName);  
1216 >  }
1217 >
1218 >  void SimInfo::clearProperties() {
1219 >    properties_.clearProperties();
1220 >  }
1221 >
1222 >  std::vector<std::string> SimInfo::getPropertyNames() {
1223 >    return properties_.getPropertyNames();  
1224 >  }
1225 >      
1226 >  std::vector<GenericData*> SimInfo::getProperties() {
1227 >    return properties_.getProperties();
1228 >  }
1229 >
1230 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1231 >    return properties_.getPropertyByName(propName);
1232 >  }
1233 >
1234 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1235 >    if (sman_ == sman) {
1236 >      return;
1237 >    }    
1238 >    delete sman_;
1239 >    sman_ = sman;
1240 >
1241 >    Molecule* mol;
1242 >    RigidBody* rb;
1243 >    Atom* atom;
1244 >    SimInfo::MoleculeIterator mi;
1245 >    Molecule::RigidBodyIterator rbIter;
1246 >    Molecule::AtomIterator atomIter;;
1247 >
1248 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1249 >        
1250 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1251 >        atom->setSnapshotManager(sman_);
1252 >      }
1253 >        
1254 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1255 >        rb->setSnapshotManager(sman_);
1256 >      }
1257 >    }    
1258 >    
1259 >  }
1260 >
1261 >  Vector3d SimInfo::getComVel(){
1262 >    SimInfo::MoleculeIterator i;
1263 >    Molecule* mol;
1264 >
1265 >    Vector3d comVel(0.0);
1266 >    RealType totalMass = 0.0;
1267 >    
1268 >
1269 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1270 >      RealType mass = mol->getMass();
1271 >      totalMass += mass;
1272 >      comVel += mass * mol->getComVel();
1273 >    }  
1274 >
1275 > #ifdef IS_MPI
1276 >    RealType tmpMass = totalMass;
1277 >    Vector3d tmpComVel(comVel);    
1278 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1279 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1280 > #endif
1281 >
1282 >    comVel /= totalMass;
1283 >
1284 >    return comVel;
1285 >  }
1286 >
1287 >  Vector3d SimInfo::getCom(){
1288 >    SimInfo::MoleculeIterator i;
1289 >    Molecule* mol;
1290 >
1291 >    Vector3d com(0.0);
1292 >    RealType totalMass = 0.0;
1293 >    
1294 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1295 >      RealType mass = mol->getMass();
1296 >      totalMass += mass;
1297 >      com += mass * mol->getCom();
1298 >    }  
1299 >
1300 > #ifdef IS_MPI
1301 >    RealType tmpMass = totalMass;
1302 >    Vector3d tmpCom(com);    
1303 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1304 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1305 > #endif
1306 >
1307 >    com /= totalMass;
1308 >
1309 >    return com;
1310 >
1311 >  }        
1312 >
1313 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1314 >
1315 >    return o;
1316 >  }
1317 >  
1318 >  
1319 >   /*
1320 >   Returns center of mass and center of mass velocity in one function call.
1321 >   */
1322 >  
1323 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1324 >      SimInfo::MoleculeIterator i;
1325 >      Molecule* mol;
1326 >      
1327 >    
1328 >      RealType totalMass = 0.0;
1329 >    
1330 >
1331 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1332 >         RealType mass = mol->getMass();
1333 >         totalMass += mass;
1334 >         com += mass * mol->getCom();
1335 >         comVel += mass * mol->getComVel();          
1336 >      }  
1337 >      
1338 > #ifdef IS_MPI
1339 >      RealType tmpMass = totalMass;
1340 >      Vector3d tmpCom(com);  
1341 >      Vector3d tmpComVel(comVel);
1342 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1343 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1344 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1345 > #endif
1346 >      
1347 >      com /= totalMass;
1348 >      comVel /= totalMass;
1349 >   }        
1350 >  
1351 >   /*
1352 >   Return intertia tensor for entire system and angular momentum Vector.
1353 >
1354 >
1355 >       [  Ixx -Ixy  -Ixz ]
1356 >  J =| -Iyx  Iyy  -Iyz |
1357 >       [ -Izx -Iyz   Izz ]
1358 >    */
1359 >
1360 >   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1361 >      
1362 >
1363 >      RealType xx = 0.0;
1364 >      RealType yy = 0.0;
1365 >      RealType zz = 0.0;
1366 >      RealType xy = 0.0;
1367 >      RealType xz = 0.0;
1368 >      RealType yz = 0.0;
1369 >      Vector3d com(0.0);
1370 >      Vector3d comVel(0.0);
1371 >      
1372 >      getComAll(com, comVel);
1373 >      
1374 >      SimInfo::MoleculeIterator i;
1375 >      Molecule* mol;
1376 >      
1377 >      Vector3d thisq(0.0);
1378 >      Vector3d thisv(0.0);
1379 >
1380 >      RealType thisMass = 0.0;
1381 >    
1382 >      
1383 >      
1384 >  
1385 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1386 >        
1387 >         thisq = mol->getCom()-com;
1388 >         thisv = mol->getComVel()-comVel;
1389 >         thisMass = mol->getMass();
1390 >         // Compute moment of intertia coefficients.
1391 >         xx += thisq[0]*thisq[0]*thisMass;
1392 >         yy += thisq[1]*thisq[1]*thisMass;
1393 >         zz += thisq[2]*thisq[2]*thisMass;
1394 >        
1395 >         // compute products of intertia
1396 >         xy += thisq[0]*thisq[1]*thisMass;
1397 >         xz += thisq[0]*thisq[2]*thisMass;
1398 >         yz += thisq[1]*thisq[2]*thisMass;
1399 >            
1400 >         angularMomentum += cross( thisq, thisv ) * thisMass;
1401 >            
1402 >      }  
1403 >      
1404 >      
1405 >      inertiaTensor(0,0) = yy + zz;
1406 >      inertiaTensor(0,1) = -xy;
1407 >      inertiaTensor(0,2) = -xz;
1408 >      inertiaTensor(1,0) = -xy;
1409 >      inertiaTensor(1,1) = xx + zz;
1410 >      inertiaTensor(1,2) = -yz;
1411 >      inertiaTensor(2,0) = -xz;
1412 >      inertiaTensor(2,1) = -yz;
1413 >      inertiaTensor(2,2) = xx + yy;
1414 >      
1415 > #ifdef IS_MPI
1416 >      Mat3x3d tmpI(inertiaTensor);
1417 >      Vector3d tmpAngMom;
1418 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1419 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1420 > #endif
1421 >              
1422 >      return;
1423 >   }
1424 >
1425 >   //Returns the angular momentum of the system
1426 >   Vector3d SimInfo::getAngularMomentum(){
1427 >      
1428 >      Vector3d com(0.0);
1429 >      Vector3d comVel(0.0);
1430 >      Vector3d angularMomentum(0.0);
1431 >      
1432 >      getComAll(com,comVel);
1433 >      
1434 >      SimInfo::MoleculeIterator i;
1435 >      Molecule* mol;
1436 >      
1437 >      Vector3d thisr(0.0);
1438 >      Vector3d thisp(0.0);
1439 >      
1440 >      RealType thisMass;
1441 >      
1442 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1443 >        thisMass = mol->getMass();
1444 >        thisr = mol->getCom()-com;
1445 >        thisp = (mol->getComVel()-comVel)*thisMass;
1446 >        
1447 >        angularMomentum += cross( thisr, thisp );
1448 >        
1449 >      }  
1450 >      
1451 > #ifdef IS_MPI
1452 >      Vector3d tmpAngMom;
1453 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1454 > #endif
1455 >      
1456 >      return angularMomentum;
1457 >   }
1458 >  
1459 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1460 >    return IOIndexToIntegrableObject.at(index);
1461 >  }
1462 >  
1463 >  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1464 >    IOIndexToIntegrableObject= v;
1465 >  }
1466 >
1467 >  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1468 >     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1469 >     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1470 >     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1471 >  */
1472 >  void SimInfo::getGyrationalVolume(RealType &volume){
1473 >    Mat3x3d intTensor;
1474 >    RealType det;
1475 >    Vector3d dummyAngMom;
1476 >    RealType sysconstants;
1477 >    RealType geomCnst;
1478 >
1479 >    geomCnst = 3.0/2.0;
1480 >    /* Get the inertial tensor and angular momentum for free*/
1481 >    getInertiaTensor(intTensor,dummyAngMom);
1482 >    
1483 >    det = intTensor.determinant();
1484 >    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1485 >    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1486 >    return;
1487 >  }
1488 >
1489 >  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1490 >    Mat3x3d intTensor;
1491 >    Vector3d dummyAngMom;
1492 >    RealType sysconstants;
1493 >    RealType geomCnst;
1494 >
1495 >    geomCnst = 3.0/2.0;
1496 >    /* Get the inertial tensor and angular momentum for free*/
1497 >    getInertiaTensor(intTensor,dummyAngMom);
1498 >    
1499 >    detI = intTensor.determinant();
1500 >    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1501 >    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1502 >    return;
1503 >  }
1504 > /*
1505 >   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1506 >      assert( v.size() == nAtoms_ + nRigidBodies_);
1507 >      sdByGlobalIndex_ = v;
1508 >    }
1509 >
1510 >    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1511 >      //assert(index < nAtoms_ + nRigidBodies_);
1512 >      return sdByGlobalIndex_.at(index);
1513 >    }  
1514 > */  
1515 > }//end namespace oopse
1516 >

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines