48 |
|
|
49 |
|
#include <algorithm> |
50 |
|
#include <set> |
51 |
+ |
#include <map> |
52 |
|
|
53 |
|
#include "brains/SimInfo.hpp" |
54 |
|
#include "math/Vector3.hpp" |
55 |
|
#include "primitives/Molecule.hpp" |
56 |
+ |
#include "primitives/StuntDouble.hpp" |
57 |
+ |
#include "UseTheForce/fCutoffPolicy.h" |
58 |
+ |
#include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" |
59 |
+ |
#include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h" |
60 |
+ |
#include "UseTheForce/DarkSide/fSwitchingFunctionType.h" |
61 |
|
#include "UseTheForce/doForces_interface.h" |
62 |
< |
#include "UseTheForce/notifyCutoffs_interface.h" |
62 |
> |
#include "UseTheForce/DarkSide/neighborLists_interface.h" |
63 |
> |
#include "UseTheForce/DarkSide/electrostatic_interface.h" |
64 |
> |
#include "UseTheForce/DarkSide/switcheroo_interface.h" |
65 |
|
#include "utils/MemoryUtils.hpp" |
66 |
|
#include "utils/simError.h" |
67 |
|
#include "selection/SelectionManager.hpp" |
68 |
+ |
#include "io/ForceFieldOptions.hpp" |
69 |
+ |
#include "UseTheForce/ForceField.hpp" |
70 |
|
|
71 |
+ |
|
72 |
|
#ifdef IS_MPI |
73 |
|
#include "UseTheForce/mpiComponentPlan.h" |
74 |
|
#include "UseTheForce/DarkSide/simParallel_interface.h" |
75 |
|
#endif |
76 |
|
|
77 |
|
namespace oopse { |
78 |
+ |
std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) { |
79 |
+ |
std::map<int, std::set<int> >::iterator i = container.find(index); |
80 |
+ |
std::set<int> result; |
81 |
+ |
if (i != container.end()) { |
82 |
+ |
result = i->second; |
83 |
+ |
} |
84 |
|
|
85 |
< |
SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, |
86 |
< |
ForceField* ff, Globals* simParams) : |
87 |
< |
stamps_(stamps), forceField_(ff), simParams_(simParams), |
88 |
< |
ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
85 |
> |
return result; |
86 |
> |
} |
87 |
> |
|
88 |
> |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
89 |
> |
forceField_(ff), simParams_(simParams), |
90 |
> |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
91 |
|
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
92 |
|
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
93 |
|
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0), |
94 |
|
nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0), |
95 |
< |
sman_(NULL), fortranInitialized_(false) { |
95 |
> |
sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) { |
96 |
|
|
78 |
– |
|
79 |
– |
std::vector<std::pair<MoleculeStamp*, int> >::iterator i; |
97 |
|
MoleculeStamp* molStamp; |
98 |
|
int nMolWithSameStamp; |
99 |
|
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
100 |
< |
int nGroups = 0; //total cutoff groups defined in meta-data file |
100 |
> |
int nGroups = 0; //total cutoff groups defined in meta-data file |
101 |
|
CutoffGroupStamp* cgStamp; |
102 |
|
RigidBodyStamp* rbStamp; |
103 |
|
int nRigidAtoms = 0; |
104 |
< |
|
105 |
< |
for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) { |
106 |
< |
molStamp = i->first; |
107 |
< |
nMolWithSameStamp = i->second; |
104 |
> |
std::vector<Component*> components = simParams->getComponents(); |
105 |
> |
|
106 |
> |
for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
107 |
> |
molStamp = (*i)->getMoleculeStamp(); |
108 |
> |
nMolWithSameStamp = (*i)->getNMol(); |
109 |
|
|
110 |
|
addMoleculeStamp(molStamp, nMolWithSameStamp); |
111 |
|
|
112 |
|
//calculate atoms in molecules |
113 |
|
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
114 |
|
|
97 |
– |
|
115 |
|
//calculate atoms in cutoff groups |
116 |
|
int nAtomsInGroups = 0; |
117 |
|
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
118 |
|
|
119 |
|
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
120 |
< |
cgStamp = molStamp->getCutoffGroup(j); |
120 |
> |
cgStamp = molStamp->getCutoffGroupStamp(j); |
121 |
|
nAtomsInGroups += cgStamp->getNMembers(); |
122 |
|
} |
123 |
|
|
124 |
|
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
125 |
+ |
|
126 |
|
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
127 |
|
|
128 |
|
//calculate atoms in rigid bodies |
130 |
|
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
131 |
|
|
132 |
|
for (int j=0; j < nRigidBodiesInStamp; j++) { |
133 |
< |
rbStamp = molStamp->getRigidBody(j); |
133 |
> |
rbStamp = molStamp->getRigidBodyStamp(j); |
134 |
|
nAtomsInRigidBodies += rbStamp->getNMembers(); |
135 |
|
} |
136 |
|
|
139 |
|
|
140 |
|
} |
141 |
|
|
142 |
< |
//every free atom (atom does not belong to cutoff groups) is a cutoff group |
143 |
< |
//therefore the total number of cutoff groups in the system is equal to |
144 |
< |
//the total number of atoms minus number of atoms belong to cutoff group defined in meta-data |
145 |
< |
//file plus the number of cutoff groups defined in meta-data file |
142 |
> |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
143 |
> |
//group therefore the total number of cutoff groups in the system is |
144 |
> |
//equal to the total number of atoms minus number of atoms belong to |
145 |
> |
//cutoff group defined in meta-data file plus the number of cutoff |
146 |
> |
//groups defined in meta-data file |
147 |
|
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
148 |
|
|
149 |
< |
//every free atom (atom does not belong to rigid bodies) is an integrable object |
150 |
< |
//therefore the total number of integrable objects in the system is equal to |
151 |
< |
//the total number of atoms minus number of atoms belong to rigid body defined in meta-data |
152 |
< |
//file plus the number of rigid bodies defined in meta-data file |
153 |
< |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_; |
154 |
< |
|
149 |
> |
//every free atom (atom does not belong to rigid bodies) is an |
150 |
> |
//integrable object therefore the total number of integrable objects |
151 |
> |
//in the system is equal to the total number of atoms minus number of |
152 |
> |
//atoms belong to rigid body defined in meta-data file plus the number |
153 |
> |
//of rigid bodies defined in meta-data file |
154 |
> |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
155 |
> |
+ nGlobalRigidBodies_; |
156 |
> |
|
157 |
|
nGlobalMols_ = molStampIds_.size(); |
158 |
|
|
159 |
|
#ifdef IS_MPI |
169 |
|
} |
170 |
|
molecules_.clear(); |
171 |
|
|
151 |
– |
delete stamps_; |
172 |
|
delete sman_; |
173 |
|
delete simParams_; |
174 |
|
delete forceField_; |
275 |
|
} |
276 |
|
} |
277 |
|
|
278 |
< |
}//end for (integrableObject) |
279 |
< |
}// end for (mol) |
278 |
> |
} |
279 |
> |
} |
280 |
|
|
281 |
|
// n_constraints is local, so subtract them on each processor |
282 |
|
ndf_local -= nConstraints_; |
293 |
|
|
294 |
|
} |
295 |
|
|
296 |
+ |
int SimInfo::getFdf() { |
297 |
+ |
#ifdef IS_MPI |
298 |
+ |
MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
299 |
+ |
#else |
300 |
+ |
fdf_ = fdf_local; |
301 |
+ |
#endif |
302 |
+ |
return fdf_; |
303 |
+ |
} |
304 |
+ |
|
305 |
|
void SimInfo::calcNdfRaw() { |
306 |
|
int ndfRaw_local; |
307 |
|
|
364 |
|
int b; |
365 |
|
int c; |
366 |
|
int d; |
367 |
+ |
|
368 |
+ |
std::map<int, std::set<int> > atomGroups; |
369 |
+ |
|
370 |
+ |
Molecule::RigidBodyIterator rbIter; |
371 |
+ |
RigidBody* rb; |
372 |
+ |
Molecule::IntegrableObjectIterator ii; |
373 |
+ |
StuntDouble* integrableObject; |
374 |
|
|
375 |
+ |
for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
376 |
+ |
integrableObject = mol->nextIntegrableObject(ii)) { |
377 |
+ |
|
378 |
+ |
if (integrableObject->isRigidBody()) { |
379 |
+ |
rb = static_cast<RigidBody*>(integrableObject); |
380 |
+ |
std::vector<Atom*> atoms = rb->getAtoms(); |
381 |
+ |
std::set<int> rigidAtoms; |
382 |
+ |
for (int i = 0; i < atoms.size(); ++i) { |
383 |
+ |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
384 |
+ |
} |
385 |
+ |
for (int i = 0; i < atoms.size(); ++i) { |
386 |
+ |
atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
387 |
+ |
} |
388 |
+ |
} else { |
389 |
+ |
std::set<int> oneAtomSet; |
390 |
+ |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
391 |
+ |
atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
392 |
+ |
} |
393 |
+ |
} |
394 |
+ |
|
395 |
+ |
|
396 |
+ |
|
397 |
|
for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
398 |
|
a = bond->getAtomA()->getGlobalIndex(); |
399 |
|
b = bond->getAtomB()->getGlobalIndex(); |
404 |
|
a = bend->getAtomA()->getGlobalIndex(); |
405 |
|
b = bend->getAtomB()->getGlobalIndex(); |
406 |
|
c = bend->getAtomC()->getGlobalIndex(); |
407 |
+ |
std::set<int> rigidSetA = getRigidSet(a, atomGroups); |
408 |
+ |
std::set<int> rigidSetB = getRigidSet(b, atomGroups); |
409 |
+ |
std::set<int> rigidSetC = getRigidSet(c, atomGroups); |
410 |
|
|
411 |
< |
exclude_.addPair(a, b); |
412 |
< |
exclude_.addPair(a, c); |
413 |
< |
exclude_.addPair(b, c); |
411 |
> |
exclude_.addPairs(rigidSetA, rigidSetB); |
412 |
> |
exclude_.addPairs(rigidSetA, rigidSetC); |
413 |
> |
exclude_.addPairs(rigidSetB, rigidSetC); |
414 |
> |
|
415 |
> |
//exclude_.addPair(a, b); |
416 |
> |
//exclude_.addPair(a, c); |
417 |
> |
//exclude_.addPair(b, c); |
418 |
|
} |
419 |
|
|
420 |
|
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
422 |
|
b = torsion->getAtomB()->getGlobalIndex(); |
423 |
|
c = torsion->getAtomC()->getGlobalIndex(); |
424 |
|
d = torsion->getAtomD()->getGlobalIndex(); |
425 |
+ |
std::set<int> rigidSetA = getRigidSet(a, atomGroups); |
426 |
+ |
std::set<int> rigidSetB = getRigidSet(b, atomGroups); |
427 |
+ |
std::set<int> rigidSetC = getRigidSet(c, atomGroups); |
428 |
+ |
std::set<int> rigidSetD = getRigidSet(d, atomGroups); |
429 |
|
|
430 |
+ |
exclude_.addPairs(rigidSetA, rigidSetB); |
431 |
+ |
exclude_.addPairs(rigidSetA, rigidSetC); |
432 |
+ |
exclude_.addPairs(rigidSetA, rigidSetD); |
433 |
+ |
exclude_.addPairs(rigidSetB, rigidSetC); |
434 |
+ |
exclude_.addPairs(rigidSetB, rigidSetD); |
435 |
+ |
exclude_.addPairs(rigidSetC, rigidSetD); |
436 |
+ |
|
437 |
+ |
/* |
438 |
+ |
exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end()); |
439 |
+ |
exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end()); |
440 |
+ |
exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end()); |
441 |
+ |
exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end()); |
442 |
+ |
exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end()); |
443 |
+ |
exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end()); |
444 |
+ |
|
445 |
+ |
|
446 |
|
exclude_.addPair(a, b); |
447 |
|
exclude_.addPair(a, c); |
448 |
|
exclude_.addPair(a, d); |
449 |
|
exclude_.addPair(b, c); |
450 |
|
exclude_.addPair(b, d); |
451 |
|
exclude_.addPair(c, d); |
452 |
+ |
*/ |
453 |
|
} |
454 |
|
|
369 |
– |
Molecule::RigidBodyIterator rbIter; |
370 |
– |
RigidBody* rb; |
455 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
456 |
|
std::vector<Atom*> atoms = rb->getAtoms(); |
457 |
|
for (int i = 0; i < atoms.size() -1 ; ++i) { |
476 |
|
int b; |
477 |
|
int c; |
478 |
|
int d; |
479 |
+ |
|
480 |
+ |
std::map<int, std::set<int> > atomGroups; |
481 |
+ |
|
482 |
+ |
Molecule::RigidBodyIterator rbIter; |
483 |
+ |
RigidBody* rb; |
484 |
+ |
Molecule::IntegrableObjectIterator ii; |
485 |
+ |
StuntDouble* integrableObject; |
486 |
|
|
487 |
+ |
for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
488 |
+ |
integrableObject = mol->nextIntegrableObject(ii)) { |
489 |
+ |
|
490 |
+ |
if (integrableObject->isRigidBody()) { |
491 |
+ |
rb = static_cast<RigidBody*>(integrableObject); |
492 |
+ |
std::vector<Atom*> atoms = rb->getAtoms(); |
493 |
+ |
std::set<int> rigidAtoms; |
494 |
+ |
for (int i = 0; i < atoms.size(); ++i) { |
495 |
+ |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
496 |
+ |
} |
497 |
+ |
for (int i = 0; i < atoms.size(); ++i) { |
498 |
+ |
atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
499 |
+ |
} |
500 |
+ |
} else { |
501 |
+ |
std::set<int> oneAtomSet; |
502 |
+ |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
503 |
+ |
atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
504 |
+ |
} |
505 |
+ |
} |
506 |
+ |
|
507 |
+ |
|
508 |
|
for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
509 |
|
a = bond->getAtomA()->getGlobalIndex(); |
510 |
|
b = bond->getAtomB()->getGlobalIndex(); |
516 |
|
b = bend->getAtomB()->getGlobalIndex(); |
517 |
|
c = bend->getAtomC()->getGlobalIndex(); |
518 |
|
|
519 |
< |
exclude_.removePair(a, b); |
520 |
< |
exclude_.removePair(a, c); |
521 |
< |
exclude_.removePair(b, c); |
519 |
> |
std::set<int> rigidSetA = getRigidSet(a, atomGroups); |
520 |
> |
std::set<int> rigidSetB = getRigidSet(b, atomGroups); |
521 |
> |
std::set<int> rigidSetC = getRigidSet(c, atomGroups); |
522 |
> |
|
523 |
> |
exclude_.removePairs(rigidSetA, rigidSetB); |
524 |
> |
exclude_.removePairs(rigidSetA, rigidSetC); |
525 |
> |
exclude_.removePairs(rigidSetB, rigidSetC); |
526 |
> |
|
527 |
> |
//exclude_.removePair(a, b); |
528 |
> |
//exclude_.removePair(a, c); |
529 |
> |
//exclude_.removePair(b, c); |
530 |
|
} |
531 |
|
|
532 |
|
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
535 |
|
c = torsion->getAtomC()->getGlobalIndex(); |
536 |
|
d = torsion->getAtomD()->getGlobalIndex(); |
537 |
|
|
538 |
+ |
std::set<int> rigidSetA = getRigidSet(a, atomGroups); |
539 |
+ |
std::set<int> rigidSetB = getRigidSet(b, atomGroups); |
540 |
+ |
std::set<int> rigidSetC = getRigidSet(c, atomGroups); |
541 |
+ |
std::set<int> rigidSetD = getRigidSet(d, atomGroups); |
542 |
+ |
|
543 |
+ |
exclude_.removePairs(rigidSetA, rigidSetB); |
544 |
+ |
exclude_.removePairs(rigidSetA, rigidSetC); |
545 |
+ |
exclude_.removePairs(rigidSetA, rigidSetD); |
546 |
+ |
exclude_.removePairs(rigidSetB, rigidSetC); |
547 |
+ |
exclude_.removePairs(rigidSetB, rigidSetD); |
548 |
+ |
exclude_.removePairs(rigidSetC, rigidSetD); |
549 |
+ |
|
550 |
+ |
/* |
551 |
+ |
exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end()); |
552 |
+ |
exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end()); |
553 |
+ |
exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end()); |
554 |
+ |
exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end()); |
555 |
+ |
exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end()); |
556 |
+ |
exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end()); |
557 |
+ |
|
558 |
+ |
|
559 |
|
exclude_.removePair(a, b); |
560 |
|
exclude_.removePair(a, c); |
561 |
|
exclude_.removePair(a, d); |
562 |
|
exclude_.removePair(b, c); |
563 |
|
exclude_.removePair(b, d); |
564 |
|
exclude_.removePair(c, d); |
565 |
+ |
*/ |
566 |
|
} |
567 |
|
|
426 |
– |
Molecule::RigidBodyIterator rbIter; |
427 |
– |
RigidBody* rb; |
568 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
569 |
|
std::vector<Atom*> atoms = rb->getAtoms(); |
570 |
|
for (int i = 0; i < atoms.size() -1 ; ++i) { |
602 |
|
//setup fortran force field |
603 |
|
/** @deprecate */ |
604 |
|
int isError = 0; |
605 |
< |
initFortranFF( &fInfo_.SIM_uses_RF , &isError ); |
605 |
> |
|
606 |
> |
setupCutoff(); |
607 |
> |
|
608 |
> |
setupElectrostaticSummationMethod( isError ); |
609 |
> |
setupSwitchingFunction(); |
610 |
> |
setupAccumulateBoxDipole(); |
611 |
> |
|
612 |
|
if(isError){ |
613 |
|
sprintf( painCave.errMsg, |
614 |
|
"ForceField error: There was an error initializing the forceField in fortran.\n" ); |
615 |
|
painCave.isFatal = 1; |
616 |
|
simError(); |
617 |
|
} |
472 |
– |
|
473 |
– |
|
474 |
– |
setupCutoff(); |
618 |
|
|
619 |
|
calcNdf(); |
620 |
|
calcNdfRaw(); |
649 |
|
int useLennardJones = 0; |
650 |
|
int useElectrostatic = 0; |
651 |
|
int useEAM = 0; |
652 |
+ |
int useSC = 0; |
653 |
|
int useCharge = 0; |
654 |
|
int useDirectional = 0; |
655 |
|
int useDipole = 0; |
661 |
|
int useDirectionalAtom = 0; |
662 |
|
int useElectrostatics = 0; |
663 |
|
//usePBC and useRF are from simParams |
664 |
< |
int usePBC = simParams_->getPBC(); |
665 |
< |
int useRF = simParams_->getUseRF(); |
664 |
> |
int usePBC = simParams_->getUsePeriodicBoundaryConditions(); |
665 |
> |
int useRF; |
666 |
> |
int useSF; |
667 |
> |
int useSP; |
668 |
> |
int useBoxDipole; |
669 |
> |
std::string myMethod; |
670 |
|
|
671 |
+ |
// set the useRF logical |
672 |
+ |
useRF = 0; |
673 |
+ |
useSF = 0; |
674 |
+ |
useSP = 0; |
675 |
+ |
|
676 |
+ |
|
677 |
+ |
if (simParams_->haveElectrostaticSummationMethod()) { |
678 |
+ |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
679 |
+ |
toUpper(myMethod); |
680 |
+ |
if (myMethod == "REACTION_FIELD"){ |
681 |
+ |
useRF = 1; |
682 |
+ |
} else if (myMethod == "SHIFTED_FORCE"){ |
683 |
+ |
useSF = 1; |
684 |
+ |
} else if (myMethod == "SHIFTED_POTENTIAL"){ |
685 |
+ |
useSP = 1; |
686 |
+ |
} |
687 |
+ |
} |
688 |
+ |
|
689 |
+ |
if (simParams_->haveAccumulateBoxDipole()) |
690 |
+ |
if (simParams_->getAccumulateBoxDipole()) |
691 |
+ |
useBoxDipole = 1; |
692 |
+ |
|
693 |
|
//loop over all of the atom types |
694 |
|
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
695 |
|
useLennardJones |= (*i)->isLennardJones(); |
696 |
|
useElectrostatic |= (*i)->isElectrostatic(); |
697 |
|
useEAM |= (*i)->isEAM(); |
698 |
+ |
useSC |= (*i)->isSC(); |
699 |
|
useCharge |= (*i)->isCharge(); |
700 |
|
useDirectional |= (*i)->isDirectional(); |
701 |
|
useDipole |= (*i)->isDipole(); |
746 |
|
temp = useEAM; |
747 |
|
MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
748 |
|
|
749 |
+ |
temp = useSC; |
750 |
+ |
MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
751 |
+ |
|
752 |
|
temp = useShape; |
753 |
|
MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
754 |
|
|
757 |
|
|
758 |
|
temp = useRF; |
759 |
|
MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
760 |
< |
|
760 |
> |
|
761 |
> |
temp = useSF; |
762 |
> |
MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
763 |
> |
|
764 |
> |
temp = useSP; |
765 |
> |
MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
766 |
> |
|
767 |
> |
temp = useBoxDipole; |
768 |
> |
MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
769 |
> |
|
770 |
|
#endif |
771 |
|
|
772 |
|
fInfo_.SIM_uses_PBC = usePBC; |
779 |
|
fInfo_.SIM_uses_StickyPower = useStickyPower; |
780 |
|
fInfo_.SIM_uses_GayBerne = useGayBerne; |
781 |
|
fInfo_.SIM_uses_EAM = useEAM; |
782 |
+ |
fInfo_.SIM_uses_SC = useSC; |
783 |
|
fInfo_.SIM_uses_Shapes = useShape; |
784 |
|
fInfo_.SIM_uses_FLARB = useFLARB; |
785 |
|
fInfo_.SIM_uses_RF = useRF; |
786 |
< |
|
787 |
< |
if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) { |
788 |
< |
|
605 |
< |
if (simParams_->haveDielectric()) { |
606 |
< |
fInfo_.dielect = simParams_->getDielectric(); |
607 |
< |
} else { |
608 |
< |
sprintf(painCave.errMsg, |
609 |
< |
"SimSetup Error: No Dielectric constant was set.\n" |
610 |
< |
"\tYou are trying to use Reaction Field without" |
611 |
< |
"\tsetting a dielectric constant!\n"); |
612 |
< |
painCave.isFatal = 1; |
613 |
< |
simError(); |
614 |
< |
} |
615 |
< |
|
616 |
< |
} else { |
617 |
< |
fInfo_.dielect = 0.0; |
618 |
< |
} |
619 |
< |
|
786 |
> |
fInfo_.SIM_uses_SF = useSF; |
787 |
> |
fInfo_.SIM_uses_SP = useSP; |
788 |
> |
fInfo_.SIM_uses_BoxDipole = useBoxDipole; |
789 |
|
} |
790 |
|
|
791 |
|
void SimInfo::setupFortranSim() { |
802 |
|
} |
803 |
|
|
804 |
|
//calculate mass ratio of cutoff group |
805 |
< |
std::vector<double> mfact; |
805 |
> |
std::vector<RealType> mfact; |
806 |
|
SimInfo::MoleculeIterator mi; |
807 |
|
Molecule* mol; |
808 |
|
Molecule::CutoffGroupIterator ci; |
809 |
|
CutoffGroup* cg; |
810 |
|
Molecule::AtomIterator ai; |
811 |
|
Atom* atom; |
812 |
< |
double totalMass; |
812 |
> |
RealType totalMass; |
813 |
|
|
814 |
|
//to avoid memory reallocation, reserve enough space for mfact |
815 |
|
mfact.reserve(getNCutoffGroups()); |
819 |
|
|
820 |
|
totalMass = cg->getMass(); |
821 |
|
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
822 |
< |
mfact.push_back(atom->getMass()/totalMass); |
822 |
> |
// Check for massless groups - set mfact to 1 if true |
823 |
> |
if (totalMass != 0) |
824 |
> |
mfact.push_back(atom->getMass()/totalMass); |
825 |
> |
else |
826 |
> |
mfact.push_back( 1.0 ); |
827 |
|
} |
828 |
|
|
829 |
|
} |
870 |
|
"succesfully sent the simulation information to fortran.\n"); |
871 |
|
MPIcheckPoint(); |
872 |
|
#endif // is_mpi |
873 |
+ |
|
874 |
+ |
// Setup number of neighbors in neighbor list if present |
875 |
+ |
if (simParams_->haveNeighborListNeighbors()) { |
876 |
+ |
int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
877 |
+ |
setNeighbors(&nlistNeighbors); |
878 |
+ |
} |
879 |
+ |
|
880 |
+ |
|
881 |
|
} |
882 |
|
|
883 |
|
|
940 |
|
|
941 |
|
#endif |
942 |
|
|
943 |
< |
double SimInfo::calcMaxCutoffRadius() { |
943 |
> |
void SimInfo::setupCutoff() { |
944 |
> |
|
945 |
> |
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
946 |
|
|
947 |
+ |
// Check the cutoff policy |
948 |
+ |
int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default |
949 |
|
|
950 |
< |
std::set<AtomType*> atomTypes; |
951 |
< |
std::set<AtomType*>::iterator i; |
952 |
< |
std::vector<double> cutoffRadius; |
953 |
< |
|
954 |
< |
//get the unique atom types |
770 |
< |
atomTypes = getUniqueAtomTypes(); |
771 |
< |
|
772 |
< |
//query the max cutoff radius among these atom types |
773 |
< |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
774 |
< |
cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i)); |
950 |
> |
std::string myPolicy; |
951 |
> |
if (forceFieldOptions_.haveCutoffPolicy()){ |
952 |
> |
myPolicy = forceFieldOptions_.getCutoffPolicy(); |
953 |
> |
}else if (simParams_->haveCutoffPolicy()) { |
954 |
> |
myPolicy = simParams_->getCutoffPolicy(); |
955 |
|
} |
956 |
|
|
957 |
< |
double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end())); |
958 |
< |
#ifdef IS_MPI |
959 |
< |
//pick the max cutoff radius among the processors |
960 |
< |
#endif |
961 |
< |
|
962 |
< |
return maxCutoffRadius; |
963 |
< |
} |
964 |
< |
|
965 |
< |
void SimInfo::getCutoff(double& rcut, double& rsw) { |
966 |
< |
|
967 |
< |
if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { |
957 |
> |
if (!myPolicy.empty()){ |
958 |
> |
toUpper(myPolicy); |
959 |
> |
if (myPolicy == "MIX") { |
960 |
> |
cp = MIX_CUTOFF_POLICY; |
961 |
> |
} else { |
962 |
> |
if (myPolicy == "MAX") { |
963 |
> |
cp = MAX_CUTOFF_POLICY; |
964 |
> |
} else { |
965 |
> |
if (myPolicy == "TRADITIONAL") { |
966 |
> |
cp = TRADITIONAL_CUTOFF_POLICY; |
967 |
> |
} else { |
968 |
> |
// throw error |
969 |
> |
sprintf( painCave.errMsg, |
970 |
> |
"SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() ); |
971 |
> |
painCave.isFatal = 1; |
972 |
> |
simError(); |
973 |
> |
} |
974 |
> |
} |
975 |
> |
} |
976 |
> |
} |
977 |
> |
notifyFortranCutoffPolicy(&cp); |
978 |
> |
|
979 |
> |
// Check the Skin Thickness for neighborlists |
980 |
> |
RealType skin; |
981 |
> |
if (simParams_->haveSkinThickness()) { |
982 |
> |
skin = simParams_->getSkinThickness(); |
983 |
> |
notifyFortranSkinThickness(&skin); |
984 |
> |
} |
985 |
|
|
986 |
< |
if (!simParams_->haveRcut()){ |
987 |
< |
sprintf(painCave.errMsg, |
986 |
> |
// Check if the cutoff was set explicitly: |
987 |
> |
if (simParams_->haveCutoffRadius()) { |
988 |
> |
rcut_ = simParams_->getCutoffRadius(); |
989 |
> |
if (simParams_->haveSwitchingRadius()) { |
990 |
> |
rsw_ = simParams_->getSwitchingRadius(); |
991 |
> |
} else { |
992 |
> |
if (fInfo_.SIM_uses_Charges | |
993 |
> |
fInfo_.SIM_uses_Dipoles | |
994 |
> |
fInfo_.SIM_uses_RF) { |
995 |
> |
|
996 |
> |
rsw_ = 0.85 * rcut_; |
997 |
> |
sprintf(painCave.errMsg, |
998 |
> |
"SimCreator Warning: No value was set for the switchingRadius.\n" |
999 |
> |
"\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n" |
1000 |
> |
"\tswitchingRadius = %f. for this simulation\n", rsw_); |
1001 |
> |
painCave.isFatal = 0; |
1002 |
> |
simError(); |
1003 |
> |
} else { |
1004 |
> |
rsw_ = rcut_; |
1005 |
> |
sprintf(painCave.errMsg, |
1006 |
> |
"SimCreator Warning: No value was set for the switchingRadius.\n" |
1007 |
> |
"\tOOPSE will use the same value as the cutoffRadius.\n" |
1008 |
> |
"\tswitchingRadius = %f. for this simulation\n", rsw_); |
1009 |
> |
painCave.isFatal = 0; |
1010 |
> |
simError(); |
1011 |
> |
} |
1012 |
> |
} |
1013 |
> |
|
1014 |
> |
notifyFortranCutoffs(&rcut_, &rsw_); |
1015 |
> |
|
1016 |
> |
} else { |
1017 |
> |
|
1018 |
> |
// For electrostatic atoms, we'll assume a large safe value: |
1019 |
> |
if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { |
1020 |
> |
sprintf(painCave.errMsg, |
1021 |
|
"SimCreator Warning: No value was set for the cutoffRadius.\n" |
1022 |
|
"\tOOPSE will use a default value of 15.0 angstroms" |
1023 |
|
"\tfor the cutoffRadius.\n"); |
1024 |
< |
painCave.isFatal = 0; |
1024 |
> |
painCave.isFatal = 0; |
1025 |
|
simError(); |
1026 |
< |
rcut = 15.0; |
1027 |
< |
} else{ |
1028 |
< |
rcut = simParams_->getRcut(); |
1029 |
< |
} |
1026 |
> |
rcut_ = 15.0; |
1027 |
> |
|
1028 |
> |
if (simParams_->haveElectrostaticSummationMethod()) { |
1029 |
> |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1030 |
> |
toUpper(myMethod); |
1031 |
> |
if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") { |
1032 |
> |
if (simParams_->haveSwitchingRadius()){ |
1033 |
> |
sprintf(painCave.errMsg, |
1034 |
> |
"SimInfo Warning: A value was set for the switchingRadius\n" |
1035 |
> |
"\teven though the electrostaticSummationMethod was\n" |
1036 |
> |
"\tset to %s\n", myMethod.c_str()); |
1037 |
> |
painCave.isFatal = 1; |
1038 |
> |
simError(); |
1039 |
> |
} |
1040 |
> |
} |
1041 |
> |
} |
1042 |
> |
|
1043 |
> |
if (simParams_->haveSwitchingRadius()){ |
1044 |
> |
rsw_ = simParams_->getSwitchingRadius(); |
1045 |
> |
} else { |
1046 |
> |
sprintf(painCave.errMsg, |
1047 |
> |
"SimCreator Warning: No value was set for switchingRadius.\n" |
1048 |
> |
"\tOOPSE will use a default value of\n" |
1049 |
> |
"\t0.85 * cutoffRadius for the switchingRadius\n"); |
1050 |
> |
painCave.isFatal = 0; |
1051 |
> |
simError(); |
1052 |
> |
rsw_ = 0.85 * rcut_; |
1053 |
> |
} |
1054 |
> |
notifyFortranCutoffs(&rcut_, &rsw_); |
1055 |
> |
} else { |
1056 |
> |
// We didn't set rcut explicitly, and we don't have electrostatic atoms, so |
1057 |
> |
// We'll punt and let fortran figure out the cutoffs later. |
1058 |
> |
|
1059 |
> |
notifyFortranYouAreOnYourOwn(); |
1060 |
|
|
801 |
– |
if (!simParams_->haveRsw()){ |
802 |
– |
sprintf(painCave.errMsg, |
803 |
– |
"SimCreator Warning: No value was set for switchingRadius.\n" |
804 |
– |
"\tOOPSE will use a default value of\n" |
805 |
– |
"\t0.95 * cutoffRadius for the switchingRadius\n"); |
806 |
– |
painCave.isFatal = 0; |
807 |
– |
simError(); |
808 |
– |
rsw = 0.95 * rcut; |
809 |
– |
} else{ |
810 |
– |
rsw = simParams_->getRsw(); |
1061 |
|
} |
1062 |
+ |
} |
1063 |
+ |
} |
1064 |
|
|
1065 |
< |
} else { |
1066 |
< |
// if charge, dipole or reaction field is not used and the cutofff radius is not specified in |
1067 |
< |
//meta-data file, the maximum cutoff radius calculated from forcefiled will be used |
1068 |
< |
|
1069 |
< |
if (simParams_->haveRcut()) { |
1070 |
< |
rcut = simParams_->getRcut(); |
1065 |
> |
void SimInfo::setupElectrostaticSummationMethod( int isError ) { |
1066 |
> |
|
1067 |
> |
int errorOut; |
1068 |
> |
int esm = NONE; |
1069 |
> |
int sm = UNDAMPED; |
1070 |
> |
RealType alphaVal; |
1071 |
> |
RealType dielectric; |
1072 |
> |
|
1073 |
> |
errorOut = isError; |
1074 |
> |
|
1075 |
> |
if (simParams_->haveElectrostaticSummationMethod()) { |
1076 |
> |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1077 |
> |
toUpper(myMethod); |
1078 |
> |
if (myMethod == "NONE") { |
1079 |
> |
esm = NONE; |
1080 |
|
} else { |
1081 |
< |
//set cutoff radius to the maximum cutoff radius based on atom types in the whole system |
1082 |
< |
rcut = calcMaxCutoffRadius(); |
1081 |
> |
if (myMethod == "SWITCHING_FUNCTION") { |
1082 |
> |
esm = SWITCHING_FUNCTION; |
1083 |
> |
} else { |
1084 |
> |
if (myMethod == "SHIFTED_POTENTIAL") { |
1085 |
> |
esm = SHIFTED_POTENTIAL; |
1086 |
> |
} else { |
1087 |
> |
if (myMethod == "SHIFTED_FORCE") { |
1088 |
> |
esm = SHIFTED_FORCE; |
1089 |
> |
} else { |
1090 |
> |
if (myMethod == "REACTION_FIELD") { |
1091 |
> |
esm = REACTION_FIELD; |
1092 |
> |
dielectric = simParams_->getDielectric(); |
1093 |
> |
if (!simParams_->haveDielectric()) { |
1094 |
> |
// throw warning |
1095 |
> |
sprintf( painCave.errMsg, |
1096 |
> |
"SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n" |
1097 |
> |
"\tA default value of %f will be used for the dielectric.\n", dielectric); |
1098 |
> |
painCave.isFatal = 0; |
1099 |
> |
simError(); |
1100 |
> |
} |
1101 |
> |
} else { |
1102 |
> |
// throw error |
1103 |
> |
sprintf( painCave.errMsg, |
1104 |
> |
"SimInfo error: Unknown electrostaticSummationMethod.\n" |
1105 |
> |
"\t(Input file specified %s .)\n" |
1106 |
> |
"\telectrostaticSummationMethod must be one of: \"none\",\n" |
1107 |
> |
"\t\"shifted_potential\", \"shifted_force\", or \n" |
1108 |
> |
"\t\"reaction_field\".\n", myMethod.c_str() ); |
1109 |
> |
painCave.isFatal = 1; |
1110 |
> |
simError(); |
1111 |
> |
} |
1112 |
> |
} |
1113 |
> |
} |
1114 |
> |
} |
1115 |
|
} |
1116 |
< |
|
1117 |
< |
if (simParams_->haveRsw()) { |
1118 |
< |
rsw = simParams_->getRsw(); |
1116 |
> |
} |
1117 |
> |
|
1118 |
> |
if (simParams_->haveElectrostaticScreeningMethod()) { |
1119 |
> |
std::string myScreen = simParams_->getElectrostaticScreeningMethod(); |
1120 |
> |
toUpper(myScreen); |
1121 |
> |
if (myScreen == "UNDAMPED") { |
1122 |
> |
sm = UNDAMPED; |
1123 |
|
} else { |
1124 |
< |
rsw = rcut; |
1124 |
> |
if (myScreen == "DAMPED") { |
1125 |
> |
sm = DAMPED; |
1126 |
> |
if (!simParams_->haveDampingAlpha()) { |
1127 |
> |
// first set a cutoff dependent alpha value |
1128 |
> |
// we assume alpha depends linearly with rcut from 0 to 20.5 ang |
1129 |
> |
alphaVal = 0.5125 - rcut_* 0.025; |
1130 |
> |
// for values rcut > 20.5, alpha is zero |
1131 |
> |
if (alphaVal < 0) alphaVal = 0; |
1132 |
> |
|
1133 |
> |
// throw warning |
1134 |
> |
sprintf( painCave.errMsg, |
1135 |
> |
"SimInfo warning: dampingAlpha was not specified in the input file.\n" |
1136 |
> |
"\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_); |
1137 |
> |
painCave.isFatal = 0; |
1138 |
> |
simError(); |
1139 |
> |
} else { |
1140 |
> |
alphaVal = simParams_->getDampingAlpha(); |
1141 |
> |
} |
1142 |
> |
|
1143 |
> |
} else { |
1144 |
> |
// throw error |
1145 |
> |
sprintf( painCave.errMsg, |
1146 |
> |
"SimInfo error: Unknown electrostaticScreeningMethod.\n" |
1147 |
> |
"\t(Input file specified %s .)\n" |
1148 |
> |
"\telectrostaticScreeningMethod must be one of: \"undamped\"\n" |
1149 |
> |
"or \"damped\".\n", myScreen.c_str() ); |
1150 |
> |
painCave.isFatal = 1; |
1151 |
> |
simError(); |
1152 |
> |
} |
1153 |
|
} |
1154 |
+ |
} |
1155 |
|
|
1156 |
+ |
// let's pass some summation method variables to fortran |
1157 |
+ |
setElectrostaticSummationMethod( &esm ); |
1158 |
+ |
setFortranElectrostaticMethod( &esm ); |
1159 |
+ |
setScreeningMethod( &sm ); |
1160 |
+ |
setDampingAlpha( &alphaVal ); |
1161 |
+ |
setReactionFieldDielectric( &dielectric ); |
1162 |
+ |
initFortranFF( &errorOut ); |
1163 |
+ |
} |
1164 |
+ |
|
1165 |
+ |
void SimInfo::setupSwitchingFunction() { |
1166 |
+ |
int ft = CUBIC; |
1167 |
+ |
|
1168 |
+ |
if (simParams_->haveSwitchingFunctionType()) { |
1169 |
+ |
std::string funcType = simParams_->getSwitchingFunctionType(); |
1170 |
+ |
toUpper(funcType); |
1171 |
+ |
if (funcType == "CUBIC") { |
1172 |
+ |
ft = CUBIC; |
1173 |
+ |
} else { |
1174 |
+ |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
1175 |
+ |
ft = FIFTH_ORDER_POLY; |
1176 |
+ |
} else { |
1177 |
+ |
// throw error |
1178 |
+ |
sprintf( painCave.errMsg, |
1179 |
+ |
"SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() ); |
1180 |
+ |
painCave.isFatal = 1; |
1181 |
+ |
simError(); |
1182 |
+ |
} |
1183 |
+ |
} |
1184 |
|
} |
1185 |
+ |
|
1186 |
+ |
// send switching function notification to switcheroo |
1187 |
+ |
setFunctionType(&ft); |
1188 |
+ |
|
1189 |
|
} |
1190 |
|
|
1191 |
< |
void SimInfo::setupCutoff() { |
834 |
< |
getCutoff(rcut_, rsw_); |
835 |
< |
double rnblist = rcut_ + 1; // skin of neighbor list |
1191 |
> |
void SimInfo::setupAccumulateBoxDipole() { |
1192 |
|
|
1193 |
< |
//Pass these cutoff radius etc. to fortran. This function should be called once and only once |
1194 |
< |
notifyFortranCutoffs(&rcut_, &rsw_, &rnblist); |
1193 |
> |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
1194 |
> |
if ( simParams_->haveAccumulateBoxDipole() ) |
1195 |
> |
if ( simParams_->getAccumulateBoxDipole() ) { |
1196 |
> |
setAccumulateBoxDipole(); |
1197 |
> |
calcBoxDipole_ = true; |
1198 |
> |
} |
1199 |
> |
|
1200 |
|
} |
1201 |
|
|
1202 |
|
void SimInfo::addProperty(GenericData* genData) { |
1255 |
|
Molecule* mol; |
1256 |
|
|
1257 |
|
Vector3d comVel(0.0); |
1258 |
< |
double totalMass = 0.0; |
1258 |
> |
RealType totalMass = 0.0; |
1259 |
|
|
1260 |
|
|
1261 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1262 |
< |
double mass = mol->getMass(); |
1262 |
> |
RealType mass = mol->getMass(); |
1263 |
|
totalMass += mass; |
1264 |
|
comVel += mass * mol->getComVel(); |
1265 |
|
} |
1266 |
|
|
1267 |
|
#ifdef IS_MPI |
1268 |
< |
double tmpMass = totalMass; |
1268 |
> |
RealType tmpMass = totalMass; |
1269 |
|
Vector3d tmpComVel(comVel); |
1270 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1271 |
< |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1270 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1271 |
> |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1272 |
|
#endif |
1273 |
|
|
1274 |
|
comVel /= totalMass; |
1281 |
|
Molecule* mol; |
1282 |
|
|
1283 |
|
Vector3d com(0.0); |
1284 |
< |
double totalMass = 0.0; |
1284 |
> |
RealType totalMass = 0.0; |
1285 |
|
|
1286 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1287 |
< |
double mass = mol->getMass(); |
1287 |
> |
RealType mass = mol->getMass(); |
1288 |
|
totalMass += mass; |
1289 |
|
com += mass * mol->getCom(); |
1290 |
|
} |
1291 |
|
|
1292 |
|
#ifdef IS_MPI |
1293 |
< |
double tmpMass = totalMass; |
1293 |
> |
RealType tmpMass = totalMass; |
1294 |
|
Vector3d tmpCom(com); |
1295 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1296 |
< |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1295 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1296 |
> |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1297 |
|
#endif |
1298 |
|
|
1299 |
|
com /= totalMass; |
1317 |
|
Molecule* mol; |
1318 |
|
|
1319 |
|
|
1320 |
< |
double totalMass = 0.0; |
1320 |
> |
RealType totalMass = 0.0; |
1321 |
|
|
1322 |
|
|
1323 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1324 |
< |
double mass = mol->getMass(); |
1324 |
> |
RealType mass = mol->getMass(); |
1325 |
|
totalMass += mass; |
1326 |
|
com += mass * mol->getCom(); |
1327 |
|
comVel += mass * mol->getComVel(); |
1328 |
|
} |
1329 |
|
|
1330 |
|
#ifdef IS_MPI |
1331 |
< |
double tmpMass = totalMass; |
1331 |
> |
RealType tmpMass = totalMass; |
1332 |
|
Vector3d tmpCom(com); |
1333 |
|
Vector3d tmpComVel(comVel); |
1334 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1335 |
< |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1336 |
< |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1334 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1335 |
> |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1336 |
> |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1337 |
|
#endif |
1338 |
|
|
1339 |
|
com /= totalMass; |
1352 |
|
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1353 |
|
|
1354 |
|
|
1355 |
< |
double xx = 0.0; |
1356 |
< |
double yy = 0.0; |
1357 |
< |
double zz = 0.0; |
1358 |
< |
double xy = 0.0; |
1359 |
< |
double xz = 0.0; |
1360 |
< |
double yz = 0.0; |
1355 |
> |
RealType xx = 0.0; |
1356 |
> |
RealType yy = 0.0; |
1357 |
> |
RealType zz = 0.0; |
1358 |
> |
RealType xy = 0.0; |
1359 |
> |
RealType xz = 0.0; |
1360 |
> |
RealType yz = 0.0; |
1361 |
|
Vector3d com(0.0); |
1362 |
|
Vector3d comVel(0.0); |
1363 |
|
|
1369 |
|
Vector3d thisq(0.0); |
1370 |
|
Vector3d thisv(0.0); |
1371 |
|
|
1372 |
< |
double thisMass = 0.0; |
1372 |
> |
RealType thisMass = 0.0; |
1373 |
|
|
1374 |
|
|
1375 |
|
|
1407 |
|
#ifdef IS_MPI |
1408 |
|
Mat3x3d tmpI(inertiaTensor); |
1409 |
|
Vector3d tmpAngMom; |
1410 |
< |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1411 |
< |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1410 |
> |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1411 |
> |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1412 |
|
#endif |
1413 |
|
|
1414 |
|
return; |
1429 |
|
Vector3d thisr(0.0); |
1430 |
|
Vector3d thisp(0.0); |
1431 |
|
|
1432 |
< |
double thisMass; |
1432 |
> |
RealType thisMass; |
1433 |
|
|
1434 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1435 |
|
thisMass = mol->getMass(); |
1442 |
|
|
1443 |
|
#ifdef IS_MPI |
1444 |
|
Vector3d tmpAngMom; |
1445 |
< |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1445 |
> |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1446 |
|
#endif |
1447 |
|
|
1448 |
|
return angularMomentum; |
1449 |
|
} |
1450 |
|
|
1451 |
< |
|
1451 |
> |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1452 |
> |
return IOIndexToIntegrableObject.at(index); |
1453 |
> |
} |
1454 |
> |
|
1455 |
> |
void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) { |
1456 |
> |
IOIndexToIntegrableObject= v; |
1457 |
> |
} |
1458 |
> |
|
1459 |
> |
/* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1460 |
> |
based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1461 |
> |
where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1462 |
> |
V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1463 |
> |
*/ |
1464 |
> |
void SimInfo::getGyrationalVolume(RealType &volume){ |
1465 |
> |
Mat3x3d intTensor; |
1466 |
> |
RealType det; |
1467 |
> |
Vector3d dummyAngMom; |
1468 |
> |
RealType sysconstants; |
1469 |
> |
RealType geomCnst; |
1470 |
> |
|
1471 |
> |
geomCnst = 3.0/2.0; |
1472 |
> |
/* Get the inertial tensor and angular momentum for free*/ |
1473 |
> |
getInertiaTensor(intTensor,dummyAngMom); |
1474 |
> |
|
1475 |
> |
det = intTensor.determinant(); |
1476 |
> |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1477 |
> |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1478 |
> |
return; |
1479 |
> |
} |
1480 |
> |
|
1481 |
> |
void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1482 |
> |
Mat3x3d intTensor; |
1483 |
> |
Vector3d dummyAngMom; |
1484 |
> |
RealType sysconstants; |
1485 |
> |
RealType geomCnst; |
1486 |
> |
|
1487 |
> |
geomCnst = 3.0/2.0; |
1488 |
> |
/* Get the inertial tensor and angular momentum for free*/ |
1489 |
> |
getInertiaTensor(intTensor,dummyAngMom); |
1490 |
> |
|
1491 |
> |
detI = intTensor.determinant(); |
1492 |
> |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1493 |
> |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1494 |
> |
return; |
1495 |
> |
} |
1496 |
> |
/* |
1497 |
> |
void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) { |
1498 |
> |
assert( v.size() == nAtoms_ + nRigidBodies_); |
1499 |
> |
sdByGlobalIndex_ = v; |
1500 |
> |
} |
1501 |
> |
|
1502 |
> |
StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
1503 |
> |
//assert(index < nAtoms_ + nRigidBodies_); |
1504 |
> |
return sdByGlobalIndex_.at(index); |
1505 |
> |
} |
1506 |
> |
*/ |
1507 |
|
}//end namespace oopse |
1508 |
|
|