ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 124 by chuckv, Wed Oct 20 20:46:20 2004 UTC vs.
Revision 1050 by chrisfen, Fri Sep 22 22:19:59 2006 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51 > #include <map>
52  
53   #include "brains/SimInfo.hpp"
54 < #define __C
55 < #include "brains/fSimulation.h"
54 > #include "math/Vector3.hpp"
55 > #include "primitives/Molecule.hpp"
56 > #include "primitives/StuntDouble.hpp"
57 > #include "UseTheForce/fCutoffPolicy.h"
58 > #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 > #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 > #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 > #include "UseTheForce/doForces_interface.h"
62 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
63 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
64 > #include "utils/MemoryUtils.hpp"
65   #include "utils/simError.h"
66 < #include "UseTheForce/DarkSide/simulation_interface.h"
67 < #include "UseTheForce/notifyCutoffs_interface.h"
66 > #include "selection/SelectionManager.hpp"
67 > #include "io/ForceFieldOptions.hpp"
68 > #include "UseTheForce/ForceField.hpp"
69  
15 //#include "UseTheForce/fortranWrappers.hpp"
16
17 #include "math/MatVec3.h"
18
70   #ifdef IS_MPI
71 < #include "brains/mpiSimulation.hpp"
72 < #endif
71 > #include "UseTheForce/mpiComponentPlan.h"
72 > #include "UseTheForce/DarkSide/simParallel_interface.h"
73 > #endif
74  
75 < inline double roundMe( double x ){
76 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
77 < }
78 <          
79 < inline double min( double a, double b ){
80 <  return (a < b ) ? a : b;
81 < }
75 > namespace oopse {
76 >  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
77 >    std::map<int, std::set<int> >::iterator i = container.find(index);
78 >    std::set<int> result;
79 >    if (i != container.end()) {
80 >        result = i->second;
81 >    }
82  
83 < SimInfo* currentInfo;
84 <
33 < SimInfo::SimInfo(){
34 <
35 <  n_constraints = 0;
36 <  nZconstraints = 0;
37 <  n_oriented = 0;
38 <  n_dipoles = 0;
39 <  ndf = 0;
40 <  ndfRaw = 0;
41 <  nZconstraints = 0;
42 <  the_integrator = NULL;
43 <  setTemp = 0;
44 <  thermalTime = 0.0;
45 <  currentTime = 0.0;
46 <  rCut = 0.0;
47 <  rSw = 0.0;
48 <
49 <  haveRcut = 0;
50 <  haveRsw = 0;
51 <  boxIsInit = 0;
83 >    return result;
84 >  }
85    
86 <  resetTime = 1e99;
86 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
87 >    forceField_(ff), simParams_(simParams),
88 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
89 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
90 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
91 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
92 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
93 >    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) {
94  
95 <  orthoRhombic = 0;
96 <  orthoTolerance = 1E-6;
97 <  useInitXSstate = true;
95 >      MoleculeStamp* molStamp;
96 >      int nMolWithSameStamp;
97 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
98 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
99 >      CutoffGroupStamp* cgStamp;    
100 >      RigidBodyStamp* rbStamp;
101 >      int nRigidAtoms = 0;
102 >      std::vector<Component*> components = simParams->getComponents();
103 >      
104 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
105 >        molStamp = (*i)->getMoleculeStamp();
106 >        nMolWithSameStamp = (*i)->getNMol();
107 >        
108 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
109  
110 <  usePBC = 0;
111 <  useLJ = 0;
61 <  useSticky = 0;
62 <  useCharges = 0;
63 <  useDipoles = 0;
64 <  useReactionField = 0;
65 <  useGB = 0;
66 <  useEAM = 0;
67 <  useSolidThermInt = 0;
68 <  useLiquidThermInt = 0;
110 >        //calculate atoms in molecules
111 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
112  
113 <  haveCutoffGroups = false;
113 >        //calculate atoms in cutoff groups
114 >        int nAtomsInGroups = 0;
115 >        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
116 >        
117 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
118 >          cgStamp = molStamp->getCutoffGroupStamp(j);
119 >          nAtomsInGroups += cgStamp->getNMembers();
120 >        }
121  
122 <  excludes = Exclude::Instance();
122 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
123  
124 <  myConfiguration = new SimState();
124 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
125  
126 <  has_minimizer = false;
127 <  the_minimizer =NULL;
126 >        //calculate atoms in rigid bodies
127 >        int nAtomsInRigidBodies = 0;
128 >        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
129 >        
130 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
131 >          rbStamp = molStamp->getRigidBodyStamp(j);
132 >          nAtomsInRigidBodies += rbStamp->getNMembers();
133 >        }
134  
135 <  ngroup = 0;
135 >        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
136 >        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
137 >        
138 >      }
139  
140 < }
140 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
141 >      //group therefore the total number of cutoff groups in the system is
142 >      //equal to the total number of atoms minus number of atoms belong to
143 >      //cutoff group defined in meta-data file plus the number of cutoff
144 >      //groups defined in meta-data file
145 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
146  
147 <
148 < SimInfo::~SimInfo(){
149 <
150 <  delete myConfiguration;
151 <
152 <  map<string, GenericData*>::iterator i;
147 >      //every free atom (atom does not belong to rigid bodies) is an
148 >      //integrable object therefore the total number of integrable objects
149 >      //in the system is equal to the total number of atoms minus number of
150 >      //atoms belong to rigid body defined in meta-data file plus the number
151 >      //of rigid bodies defined in meta-data file
152 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
153 >                                                + nGlobalRigidBodies_;
154    
155 <  for(i = properties.begin(); i != properties.end(); i++)
91 <    delete (*i).second;
155 >      nGlobalMols_ = molStampIds_.size();
156  
157 < }
157 > #ifdef IS_MPI    
158 >      molToProcMap_.resize(nGlobalMols_);
159 > #endif
160  
161 < void SimInfo::setBox(double newBox[3]) {
96 <  
97 <  int i, j;
98 <  double tempMat[3][3];
161 >    }
162  
163 <  for(i=0; i<3; i++)
164 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
163 >  SimInfo::~SimInfo() {
164 >    std::map<int, Molecule*>::iterator i;
165 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
166 >      delete i->second;
167 >    }
168 >    molecules_.clear();
169 >      
170 >    delete sman_;
171 >    delete simParams_;
172 >    delete forceField_;
173 >  }
174  
175 <  tempMat[0][0] = newBox[0];
176 <  tempMat[1][1] = newBox[1];
177 <  tempMat[2][2] = newBox[2];
175 >  int SimInfo::getNGlobalConstraints() {
176 >    int nGlobalConstraints;
177 > #ifdef IS_MPI
178 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
179 >                  MPI_COMM_WORLD);    
180 > #else
181 >    nGlobalConstraints =  nConstraints_;
182 > #endif
183 >    return nGlobalConstraints;
184 >  }
185  
186 <  setBoxM( tempMat );
186 >  bool SimInfo::addMolecule(Molecule* mol) {
187 >    MoleculeIterator i;
188  
189 < }
189 >    i = molecules_.find(mol->getGlobalIndex());
190 >    if (i == molecules_.end() ) {
191  
192 < void SimInfo::setBoxM( double theBox[3][3] ){
193 <  
194 <  int i, j;
195 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
196 <                         // ordering in the array is as follows:
197 <                         // [ 0 3 6 ]
198 <                         // [ 1 4 7 ]
199 <                         // [ 2 5 8 ]
200 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
201 <
202 <  if( !boxIsInit ) boxIsInit = 1;
203 <
204 <  for(i=0; i < 3; i++)
205 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
206 <  
207 <  calcBoxL();
127 <  calcHmatInv();
128 <
129 <  for(i=0; i < 3; i++) {
130 <    for (j=0; j < 3; j++) {
131 <      FortranHmat[3*j + i] = Hmat[i][j];
132 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
192 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
193 >        
194 >      nAtoms_ += mol->getNAtoms();
195 >      nBonds_ += mol->getNBonds();
196 >      nBends_ += mol->getNBends();
197 >      nTorsions_ += mol->getNTorsions();
198 >      nRigidBodies_ += mol->getNRigidBodies();
199 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
200 >      nCutoffGroups_ += mol->getNCutoffGroups();
201 >      nConstraints_ += mol->getNConstraintPairs();
202 >
203 >      addExcludePairs(mol);
204 >        
205 >      return true;
206 >    } else {
207 >      return false;
208      }
209    }
210  
211 <  setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic);
212 <
213 < }
139 <
211 >  bool SimInfo::removeMolecule(Molecule* mol) {
212 >    MoleculeIterator i;
213 >    i = molecules_.find(mol->getGlobalIndex());
214  
215 < void SimInfo::getBoxM (double theBox[3][3]) {
215 >    if (i != molecules_.end() ) {
216  
217 <  int i, j;
218 <  for(i=0; i<3; i++)
219 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
220 < }
217 >      assert(mol == i->second);
218 >        
219 >      nAtoms_ -= mol->getNAtoms();
220 >      nBonds_ -= mol->getNBonds();
221 >      nBends_ -= mol->getNBends();
222 >      nTorsions_ -= mol->getNTorsions();
223 >      nRigidBodies_ -= mol->getNRigidBodies();
224 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
225 >      nCutoffGroups_ -= mol->getNCutoffGroups();
226 >      nConstraints_ -= mol->getNConstraintPairs();
227  
228 +      removeExcludePairs(mol);
229 +      molecules_.erase(mol->getGlobalIndex());
230  
231 < void SimInfo::scaleBox(double scale) {
232 <  double theBox[3][3];
233 <  int i, j;
231 >      delete mol;
232 >        
233 >      return true;
234 >    } else {
235 >      return false;
236 >    }
237  
153  // cerr << "Scaling box by " << scale << "\n";
238  
239 <  for(i=0; i<3; i++)
156 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
239 >  }    
240  
241 <  setBoxM(theBox);
241 >        
242 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
243 >    i = molecules_.begin();
244 >    return i == molecules_.end() ? NULL : i->second;
245 >  }    
246  
247 < }
247 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
248 >    ++i;
249 >    return i == molecules_.end() ? NULL : i->second;    
250 >  }
251  
162 void SimInfo::calcHmatInv( void ) {
163  
164  int oldOrtho;
165  int i,j;
166  double smallDiag;
167  double tol;
168  double sanity[3][3];
252  
253 <  invertMat3( Hmat, HmatInv );
253 >  void SimInfo::calcNdf() {
254 >    int ndf_local;
255 >    MoleculeIterator i;
256 >    std::vector<StuntDouble*>::iterator j;
257 >    Molecule* mol;
258 >    StuntDouble* integrableObject;
259  
260 <  // check to see if Hmat is orthorhombic
261 <  
262 <  oldOrtho = orthoRhombic;
260 >    ndf_local = 0;
261 >    
262 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
263 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
264 >           integrableObject = mol->nextIntegrableObject(j)) {
265  
266 <  smallDiag = fabs(Hmat[0][0]);
177 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
178 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
179 <  tol = smallDiag * orthoTolerance;
266 >        ndf_local += 3;
267  
268 <  orthoRhombic = 1;
269 <  
270 <  for (i = 0; i < 3; i++ ) {
271 <    for (j = 0 ; j < 3; j++) {
272 <      if (i != j) {
273 <        if (orthoRhombic) {
274 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
275 <        }        
268 >        if (integrableObject->isDirectional()) {
269 >          if (integrableObject->isLinear()) {
270 >            ndf_local += 2;
271 >          } else {
272 >            ndf_local += 3;
273 >          }
274 >        }
275 >            
276        }
277      }
191  }
192
193  if( oldOrtho != orthoRhombic ){
278      
279 <    if( orthoRhombic ) {
280 <      sprintf( painCave.errMsg,
197 <               "OOPSE is switching from the default Non-Orthorhombic\n"
198 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
199 <               "\tThis is usually a good thing, but if you wan't the\n"
200 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
201 <               "\tvariable ( currently set to %G ) smaller.\n",
202 <               orthoTolerance);
203 <      painCave.severity = OOPSE_INFO;
204 <      simError();
205 <    }
206 <    else {
207 <      sprintf( painCave.errMsg,
208 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
209 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
210 <               "\tThis is usually because the box has deformed under\n"
211 <               "\tNPTf integration. If you wan't to live on the edge with\n"
212 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
213 <               "\tvariable ( currently set to %G ) larger.\n",
214 <               orthoTolerance);
215 <      painCave.severity = OOPSE_WARNING;
216 <      simError();
217 <    }
218 <  }
219 < }
279 >    // n_constraints is local, so subtract them on each processor
280 >    ndf_local -= nConstraints_;
281  
282 < void SimInfo::calcBoxL( void ){
282 > #ifdef IS_MPI
283 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
284 > #else
285 >    ndf_ = ndf_local;
286 > #endif
287  
288 <  double dx, dy, dz, dsq;
288 >    // nZconstraints_ is global, as are the 3 COM translations for the
289 >    // entire system:
290 >    ndf_ = ndf_ - 3 - nZconstraint_;
291  
292 <  // boxVol = Determinant of Hmat
292 >  }
293  
294 <  boxVol = matDet3( Hmat );
294 >  int SimInfo::getFdf() {
295 > #ifdef IS_MPI
296 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
297 > #else
298 >    fdf_ = fdf_local;
299 > #endif
300 >    return fdf_;
301 >  }
302 >    
303 >  void SimInfo::calcNdfRaw() {
304 >    int ndfRaw_local;
305  
306 <  // boxLx
307 <  
308 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
309 <  dsq = dx*dx + dy*dy + dz*dz;
233 <  boxL[0] = sqrt( dsq );
234 <  //maxCutoff = 0.5 * boxL[0];
306 >    MoleculeIterator i;
307 >    std::vector<StuntDouble*>::iterator j;
308 >    Molecule* mol;
309 >    StuntDouble* integrableObject;
310  
311 <  // boxLy
312 <  
238 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
239 <  dsq = dx*dx + dy*dy + dz*dz;
240 <  boxL[1] = sqrt( dsq );
241 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
242 <
243 <
244 <  // boxLz
245 <  
246 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
247 <  dsq = dx*dx + dy*dy + dz*dz;
248 <  boxL[2] = sqrt( dsq );
249 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
250 <
251 <  //calculate the max cutoff
252 <  maxCutoff =  calcMaxCutOff();
253 <  
254 <  checkCutOffs();
255 <
256 < }
257 <
258 <
259 < double SimInfo::calcMaxCutOff(){
260 <
261 <  double ri[3], rj[3], rk[3];
262 <  double rij[3], rjk[3], rki[3];
263 <  double minDist;
264 <
265 <  ri[0] = Hmat[0][0];
266 <  ri[1] = Hmat[1][0];
267 <  ri[2] = Hmat[2][0];
268 <
269 <  rj[0] = Hmat[0][1];
270 <  rj[1] = Hmat[1][1];
271 <  rj[2] = Hmat[2][1];
272 <
273 <  rk[0] = Hmat[0][2];
274 <  rk[1] = Hmat[1][2];
275 <  rk[2] = Hmat[2][2];
311 >    // Raw degrees of freedom that we have to set
312 >    ndfRaw_local = 0;
313      
314 <  crossProduct3(ri, rj, rij);
315 <  distXY = dotProduct3(rk,rij) / norm3(rij);
314 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
315 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
316 >           integrableObject = mol->nextIntegrableObject(j)) {
317  
318 <  crossProduct3(rj,rk, rjk);
281 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
282 <
283 <  crossProduct3(rk,ri, rki);
284 <  distZX = dotProduct3(rj,rki) / norm3(rki);
285 <
286 <  minDist = min(min(distXY, distYZ), distZX);
287 <  return minDist/2;
288 <  
289 < }
318 >        ndfRaw_local += 3;
319  
320 < void SimInfo::wrapVector( double thePos[3] ){
321 <
322 <  int i;
323 <  double scaled[3];
324 <
325 <  if( !orthoRhombic ){
326 <    // calc the scaled coordinates.
327 <  
328 <
329 <    matVecMul3(HmatInv, thePos, scaled);
320 >        if (integrableObject->isDirectional()) {
321 >          if (integrableObject->isLinear()) {
322 >            ndfRaw_local += 2;
323 >          } else {
324 >            ndfRaw_local += 3;
325 >          }
326 >        }
327 >            
328 >      }
329 >    }
330      
331 <    for(i=0; i<3; i++)
332 <      scaled[i] -= roundMe(scaled[i]);
333 <    
334 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
335 <    
307 <    matVecMul3(Hmat, scaled, thePos);
308 <
331 > #ifdef IS_MPI
332 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
333 > #else
334 >    ndfRaw_ = ndfRaw_local;
335 > #endif
336    }
310  else{
311    // calc the scaled coordinates.
312    
313    for(i=0; i<3; i++)
314      scaled[i] = thePos[i]*HmatInv[i][i];
315    
316    // wrap the scaled coordinates
317    
318    for(i=0; i<3; i++)
319      scaled[i] -= roundMe(scaled[i]);
320    
321    // calc the wrapped real coordinates from the wrapped scaled coordinates
322    
323    for(i=0; i<3; i++)
324      thePos[i] = scaled[i]*Hmat[i][i];
325  }
326    
327 }
337  
338 +  void SimInfo::calcNdfTrans() {
339 +    int ndfTrans_local;
340  
341 < int SimInfo::getNDF(){
331 <  int ndf_local;
341 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
342  
333  ndf_local = 0;
334  
335  for(int i = 0; i < integrableObjects.size(); i++){
336    ndf_local += 3;
337    if (integrableObjects[i]->isDirectional()) {
338      if (integrableObjects[i]->isLinear())
339        ndf_local += 2;
340      else
341        ndf_local += 3;
342    }
343  }
343  
345  // n_constraints is local, so subtract them on each processor:
346
347  ndf_local -= n_constraints;
348
344   #ifdef IS_MPI
345 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
345 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
346   #else
347 <  ndf = ndf_local;
347 >    ndfTrans_ = ndfTrans_local;
348   #endif
349  
350 <  // nZconstraints is global, as are the 3 COM translations for the
351 <  // entire system:
350 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
351 >
352 >  }
353  
354 <  ndf = ndf - 3 - nZconstraints;
354 >  void SimInfo::addExcludePairs(Molecule* mol) {
355 >    std::vector<Bond*>::iterator bondIter;
356 >    std::vector<Bend*>::iterator bendIter;
357 >    std::vector<Torsion*>::iterator torsionIter;
358 >    Bond* bond;
359 >    Bend* bend;
360 >    Torsion* torsion;
361 >    int a;
362 >    int b;
363 >    int c;
364 >    int d;
365  
366 <  return ndf;
361 < }
366 >    std::map<int, std::set<int> > atomGroups;
367  
368 < int SimInfo::getNDFraw() {
369 <  int ndfRaw_local;
368 >    Molecule::RigidBodyIterator rbIter;
369 >    RigidBody* rb;
370 >    Molecule::IntegrableObjectIterator ii;
371 >    StuntDouble* integrableObject;
372 >    
373 >    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
374 >           integrableObject = mol->nextIntegrableObject(ii)) {
375  
376 <  // Raw degrees of freedom that we have to set
377 <  ndfRaw_local = 0;
376 >      if (integrableObject->isRigidBody()) {
377 >          rb = static_cast<RigidBody*>(integrableObject);
378 >          std::vector<Atom*> atoms = rb->getAtoms();
379 >          std::set<int> rigidAtoms;
380 >          for (int i = 0; i < atoms.size(); ++i) {
381 >            rigidAtoms.insert(atoms[i]->getGlobalIndex());
382 >          }
383 >          for (int i = 0; i < atoms.size(); ++i) {
384 >            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
385 >          }      
386 >      } else {
387 >        std::set<int> oneAtomSet;
388 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
389 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
390 >      }
391 >    }  
392  
369  for(int i = 0; i < integrableObjects.size(); i++){
370    ndfRaw_local += 3;
371    if (integrableObjects[i]->isDirectional()) {
372       if (integrableObjects[i]->isLinear())
373        ndfRaw_local += 2;
374      else
375        ndfRaw_local += 3;
376    }
377  }
393      
394 < #ifdef IS_MPI
395 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
396 < #else
397 <  ndfRaw = ndfRaw_local;
398 < #endif
394 >    
395 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
396 >      a = bond->getAtomA()->getGlobalIndex();
397 >      b = bond->getAtomB()->getGlobalIndex();        
398 >      exclude_.addPair(a, b);
399 >    }
400  
401 <  return ndfRaw;
402 < }
401 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
402 >      a = bend->getAtomA()->getGlobalIndex();
403 >      b = bend->getAtomB()->getGlobalIndex();        
404 >      c = bend->getAtomC()->getGlobalIndex();
405 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
406 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
407 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
408  
409 < int SimInfo::getNDFtranslational() {
410 <  int ndfTrans_local;
409 >      exclude_.addPairs(rigidSetA, rigidSetB);
410 >      exclude_.addPairs(rigidSetA, rigidSetC);
411 >      exclude_.addPairs(rigidSetB, rigidSetC);
412 >      
413 >      //exclude_.addPair(a, b);
414 >      //exclude_.addPair(a, c);
415 >      //exclude_.addPair(b, c);        
416 >    }
417  
418 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
418 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
419 >      a = torsion->getAtomA()->getGlobalIndex();
420 >      b = torsion->getAtomB()->getGlobalIndex();        
421 >      c = torsion->getAtomC()->getGlobalIndex();        
422 >      d = torsion->getAtomD()->getGlobalIndex();        
423 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
424 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
425 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
426 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
427  
428 +      exclude_.addPairs(rigidSetA, rigidSetB);
429 +      exclude_.addPairs(rigidSetA, rigidSetC);
430 +      exclude_.addPairs(rigidSetA, rigidSetD);
431 +      exclude_.addPairs(rigidSetB, rigidSetC);
432 +      exclude_.addPairs(rigidSetB, rigidSetD);
433 +      exclude_.addPairs(rigidSetC, rigidSetD);
434  
435 < #ifdef IS_MPI
436 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
437 < #else
438 <  ndfTrans = ndfTrans_local;
439 < #endif
435 >      /*
436 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
437 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
438 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
439 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
440 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
441 >      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
442 >        
443 >      
444 >      exclude_.addPair(a, b);
445 >      exclude_.addPair(a, c);
446 >      exclude_.addPair(a, d);
447 >      exclude_.addPair(b, c);
448 >      exclude_.addPair(b, d);
449 >      exclude_.addPair(c, d);        
450 >      */
451 >    }
452  
453 <  ndfTrans = ndfTrans - 3 - nZconstraints;
453 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
454 >      std::vector<Atom*> atoms = rb->getAtoms();
455 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
456 >        for (int j = i + 1; j < atoms.size(); ++j) {
457 >          a = atoms[i]->getGlobalIndex();
458 >          b = atoms[j]->getGlobalIndex();
459 >          exclude_.addPair(a, b);
460 >        }
461 >      }
462 >    }        
463  
464 <  return ndfTrans;
403 < }
464 >  }
465  
466 < int SimInfo::getTotIntegrableObjects() {
467 <  int nObjs_local;
468 <  int nObjs;
466 >  void SimInfo::removeExcludePairs(Molecule* mol) {
467 >    std::vector<Bond*>::iterator bondIter;
468 >    std::vector<Bend*>::iterator bendIter;
469 >    std::vector<Torsion*>::iterator torsionIter;
470 >    Bond* bond;
471 >    Bend* bend;
472 >    Torsion* torsion;
473 >    int a;
474 >    int b;
475 >    int c;
476 >    int d;
477  
478 <  nObjs_local =  integrableObjects.size();
478 >    std::map<int, std::set<int> > atomGroups;
479  
480 +    Molecule::RigidBodyIterator rbIter;
481 +    RigidBody* rb;
482 +    Molecule::IntegrableObjectIterator ii;
483 +    StuntDouble* integrableObject;
484 +    
485 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
486 +           integrableObject = mol->nextIntegrableObject(ii)) {
487  
488 < #ifdef IS_MPI
489 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
490 < #else
491 <  nObjs = nObjs_local;
492 < #endif
488 >      if (integrableObject->isRigidBody()) {
489 >          rb = static_cast<RigidBody*>(integrableObject);
490 >          std::vector<Atom*> atoms = rb->getAtoms();
491 >          std::set<int> rigidAtoms;
492 >          for (int i = 0; i < atoms.size(); ++i) {
493 >            rigidAtoms.insert(atoms[i]->getGlobalIndex());
494 >          }
495 >          for (int i = 0; i < atoms.size(); ++i) {
496 >            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
497 >          }      
498 >      } else {
499 >        std::set<int> oneAtomSet;
500 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
501 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
502 >      }
503 >    }  
504  
505 +    
506 +    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
507 +      a = bond->getAtomA()->getGlobalIndex();
508 +      b = bond->getAtomB()->getGlobalIndex();        
509 +      exclude_.removePair(a, b);
510 +    }
511  
512 <  return nObjs;
513 < }
512 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
513 >      a = bend->getAtomA()->getGlobalIndex();
514 >      b = bend->getAtomB()->getGlobalIndex();        
515 >      c = bend->getAtomC()->getGlobalIndex();
516  
517 < void SimInfo::refreshSim(){
517 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
518 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
519 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
520  
521 <  simtype fInfo;
522 <  int isError;
523 <  int n_global;
524 <  int* excl;
521 >      exclude_.removePairs(rigidSetA, rigidSetB);
522 >      exclude_.removePairs(rigidSetA, rigidSetC);
523 >      exclude_.removePairs(rigidSetB, rigidSetC);
524 >      
525 >      //exclude_.removePair(a, b);
526 >      //exclude_.removePair(a, c);
527 >      //exclude_.removePair(b, c);        
528 >    }
529  
530 <  fInfo.dielect = 0.0;
530 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
531 >      a = torsion->getAtomA()->getGlobalIndex();
532 >      b = torsion->getAtomB()->getGlobalIndex();        
533 >      c = torsion->getAtomC()->getGlobalIndex();        
534 >      d = torsion->getAtomD()->getGlobalIndex();        
535  
536 <  if( useDipoles ){
537 <    if( useReactionField )fInfo.dielect = dielectric;
536 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
537 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
538 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
539 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
540 >
541 >      exclude_.removePairs(rigidSetA, rigidSetB);
542 >      exclude_.removePairs(rigidSetA, rigidSetC);
543 >      exclude_.removePairs(rigidSetA, rigidSetD);
544 >      exclude_.removePairs(rigidSetB, rigidSetC);
545 >      exclude_.removePairs(rigidSetB, rigidSetD);
546 >      exclude_.removePairs(rigidSetC, rigidSetD);
547 >
548 >      /*
549 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
550 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
551 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
552 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
553 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
554 >      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
555 >
556 >      
557 >      exclude_.removePair(a, b);
558 >      exclude_.removePair(a, c);
559 >      exclude_.removePair(a, d);
560 >      exclude_.removePair(b, c);
561 >      exclude_.removePair(b, d);
562 >      exclude_.removePair(c, d);        
563 >      */
564 >    }
565 >
566 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
567 >      std::vector<Atom*> atoms = rb->getAtoms();
568 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
569 >        for (int j = i + 1; j < atoms.size(); ++j) {
570 >          a = atoms[i]->getGlobalIndex();
571 >          b = atoms[j]->getGlobalIndex();
572 >          exclude_.removePair(a, b);
573 >        }
574 >      }
575 >    }        
576 >
577    }
578  
435  fInfo.SIM_uses_PBC = usePBC;
436  //fInfo.SIM_uses_LJ = 0;
437  fInfo.SIM_uses_LJ = useLJ;
438  fInfo.SIM_uses_sticky = useSticky;
439  //fInfo.SIM_uses_sticky = 0;
440  fInfo.SIM_uses_charges = useCharges;
441  fInfo.SIM_uses_dipoles = useDipoles;
442  //fInfo.SIM_uses_dipoles = 0;
443  fInfo.SIM_uses_RF = useReactionField;
444  //fInfo.SIM_uses_RF = 0;
445  fInfo.SIM_uses_GB = useGB;
446  fInfo.SIM_uses_EAM = useEAM;
579  
580 <  n_exclude = excludes->getSize();
581 <  excl = excludes->getFortranArray();
582 <  
580 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
581 >    int curStampId;
582 >
583 >    //index from 0
584 >    curStampId = moleculeStamps_.size();
585 >
586 >    moleculeStamps_.push_back(molStamp);
587 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
588 >  }
589 >
590 >  void SimInfo::update() {
591 >
592 >    setupSimType();
593 >
594   #ifdef IS_MPI
595 <  n_global = mpiSim->getNAtomsGlobal();
453 < #else
454 <  n_global = n_atoms;
595 >    setupFortranParallel();
596   #endif
456  
457  isError = 0;
458  
459  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
460  //it may not be a good idea to pass the address of first element in vector
461  //since c++ standard does not require vector to be stored continuously in meomory
462  //Most of the compilers will organize the memory of vector continuously
463  setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
464                  &nGlobalExcludes, globalExcludes, molMembershipArray,
465                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
597  
598 <  if( isError ){
598 >    setupFortranSim();
599 >
600 >    //setup fortran force field
601 >    /** @deprecate */    
602 >    int isError = 0;
603      
604 <    sprintf( painCave.errMsg,
605 <             "There was an error setting the simulation information in fortran.\n" );
606 <    painCave.isFatal = 1;
607 <    painCave.severity = OOPSE_ERROR;
608 <    simError();
604 >    setupCutoff();
605 >    
606 >    setupElectrostaticSummationMethod( isError );
607 >    setupSwitchingFunction();
608 >    setupAccumulateBoxDipole();
609 >
610 >    if(isError){
611 >      sprintf( painCave.errMsg,
612 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
613 >      painCave.isFatal = 1;
614 >      simError();
615 >    }
616 >
617 >    calcNdf();
618 >    calcNdfRaw();
619 >    calcNdfTrans();
620 >
621 >    fortranInitialized_ = true;
622    }
475  
476 #ifdef IS_MPI
477  sprintf( checkPointMsg,
478           "succesfully sent the simulation information to fortran.\n");
479  MPIcheckPoint();
480 #endif // is_mpi
481  
482  this->ndf = this->getNDF();
483  this->ndfRaw = this->getNDFraw();
484  this->ndfTrans = this->getNDFtranslational();
485 }
623  
624 < void SimInfo::setDefaultRcut( double theRcut ){
625 <  
626 <  haveRcut = 1;
627 <  rCut = theRcut;
628 <  rList = rCut + 1.0;
629 <  
493 <  notifyFortranCutoffs( &rCut, &rSw, &rList );
494 < }
624 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
625 >    SimInfo::MoleculeIterator mi;
626 >    Molecule* mol;
627 >    Molecule::AtomIterator ai;
628 >    Atom* atom;
629 >    std::set<AtomType*> atomTypes;
630  
631 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
631 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
632  
633 <  rSw = theRsw;
634 <  setDefaultRcut( theRcut );
635 < }
633 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
634 >        atomTypes.insert(atom->getAtomType());
635 >      }
636 >        
637 >    }
638 >
639 >    return atomTypes;        
640 >  }
641 >
642 >  void SimInfo::setupSimType() {
643 >    std::set<AtomType*>::iterator i;
644 >    std::set<AtomType*> atomTypes;
645 >    atomTypes = getUniqueAtomTypes();
646 >    
647 >    int useLennardJones = 0;
648 >    int useElectrostatic = 0;
649 >    int useEAM = 0;
650 >    int useSC = 0;
651 >    int useCharge = 0;
652 >    int useDirectional = 0;
653 >    int useDipole = 0;
654 >    int useGayBerne = 0;
655 >    int useSticky = 0;
656 >    int useStickyPower = 0;
657 >    int useShape = 0;
658 >    int useFLARB = 0; //it is not in AtomType yet
659 >    int useDirectionalAtom = 0;    
660 >    int useElectrostatics = 0;
661 >    //usePBC and useRF are from simParams
662 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
663 >    int useRF;
664 >    int useSF;
665 >    int useSP;
666 >    int useBoxDipole;
667 >    std::string myMethod;
668  
669 +    // set the useRF logical
670 +    useRF = 0;
671 +    useSF = 0;
672  
673 < void SimInfo::checkCutOffs( void ){
674 <  
675 <  if( boxIsInit ){
673 >
674 >    if (simParams_->haveElectrostaticSummationMethod()) {
675 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
676 >      toUpper(myMethod);
677 >      if (myMethod == "REACTION_FIELD"){
678 >        useRF=1;
679 >      } else if (myMethod == "SHIFTED_FORCE"){
680 >        useSF = 1;
681 >      } else if (myMethod == "SHIFTED_POTENTIAL"){
682 >        useSP = 1;
683 >      }
684 >    }
685      
686 <    //we need to check cutOffs against the box
686 >    if (simParams_->haveAccumulateBoxDipole())
687 >      if (simParams_->getAccumulateBoxDipole())
688 >        useBoxDipole = 1;
689 >
690 >    //loop over all of the atom types
691 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
692 >      useLennardJones |= (*i)->isLennardJones();
693 >      useElectrostatic |= (*i)->isElectrostatic();
694 >      useEAM |= (*i)->isEAM();
695 >      useSC |= (*i)->isSC();
696 >      useCharge |= (*i)->isCharge();
697 >      useDirectional |= (*i)->isDirectional();
698 >      useDipole |= (*i)->isDipole();
699 >      useGayBerne |= (*i)->isGayBerne();
700 >      useSticky |= (*i)->isSticky();
701 >      useStickyPower |= (*i)->isStickyPower();
702 >      useShape |= (*i)->isShape();
703 >    }
704 >
705 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
706 >      useDirectionalAtom = 1;
707 >    }
708 >
709 >    if (useCharge || useDipole) {
710 >      useElectrostatics = 1;
711 >    }
712 >
713 > #ifdef IS_MPI    
714 >    int temp;
715 >
716 >    temp = usePBC;
717 >    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
718 >
719 >    temp = useDirectionalAtom;
720 >    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
721 >
722 >    temp = useLennardJones;
723 >    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
724 >
725 >    temp = useElectrostatics;
726 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
727 >
728 >    temp = useCharge;
729 >    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
730 >
731 >    temp = useDipole;
732 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
733 >
734 >    temp = useSticky;
735 >    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
736 >
737 >    temp = useStickyPower;
738 >    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
739      
740 <    if( rCut > maxCutoff ){
740 >    temp = useGayBerne;
741 >    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
742 >
743 >    temp = useEAM;
744 >    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
745 >
746 >    temp = useSC;
747 >    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
748 >    
749 >    temp = useShape;
750 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
751 >
752 >    temp = useFLARB;
753 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
754 >
755 >    temp = useRF;
756 >    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
757 >
758 >    temp = useSF;
759 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
760 >
761 >    temp = useSP;
762 >    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
763 >
764 >    temp = useBoxDipole;
765 >    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
766 >
767 > #endif
768 >
769 >    fInfo_.SIM_uses_PBC = usePBC;    
770 >    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
771 >    fInfo_.SIM_uses_LennardJones = useLennardJones;
772 >    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
773 >    fInfo_.SIM_uses_Charges = useCharge;
774 >    fInfo_.SIM_uses_Dipoles = useDipole;
775 >    fInfo_.SIM_uses_Sticky = useSticky;
776 >    fInfo_.SIM_uses_StickyPower = useStickyPower;
777 >    fInfo_.SIM_uses_GayBerne = useGayBerne;
778 >    fInfo_.SIM_uses_EAM = useEAM;
779 >    fInfo_.SIM_uses_SC = useSC;
780 >    fInfo_.SIM_uses_Shapes = useShape;
781 >    fInfo_.SIM_uses_FLARB = useFLARB;
782 >    fInfo_.SIM_uses_RF = useRF;
783 >    fInfo_.SIM_uses_SF = useSF;
784 >    fInfo_.SIM_uses_SP = useSP;
785 >    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
786 >  }
787 >
788 >  void SimInfo::setupFortranSim() {
789 >    int isError;
790 >    int nExclude;
791 >    std::vector<int> fortranGlobalGroupMembership;
792 >    
793 >    nExclude = exclude_.getSize();
794 >    isError = 0;
795 >
796 >    //globalGroupMembership_ is filled by SimCreator    
797 >    for (int i = 0; i < nGlobalAtoms_; i++) {
798 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
799 >    }
800 >
801 >    //calculate mass ratio of cutoff group
802 >    std::vector<RealType> mfact;
803 >    SimInfo::MoleculeIterator mi;
804 >    Molecule* mol;
805 >    Molecule::CutoffGroupIterator ci;
806 >    CutoffGroup* cg;
807 >    Molecule::AtomIterator ai;
808 >    Atom* atom;
809 >    RealType totalMass;
810 >
811 >    //to avoid memory reallocation, reserve enough space for mfact
812 >    mfact.reserve(getNCutoffGroups());
813 >    
814 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
815 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
816 >
817 >        totalMass = cg->getMass();
818 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
819 >          // Check for massless groups - set mfact to 1 if true
820 >          if (totalMass != 0)
821 >            mfact.push_back(atom->getMass()/totalMass);
822 >          else
823 >            mfact.push_back( 1.0 );
824 >        }
825 >
826 >      }      
827 >    }
828 >
829 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
830 >    std::vector<int> identArray;
831 >
832 >    //to avoid memory reallocation, reserve enough space identArray
833 >    identArray.reserve(getNAtoms());
834 >    
835 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
836 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
837 >        identArray.push_back(atom->getIdent());
838 >      }
839 >    }    
840 >
841 >    //fill molMembershipArray
842 >    //molMembershipArray is filled by SimCreator    
843 >    std::vector<int> molMembershipArray(nGlobalAtoms_);
844 >    for (int i = 0; i < nGlobalAtoms_; i++) {
845 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
846 >    }
847 >    
848 >    //setup fortran simulation
849 >    int nGlobalExcludes = 0;
850 >    int* globalExcludes = NULL;
851 >    int* excludeList = exclude_.getExcludeList();
852 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
853 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
854 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
855 >
856 >    if( isError ){
857 >
858        sprintf( painCave.errMsg,
859 <               "cutoffRadius is too large for the current periodic box.\n"
512 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
513 <               "\tThis is larger than half of at least one of the\n"
514 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
515 <               "\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n"
518 <               "\t[ %G %G %G ]\n",
519 <               rCut, currentTime,
520 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
521 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
522 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
523 <      painCave.severity = OOPSE_ERROR;
859 >               "There was an error setting the simulation information in fortran.\n" );
860        painCave.isFatal = 1;
861 +      painCave.severity = OOPSE_ERROR;
862        simError();
863 <    }    
864 <  } else {
865 <    // initialize this stuff before using it, OK?
866 <    sprintf( painCave.errMsg,
867 <             "Trying to check cutoffs without a box.\n"
868 <             "\tOOPSE should have better programmers than that.\n" );
869 <    painCave.severity = OOPSE_ERROR;
533 <    painCave.isFatal = 1;
534 <    simError();      
863 >    }
864 >
865 > #ifdef IS_MPI
866 >    sprintf( checkPointMsg,
867 >             "succesfully sent the simulation information to fortran.\n");
868 >    MPIcheckPoint();
869 > #endif // is_mpi
870    }
536  
537 }
871  
539 void SimInfo::addProperty(GenericData* prop){
872  
873 <  map<string, GenericData*>::iterator result;
874 <  result = properties.find(prop->getID());
543 <  
544 <  //we can't simply use  properties[prop->getID()] = prop,
545 <  //it will cause memory leak if we already contain a propery which has the same name of prop
546 <  
547 <  if(result != properties.end()){
873 > #ifdef IS_MPI
874 >  void SimInfo::setupFortranParallel() {
875      
876 <    delete (*result).second;
877 <    (*result).second = prop;
878 <      
879 <  }
880 <  else{
876 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
877 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
878 >    std::vector<int> localToGlobalCutoffGroupIndex;
879 >    SimInfo::MoleculeIterator mi;
880 >    Molecule::AtomIterator ai;
881 >    Molecule::CutoffGroupIterator ci;
882 >    Molecule* mol;
883 >    Atom* atom;
884 >    CutoffGroup* cg;
885 >    mpiSimData parallelData;
886 >    int isError;
887  
888 <    properties[prop->getID()] = prop;
888 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
889  
890 <  }
891 <    
892 < }
890 >      //local index(index in DataStorge) of atom is important
891 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
892 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
893 >      }
894  
895 < GenericData* SimInfo::getProperty(const string& propName){
896 <
897 <  map<string, GenericData*>::iterator result;
898 <  
899 <  //string lowerCaseName = ();
900 <  
567 <  result = properties.find(propName);
568 <  
569 <  if(result != properties.end())
570 <    return (*result).second;  
571 <  else  
572 <    return NULL;  
573 < }
895 >      //local index of cutoff group is trivial, it only depends on the order of travesing
896 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
897 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
898 >      }        
899 >        
900 >    }
901  
902 +    //fill up mpiSimData struct
903 +    parallelData.nMolGlobal = getNGlobalMolecules();
904 +    parallelData.nMolLocal = getNMolecules();
905 +    parallelData.nAtomsGlobal = getNGlobalAtoms();
906 +    parallelData.nAtomsLocal = getNAtoms();
907 +    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
908 +    parallelData.nGroupsLocal = getNCutoffGroups();
909 +    parallelData.myNode = worldRank;
910 +    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
911  
912 < void SimInfo::getFortranGroupArrays(SimInfo* info,
913 <                                    vector<int>& FglobalGroupMembership,
914 <                                    vector<double>& mfact){
915 <  
580 <  Molecule* myMols;
581 <  Atom** myAtoms;
582 <  int numAtom;
583 <  double mtot;
584 <  int numMol;
585 <  int numCutoffGroups;
586 <  CutoffGroup* myCutoffGroup;
587 <  vector<CutoffGroup*>::iterator iterCutoff;
588 <  Atom* cutoffAtom;
589 <  vector<Atom*>::iterator iterAtom;
590 <  int atomIndex;
591 <  double totalMass;
592 <  
593 <  mfact.clear();
594 <  FglobalGroupMembership.clear();
595 <  
912 >    //pass mpiSimData struct and index arrays to fortran
913 >    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
914 >                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
915 >                    &localToGlobalCutoffGroupIndex[0], &isError);
916  
917 <  // Fix the silly fortran indexing problem
918 < #ifdef IS_MPI
919 <  numAtom = mpiSim->getNAtomsGlobal();
920 < #else
921 <  numAtom = n_atoms;
917 >    if (isError) {
918 >      sprintf(painCave.errMsg,
919 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
920 >      painCave.isFatal = 1;
921 >      simError();
922 >    }
923 >
924 >    sprintf(checkPointMsg, " mpiRefresh successful.\n");
925 >    MPIcheckPoint();
926 >
927 >
928 >  }
929 >
930   #endif
603  for (int i = 0; i < numAtom; i++)
604    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
605  
931  
932 <  myMols = info->molecules;
933 <  numMol = info->n_mol;
934 <  for(int i  = 0; i < numMol; i++){
610 <    numCutoffGroups = myMols[i].getNCutoffGroups();
611 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
612 <        myCutoffGroup != NULL;
613 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
932 >  void SimInfo::setupCutoff() {          
933 >    
934 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
935  
936 <      totalMass = myCutoffGroup->getMass();
936 >    // Check the cutoff policy
937 >    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
938 >
939 >    std::string myPolicy;
940 >    if (forceFieldOptions_.haveCutoffPolicy()){
941 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
942 >    }else if (simParams_->haveCutoffPolicy()) {
943 >      myPolicy = simParams_->getCutoffPolicy();
944 >    }
945 >
946 >    if (!myPolicy.empty()){
947 >      toUpper(myPolicy);
948 >      if (myPolicy == "MIX") {
949 >        cp = MIX_CUTOFF_POLICY;
950 >      } else {
951 >        if (myPolicy == "MAX") {
952 >          cp = MAX_CUTOFF_POLICY;
953 >        } else {
954 >          if (myPolicy == "TRADITIONAL") {            
955 >            cp = TRADITIONAL_CUTOFF_POLICY;
956 >          } else {
957 >            // throw error        
958 >            sprintf( painCave.errMsg,
959 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
960 >            painCave.isFatal = 1;
961 >            simError();
962 >          }    
963 >        }          
964 >      }
965 >    }          
966 >    notifyFortranCutoffPolicy(&cp);
967 >
968 >    // Check the Skin Thickness for neighborlists
969 >    RealType skin;
970 >    if (simParams_->haveSkinThickness()) {
971 >      skin = simParams_->getSkinThickness();
972 >      notifyFortranSkinThickness(&skin);
973 >    }            
974 >        
975 >    // Check if the cutoff was set explicitly:
976 >    if (simParams_->haveCutoffRadius()) {
977 >      rcut_ = simParams_->getCutoffRadius();
978 >      if (simParams_->haveSwitchingRadius()) {
979 >        rsw_  = simParams_->getSwitchingRadius();
980 >      } else {
981 >        if (fInfo_.SIM_uses_Charges |
982 >            fInfo_.SIM_uses_Dipoles |
983 >            fInfo_.SIM_uses_RF) {
984 >          
985 >          rsw_ = 0.85 * rcut_;
986 >          sprintf(painCave.errMsg,
987 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
988 >                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
989 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
990 >        painCave.isFatal = 0;
991 >        simError();
992 >        } else {
993 >          rsw_ = rcut_;
994 >          sprintf(painCave.errMsg,
995 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
996 >                  "\tOOPSE will use the same value as the cutoffRadius.\n"
997 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
998 >          painCave.isFatal = 0;
999 >          simError();
1000 >        }
1001 >      }
1002        
1003 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
1004 <          cutoffAtom != NULL;
1005 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
1006 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
1007 <      }  
1003 >      notifyFortranCutoffs(&rcut_, &rsw_);
1004 >      
1005 >    } else {
1006 >      
1007 >      // For electrostatic atoms, we'll assume a large safe value:
1008 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1009 >        sprintf(painCave.errMsg,
1010 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1011 >                "\tOOPSE will use a default value of 15.0 angstroms"
1012 >                "\tfor the cutoffRadius.\n");
1013 >        painCave.isFatal = 0;
1014 >        simError();
1015 >        rcut_ = 15.0;
1016 >      
1017 >        if (simParams_->haveElectrostaticSummationMethod()) {
1018 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1019 >          toUpper(myMethod);
1020 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1021 >            if (simParams_->haveSwitchingRadius()){
1022 >              sprintf(painCave.errMsg,
1023 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
1024 >                      "\teven though the electrostaticSummationMethod was\n"
1025 >                      "\tset to %s\n", myMethod.c_str());
1026 >              painCave.isFatal = 1;
1027 >              simError();            
1028 >            }
1029 >          }
1030 >        }
1031 >      
1032 >        if (simParams_->haveSwitchingRadius()){
1033 >          rsw_ = simParams_->getSwitchingRadius();
1034 >        } else {        
1035 >          sprintf(painCave.errMsg,
1036 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1037 >                  "\tOOPSE will use a default value of\n"
1038 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1039 >          painCave.isFatal = 0;
1040 >          simError();
1041 >          rsw_ = 0.85 * rcut_;
1042 >        }
1043 >        notifyFortranCutoffs(&rcut_, &rsw_);
1044 >      } else {
1045 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1046 >        // We'll punt and let fortran figure out the cutoffs later.
1047 >        
1048 >        notifyFortranYouAreOnYourOwn();
1049 >
1050 >      }
1051      }
1052    }
1053  
1054 < }
1054 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1055 >    
1056 >    int errorOut;
1057 >    int esm =  NONE;
1058 >    int sm = UNDAMPED;
1059 >    RealType alphaVal;
1060 >    RealType dielectric;
1061 >    
1062 >    errorOut = isError;
1063 >
1064 >    if (simParams_->haveElectrostaticSummationMethod()) {
1065 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1066 >      toUpper(myMethod);
1067 >      if (myMethod == "NONE") {
1068 >        esm = NONE;
1069 >      } else {
1070 >        if (myMethod == "SWITCHING_FUNCTION") {
1071 >          esm = SWITCHING_FUNCTION;
1072 >        } else {
1073 >          if (myMethod == "SHIFTED_POTENTIAL") {
1074 >            esm = SHIFTED_POTENTIAL;
1075 >          } else {
1076 >            if (myMethod == "SHIFTED_FORCE") {            
1077 >              esm = SHIFTED_FORCE;
1078 >            } else {
1079 >              if (myMethod == "REACTION_FIELD") {
1080 >                esm = REACTION_FIELD;
1081 >                dielectric = simParams_->getDielectric();
1082 >                if (!simParams_->haveDielectric()) {
1083 >                  // throw warning
1084 >                  sprintf( painCave.errMsg,
1085 >                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1086 >                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1087 >                  painCave.isFatal = 0;
1088 >                  simError();
1089 >                }
1090 >              } else {
1091 >                // throw error        
1092 >                sprintf( painCave.errMsg,
1093 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1094 >                         "\t(Input file specified %s .)\n"
1095 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1096 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1097 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1098 >                painCave.isFatal = 1;
1099 >                simError();
1100 >              }    
1101 >            }          
1102 >          }
1103 >        }
1104 >      }
1105 >    }
1106 >    
1107 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1108 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1109 >      toUpper(myScreen);
1110 >      if (myScreen == "UNDAMPED") {
1111 >        sm = UNDAMPED;
1112 >      } else {
1113 >        if (myScreen == "DAMPED") {
1114 >          sm = DAMPED;
1115 >          if (!simParams_->haveDampingAlpha()) {
1116 >            // first set a cutoff dependent alpha value
1117 >            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1118 >            alphaVal = 0.5125 - rcut_* 0.025;
1119 >            // for values rcut > 20.5, alpha is zero
1120 >            if (alphaVal < 0) alphaVal = 0;
1121 >
1122 >            // throw warning
1123 >            sprintf( painCave.errMsg,
1124 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1125 >                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1126 >            painCave.isFatal = 0;
1127 >            simError();
1128 >          }
1129 >        } else {
1130 >          // throw error        
1131 >          sprintf( painCave.errMsg,
1132 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1133 >                   "\t(Input file specified %s .)\n"
1134 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1135 >                   "or \"damped\".\n", myScreen.c_str() );
1136 >          painCave.isFatal = 1;
1137 >          simError();
1138 >        }
1139 >      }
1140 >    }
1141 >    
1142 >    // let's pass some summation method variables to fortran
1143 >    setElectrostaticSummationMethod( &esm );
1144 >    setFortranElectrostaticMethod( &esm );
1145 >    setScreeningMethod( &sm );
1146 >    setDampingAlpha( &alphaVal );
1147 >    setReactionFieldDielectric( &dielectric );
1148 >    initFortranFF( &errorOut );
1149 >  }
1150 >
1151 >  void SimInfo::setupSwitchingFunction() {    
1152 >    int ft = CUBIC;
1153 >
1154 >    if (simParams_->haveSwitchingFunctionType()) {
1155 >      std::string funcType = simParams_->getSwitchingFunctionType();
1156 >      toUpper(funcType);
1157 >      if (funcType == "CUBIC") {
1158 >        ft = CUBIC;
1159 >      } else {
1160 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1161 >          ft = FIFTH_ORDER_POLY;
1162 >        } else {
1163 >          // throw error        
1164 >          sprintf( painCave.errMsg,
1165 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1166 >          painCave.isFatal = 1;
1167 >          simError();
1168 >        }          
1169 >      }
1170 >    }
1171 >
1172 >    // send switching function notification to switcheroo
1173 >    setFunctionType(&ft);
1174 >
1175 >  }
1176 >
1177 >  void SimInfo::setupAccumulateBoxDipole() {    
1178 >
1179 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1180 >    if ( simParams_->haveAccumulateBoxDipole() )
1181 >      if ( simParams_->getAccumulateBoxDipole() ) {
1182 >        setAccumulateBoxDipole();
1183 >        calcBoxDipole_ = true;
1184 >      }
1185 >
1186 >  }
1187 >
1188 >  void SimInfo::addProperty(GenericData* genData) {
1189 >    properties_.addProperty(genData);  
1190 >  }
1191 >
1192 >  void SimInfo::removeProperty(const std::string& propName) {
1193 >    properties_.removeProperty(propName);  
1194 >  }
1195 >
1196 >  void SimInfo::clearProperties() {
1197 >    properties_.clearProperties();
1198 >  }
1199 >
1200 >  std::vector<std::string> SimInfo::getPropertyNames() {
1201 >    return properties_.getPropertyNames();  
1202 >  }
1203 >      
1204 >  std::vector<GenericData*> SimInfo::getProperties() {
1205 >    return properties_.getProperties();
1206 >  }
1207 >
1208 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1209 >    return properties_.getPropertyByName(propName);
1210 >  }
1211 >
1212 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1213 >    if (sman_ == sman) {
1214 >      return;
1215 >    }    
1216 >    delete sman_;
1217 >    sman_ = sman;
1218 >
1219 >    Molecule* mol;
1220 >    RigidBody* rb;
1221 >    Atom* atom;
1222 >    SimInfo::MoleculeIterator mi;
1223 >    Molecule::RigidBodyIterator rbIter;
1224 >    Molecule::AtomIterator atomIter;;
1225 >
1226 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1227 >        
1228 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1229 >        atom->setSnapshotManager(sman_);
1230 >      }
1231 >        
1232 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1233 >        rb->setSnapshotManager(sman_);
1234 >      }
1235 >    }    
1236 >    
1237 >  }
1238 >
1239 >  Vector3d SimInfo::getComVel(){
1240 >    SimInfo::MoleculeIterator i;
1241 >    Molecule* mol;
1242 >
1243 >    Vector3d comVel(0.0);
1244 >    RealType totalMass = 0.0;
1245 >    
1246 >
1247 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1248 >      RealType mass = mol->getMass();
1249 >      totalMass += mass;
1250 >      comVel += mass * mol->getComVel();
1251 >    }  
1252 >
1253 > #ifdef IS_MPI
1254 >    RealType tmpMass = totalMass;
1255 >    Vector3d tmpComVel(comVel);    
1256 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1257 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1258 > #endif
1259 >
1260 >    comVel /= totalMass;
1261 >
1262 >    return comVel;
1263 >  }
1264 >
1265 >  Vector3d SimInfo::getCom(){
1266 >    SimInfo::MoleculeIterator i;
1267 >    Molecule* mol;
1268 >
1269 >    Vector3d com(0.0);
1270 >    RealType totalMass = 0.0;
1271 >    
1272 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1273 >      RealType mass = mol->getMass();
1274 >      totalMass += mass;
1275 >      com += mass * mol->getCom();
1276 >    }  
1277 >
1278 > #ifdef IS_MPI
1279 >    RealType tmpMass = totalMass;
1280 >    Vector3d tmpCom(com);    
1281 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1282 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1283 > #endif
1284 >
1285 >    com /= totalMass;
1286 >
1287 >    return com;
1288 >
1289 >  }        
1290 >
1291 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1292 >
1293 >    return o;
1294 >  }
1295 >  
1296 >  
1297 >   /*
1298 >   Returns center of mass and center of mass velocity in one function call.
1299 >   */
1300 >  
1301 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1302 >      SimInfo::MoleculeIterator i;
1303 >      Molecule* mol;
1304 >      
1305 >    
1306 >      RealType totalMass = 0.0;
1307 >    
1308 >
1309 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1310 >         RealType mass = mol->getMass();
1311 >         totalMass += mass;
1312 >         com += mass * mol->getCom();
1313 >         comVel += mass * mol->getComVel();          
1314 >      }  
1315 >      
1316 > #ifdef IS_MPI
1317 >      RealType tmpMass = totalMass;
1318 >      Vector3d tmpCom(com);  
1319 >      Vector3d tmpComVel(comVel);
1320 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1321 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1322 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1323 > #endif
1324 >      
1325 >      com /= totalMass;
1326 >      comVel /= totalMass;
1327 >   }        
1328 >  
1329 >   /*
1330 >   Return intertia tensor for entire system and angular momentum Vector.
1331 >
1332 >
1333 >       [  Ixx -Ixy  -Ixz ]
1334 >  J =| -Iyx  Iyy  -Iyz |
1335 >       [ -Izx -Iyz   Izz ]
1336 >    */
1337 >
1338 >   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1339 >      
1340 >
1341 >      RealType xx = 0.0;
1342 >      RealType yy = 0.0;
1343 >      RealType zz = 0.0;
1344 >      RealType xy = 0.0;
1345 >      RealType xz = 0.0;
1346 >      RealType yz = 0.0;
1347 >      Vector3d com(0.0);
1348 >      Vector3d comVel(0.0);
1349 >      
1350 >      getComAll(com, comVel);
1351 >      
1352 >      SimInfo::MoleculeIterator i;
1353 >      Molecule* mol;
1354 >      
1355 >      Vector3d thisq(0.0);
1356 >      Vector3d thisv(0.0);
1357 >
1358 >      RealType thisMass = 0.0;
1359 >    
1360 >      
1361 >      
1362 >  
1363 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1364 >        
1365 >         thisq = mol->getCom()-com;
1366 >         thisv = mol->getComVel()-comVel;
1367 >         thisMass = mol->getMass();
1368 >         // Compute moment of intertia coefficients.
1369 >         xx += thisq[0]*thisq[0]*thisMass;
1370 >         yy += thisq[1]*thisq[1]*thisMass;
1371 >         zz += thisq[2]*thisq[2]*thisMass;
1372 >        
1373 >         // compute products of intertia
1374 >         xy += thisq[0]*thisq[1]*thisMass;
1375 >         xz += thisq[0]*thisq[2]*thisMass;
1376 >         yz += thisq[1]*thisq[2]*thisMass;
1377 >            
1378 >         angularMomentum += cross( thisq, thisv ) * thisMass;
1379 >            
1380 >      }  
1381 >      
1382 >      
1383 >      inertiaTensor(0,0) = yy + zz;
1384 >      inertiaTensor(0,1) = -xy;
1385 >      inertiaTensor(0,2) = -xz;
1386 >      inertiaTensor(1,0) = -xy;
1387 >      inertiaTensor(1,1) = xx + zz;
1388 >      inertiaTensor(1,2) = -yz;
1389 >      inertiaTensor(2,0) = -xz;
1390 >      inertiaTensor(2,1) = -yz;
1391 >      inertiaTensor(2,2) = xx + yy;
1392 >      
1393 > #ifdef IS_MPI
1394 >      Mat3x3d tmpI(inertiaTensor);
1395 >      Vector3d tmpAngMom;
1396 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1397 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1398 > #endif
1399 >              
1400 >      return;
1401 >   }
1402 >
1403 >   //Returns the angular momentum of the system
1404 >   Vector3d SimInfo::getAngularMomentum(){
1405 >      
1406 >      Vector3d com(0.0);
1407 >      Vector3d comVel(0.0);
1408 >      Vector3d angularMomentum(0.0);
1409 >      
1410 >      getComAll(com,comVel);
1411 >      
1412 >      SimInfo::MoleculeIterator i;
1413 >      Molecule* mol;
1414 >      
1415 >      Vector3d thisr(0.0);
1416 >      Vector3d thisp(0.0);
1417 >      
1418 >      RealType thisMass;
1419 >      
1420 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1421 >        thisMass = mol->getMass();
1422 >        thisr = mol->getCom()-com;
1423 >        thisp = (mol->getComVel()-comVel)*thisMass;
1424 >        
1425 >        angularMomentum += cross( thisr, thisp );
1426 >        
1427 >      }  
1428 >      
1429 > #ifdef IS_MPI
1430 >      Vector3d tmpAngMom;
1431 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1432 > #endif
1433 >      
1434 >      return angularMomentum;
1435 >   }
1436 >  
1437 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1438 >    return IOIndexToIntegrableObject.at(index);
1439 >  }
1440 >  
1441 >  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1442 >    IOIndexToIntegrableObject= v;
1443 >  }
1444 >
1445 > /*
1446 >   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1447 >      assert( v.size() == nAtoms_ + nRigidBodies_);
1448 >      sdByGlobalIndex_ = v;
1449 >    }
1450 >
1451 >    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1452 >      //assert(index < nAtoms_ + nRigidBodies_);
1453 >      return sdByGlobalIndex_.at(index);
1454 >    }  
1455 > */  
1456 > }//end namespace oopse
1457 >

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines