ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 523 by chrisfen, Thu May 5 14:47:35 2005 UTC vs.
Revision 1045 by chrisfen, Thu Sep 21 18:25:17 2006 UTC

# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57 + #include "UseTheForce/fCutoffPolicy.h"
58 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 + #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61   #include "UseTheForce/doForces_interface.h"
62 < #include "UseTheForce/notifyCutoffs_interface.h"
62 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
63 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
64   #include "utils/MemoryUtils.hpp"
65   #include "utils/simError.h"
66   #include "selection/SelectionManager.hpp"
67 + #include "io/ForceFieldOptions.hpp"
68 + #include "UseTheForce/ForceField.hpp"
69  
70   #ifdef IS_MPI
71   #include "UseTheForce/mpiComponentPlan.h"
# Line 64 | Line 73 | namespace oopse {
73   #endif
74  
75   namespace oopse {
76 +  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
77 +    std::map<int, std::set<int> >::iterator i = container.find(index);
78 +    std::set<int> result;
79 +    if (i != container.end()) {
80 +        result = i->second;
81 +    }
82  
83 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
84 <                   ForceField* ff, Globals* simParams) :
85 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
86 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
83 >    return result;
84 >  }
85 >  
86 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
87 >    forceField_(ff), simParams_(simParams),
88 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
89      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
90      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
91      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
92      nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
93 <    sman_(NULL), fortranInitialized_(false) {
93 >    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) {
94  
78            
79      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
95        MoleculeStamp* molStamp;
96        int nMolWithSameStamp;
97        int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
98 <      int nGroups = 0;          //total cutoff groups defined in meta-data file
98 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
99        CutoffGroupStamp* cgStamp;    
100        RigidBodyStamp* rbStamp;
101        int nRigidAtoms = 0;
102 <    
103 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
104 <        molStamp = i->first;
105 <        nMolWithSameStamp = i->second;
102 >      std::vector<Component*> components = simParams->getComponents();
103 >      
104 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
105 >        molStamp = (*i)->getMoleculeStamp();
106 >        nMolWithSameStamp = (*i)->getNMol();
107          
108          addMoleculeStamp(molStamp, nMolWithSameStamp);
109  
110          //calculate atoms in molecules
111          nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
112  
97
113          //calculate atoms in cutoff groups
114          int nAtomsInGroups = 0;
115          int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
116          
117          for (int j=0; j < nCutoffGroupsInStamp; j++) {
118 <          cgStamp = molStamp->getCutoffGroup(j);
118 >          cgStamp = molStamp->getCutoffGroupStamp(j);
119            nAtomsInGroups += cgStamp->getNMembers();
120          }
121  
122          nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
123 +
124          nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
125  
126          //calculate atoms in rigid bodies
# Line 112 | Line 128 | namespace oopse {
128          int nRigidBodiesInStamp = molStamp->getNRigidBodies();
129          
130          for (int j=0; j < nRigidBodiesInStamp; j++) {
131 <          rbStamp = molStamp->getRigidBody(j);
131 >          rbStamp = molStamp->getRigidBodyStamp(j);
132            nAtomsInRigidBodies += rbStamp->getNMembers();
133          }
134  
# Line 121 | Line 137 | namespace oopse {
137          
138        }
139  
140 <      //every free atom (atom does not belong to cutoff groups) is a cutoff group
141 <      //therefore the total number of cutoff groups in the system is equal to
142 <      //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
143 <      //file plus the number of cutoff groups defined in meta-data file
140 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
141 >      //group therefore the total number of cutoff groups in the system is
142 >      //equal to the total number of atoms minus number of atoms belong to
143 >      //cutoff group defined in meta-data file plus the number of cutoff
144 >      //groups defined in meta-data file
145        nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
146  
147 <      //every free atom (atom does not belong to rigid bodies) is an integrable object
148 <      //therefore the total number of  integrable objects in the system is equal to
149 <      //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
150 <      //file plus the number of  rigid bodies defined in meta-data file
151 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
152 <
147 >      //every free atom (atom does not belong to rigid bodies) is an
148 >      //integrable object therefore the total number of integrable objects
149 >      //in the system is equal to the total number of atoms minus number of
150 >      //atoms belong to rigid body defined in meta-data file plus the number
151 >      //of rigid bodies defined in meta-data file
152 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
153 >                                                + nGlobalRigidBodies_;
154 >  
155        nGlobalMols_ = molStampIds_.size();
156  
157   #ifdef IS_MPI    
# Line 148 | Line 167 | namespace oopse {
167      }
168      molecules_.clear();
169        
151    delete stamps_;
170      delete sman_;
171      delete simParams_;
172      delete forceField_;
# Line 255 | Line 273 | namespace oopse {
273            }
274          }
275              
276 <      }//end for (integrableObject)
277 <    }// end for (mol)
276 >      }
277 >    }
278      
279      // n_constraints is local, so subtract them on each processor
280      ndf_local -= nConstraints_;
# Line 273 | Line 291 | namespace oopse {
291  
292    }
293  
294 +  int SimInfo::getFdf() {
295 + #ifdef IS_MPI
296 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
297 + #else
298 +    fdf_ = fdf_local;
299 + #endif
300 +    return fdf_;
301 +  }
302 +    
303    void SimInfo::calcNdfRaw() {
304      int ndfRaw_local;
305  
# Line 335 | Line 362 | namespace oopse {
362      int b;
363      int c;
364      int d;
365 +
366 +    std::map<int, std::set<int> > atomGroups;
367 +
368 +    Molecule::RigidBodyIterator rbIter;
369 +    RigidBody* rb;
370 +    Molecule::IntegrableObjectIterator ii;
371 +    StuntDouble* integrableObject;
372 +    
373 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
374 +           integrableObject = mol->nextIntegrableObject(ii)) {
375 +
376 +      if (integrableObject->isRigidBody()) {
377 +          rb = static_cast<RigidBody*>(integrableObject);
378 +          std::vector<Atom*> atoms = rb->getAtoms();
379 +          std::set<int> rigidAtoms;
380 +          for (int i = 0; i < atoms.size(); ++i) {
381 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
382 +          }
383 +          for (int i = 0; i < atoms.size(); ++i) {
384 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
385 +          }      
386 +      } else {
387 +        std::set<int> oneAtomSet;
388 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
389 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
390 +      }
391 +    }  
392 +
393      
394 +    
395      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
396        a = bond->getAtomA()->getGlobalIndex();
397        b = bond->getAtomB()->getGlobalIndex();        
# Line 346 | Line 402 | namespace oopse {
402        a = bend->getAtomA()->getGlobalIndex();
403        b = bend->getAtomB()->getGlobalIndex();        
404        c = bend->getAtomC()->getGlobalIndex();
405 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
406 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
407 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
408  
409 <      exclude_.addPair(a, b);
410 <      exclude_.addPair(a, c);
411 <      exclude_.addPair(b, c);        
409 >      exclude_.addPairs(rigidSetA, rigidSetB);
410 >      exclude_.addPairs(rigidSetA, rigidSetC);
411 >      exclude_.addPairs(rigidSetB, rigidSetC);
412 >      
413 >      //exclude_.addPair(a, b);
414 >      //exclude_.addPair(a, c);
415 >      //exclude_.addPair(b, c);        
416      }
417  
418      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
# Line 357 | Line 420 | namespace oopse {
420        b = torsion->getAtomB()->getGlobalIndex();        
421        c = torsion->getAtomC()->getGlobalIndex();        
422        d = torsion->getAtomD()->getGlobalIndex();        
423 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
424 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
425 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
426 +      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
427  
428 +      exclude_.addPairs(rigidSetA, rigidSetB);
429 +      exclude_.addPairs(rigidSetA, rigidSetC);
430 +      exclude_.addPairs(rigidSetA, rigidSetD);
431 +      exclude_.addPairs(rigidSetB, rigidSetC);
432 +      exclude_.addPairs(rigidSetB, rigidSetD);
433 +      exclude_.addPairs(rigidSetC, rigidSetD);
434 +
435 +      /*
436 +      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
437 +      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
438 +      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
439 +      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
440 +      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
441 +      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
442 +        
443 +      
444        exclude_.addPair(a, b);
445        exclude_.addPair(a, c);
446        exclude_.addPair(a, d);
447        exclude_.addPair(b, c);
448        exclude_.addPair(b, d);
449        exclude_.addPair(c, d);        
450 +      */
451      }
452  
369    Molecule::RigidBodyIterator rbIter;
370    RigidBody* rb;
453      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
454        std::vector<Atom*> atoms = rb->getAtoms();
455        for (int i = 0; i < atoms.size() -1 ; ++i) {
# Line 392 | Line 474 | namespace oopse {
474      int b;
475      int c;
476      int d;
477 +
478 +    std::map<int, std::set<int> > atomGroups;
479 +
480 +    Molecule::RigidBodyIterator rbIter;
481 +    RigidBody* rb;
482 +    Molecule::IntegrableObjectIterator ii;
483 +    StuntDouble* integrableObject;
484      
485 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
486 +           integrableObject = mol->nextIntegrableObject(ii)) {
487 +
488 +      if (integrableObject->isRigidBody()) {
489 +          rb = static_cast<RigidBody*>(integrableObject);
490 +          std::vector<Atom*> atoms = rb->getAtoms();
491 +          std::set<int> rigidAtoms;
492 +          for (int i = 0; i < atoms.size(); ++i) {
493 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
494 +          }
495 +          for (int i = 0; i < atoms.size(); ++i) {
496 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
497 +          }      
498 +      } else {
499 +        std::set<int> oneAtomSet;
500 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
501 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
502 +      }
503 +    }  
504 +
505 +    
506      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
507        a = bond->getAtomA()->getGlobalIndex();
508        b = bond->getAtomB()->getGlobalIndex();        
# Line 404 | Line 514 | namespace oopse {
514        b = bend->getAtomB()->getGlobalIndex();        
515        c = bend->getAtomC()->getGlobalIndex();
516  
517 <      exclude_.removePair(a, b);
518 <      exclude_.removePair(a, c);
519 <      exclude_.removePair(b, c);        
517 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
518 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
519 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
520 >
521 >      exclude_.removePairs(rigidSetA, rigidSetB);
522 >      exclude_.removePairs(rigidSetA, rigidSetC);
523 >      exclude_.removePairs(rigidSetB, rigidSetC);
524 >      
525 >      //exclude_.removePair(a, b);
526 >      //exclude_.removePair(a, c);
527 >      //exclude_.removePair(b, c);        
528      }
529  
530      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
# Line 414 | Line 532 | namespace oopse {
532        b = torsion->getAtomB()->getGlobalIndex();        
533        c = torsion->getAtomC()->getGlobalIndex();        
534        d = torsion->getAtomD()->getGlobalIndex();        
535 +
536 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
537 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
538 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
539 +      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
540 +
541 +      exclude_.removePairs(rigidSetA, rigidSetB);
542 +      exclude_.removePairs(rigidSetA, rigidSetC);
543 +      exclude_.removePairs(rigidSetA, rigidSetD);
544 +      exclude_.removePairs(rigidSetB, rigidSetC);
545 +      exclude_.removePairs(rigidSetB, rigidSetD);
546 +      exclude_.removePairs(rigidSetC, rigidSetD);
547  
548 +      /*
549 +      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
550 +      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
551 +      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
552 +      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
553 +      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
554 +      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
555 +
556 +      
557        exclude_.removePair(a, b);
558        exclude_.removePair(a, c);
559        exclude_.removePair(a, d);
560        exclude_.removePair(b, c);
561        exclude_.removePair(b, d);
562        exclude_.removePair(c, d);        
563 +      */
564      }
565  
426    Molecule::RigidBodyIterator rbIter;
427    RigidBody* rb;
566      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
567        std::vector<Atom*> atoms = rb->getAtoms();
568        for (int i = 0; i < atoms.size() -1 ; ++i) {
# Line 462 | Line 600 | namespace oopse {
600      //setup fortran force field
601      /** @deprecate */    
602      int isError = 0;
603 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
603 >    
604 >    setupCutoff();
605 >    
606 >    setupElectrostaticSummationMethod( isError );
607 >    setupSwitchingFunction();
608 >    setupAccumulateBoxDipole();
609 >
610      if(isError){
611        sprintf( painCave.errMsg,
612                 "ForceField error: There was an error initializing the forceField in fortran.\n" );
613        painCave.isFatal = 1;
614        simError();
615      }
472  
473    
474    setupCutoff();
616  
617      calcNdf();
618      calcNdfRaw();
# Line 506 | Line 647 | namespace oopse {
647      int useLennardJones = 0;
648      int useElectrostatic = 0;
649      int useEAM = 0;
650 +    int useSC = 0;
651      int useCharge = 0;
652      int useDirectional = 0;
653      int useDipole = 0;
# Line 517 | Line 659 | namespace oopse {
659      int useDirectionalAtom = 0;    
660      int useElectrostatics = 0;
661      //usePBC and useRF are from simParams
662 <    int usePBC = simParams_->getPBC();
663 <    int useRF = simParams_->getUseRF();
662 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
663 >    int useRF;
664 >    int useSF;
665 >    int useSP;
666 >    int useBoxDipole;
667 >    std::string myMethod;
668 >
669 >    // set the useRF logical
670 >    useRF = 0;
671 >    useSF = 0;
672 >
673 >
674 >    if (simParams_->haveElectrostaticSummationMethod()) {
675 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
676 >      toUpper(myMethod);
677 >      if (myMethod == "REACTION_FIELD"){
678 >        useRF=1;
679 >      } else if (myMethod == "SHIFTED_FORCE"){
680 >        useSF = 1;
681 >      } else if (myMethod == "SHIFTED_POTENTIAL"){
682 >        useSP = 1;
683 >      }
684 >    }
685 >    
686 >    if (simParams_->haveAccumulateBoxDipole())
687 >      if (simParams_->getAccumulateBoxDipole())
688 >        useBoxDipole = 1;
689  
690      //loop over all of the atom types
691      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
692        useLennardJones |= (*i)->isLennardJones();
693        useElectrostatic |= (*i)->isElectrostatic();
694        useEAM |= (*i)->isEAM();
695 +      useSC |= (*i)->isSC();
696        useCharge |= (*i)->isCharge();
697        useDirectional |= (*i)->isDirectional();
698        useDipole |= (*i)->isDipole();
# Line 575 | Line 743 | namespace oopse {
743      temp = useEAM;
744      MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
745  
746 +    temp = useSC;
747 +    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
748 +    
749      temp = useShape;
750      MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
751  
# Line 583 | Line 754 | namespace oopse {
754  
755      temp = useRF;
756      MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
757 <    
757 >
758 >    temp = useSF;
759 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
760 >
761 >    temp = useSP;
762 >    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
763 >
764 >    temp = useBoxDipole;
765 >    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
766 >
767   #endif
768  
769      fInfo_.SIM_uses_PBC = usePBC;    
# Line 596 | Line 776 | namespace oopse {
776      fInfo_.SIM_uses_StickyPower = useStickyPower;
777      fInfo_.SIM_uses_GayBerne = useGayBerne;
778      fInfo_.SIM_uses_EAM = useEAM;
779 +    fInfo_.SIM_uses_SC = useSC;
780      fInfo_.SIM_uses_Shapes = useShape;
781      fInfo_.SIM_uses_FLARB = useFLARB;
782      fInfo_.SIM_uses_RF = useRF;
783 +    fInfo_.SIM_uses_SF = useSF;
784 +    fInfo_.SIM_uses_SP = useSP;
785 +    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
786  
787 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
788 <
787 >    if( myMethod == "REACTION_FIELD") {
788 >      
789        if (simParams_->haveDielectric()) {
790          fInfo_.dielect = simParams_->getDielectric();
791        } else {
# Line 611 | Line 795 | namespace oopse {
795                  "\tsetting a dielectric constant!\n");
796          painCave.isFatal = 1;
797          simError();
798 <      }
615 <        
616 <    } else {
617 <      fInfo_.dielect = 0.0;
798 >      }      
799      }
800  
801    }
# Line 633 | Line 814 | namespace oopse {
814      }
815  
816      //calculate mass ratio of cutoff group
817 <    std::vector<double> mfact;
817 >    std::vector<RealType> mfact;
818      SimInfo::MoleculeIterator mi;
819      Molecule* mol;
820      Molecule::CutoffGroupIterator ci;
821      CutoffGroup* cg;
822      Molecule::AtomIterator ai;
823      Atom* atom;
824 <    double totalMass;
824 >    RealType totalMass;
825  
826      //to avoid memory reallocation, reserve enough space for mfact
827      mfact.reserve(getNCutoffGroups());
# Line 650 | Line 831 | namespace oopse {
831  
832          totalMass = cg->getMass();
833          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
834 <          mfact.push_back(atom->getMass()/totalMass);
834 >          // Check for massless groups - set mfact to 1 if true
835 >          if (totalMass != 0)
836 >            mfact.push_back(atom->getMass()/totalMass);
837 >          else
838 >            mfact.push_back( 1.0 );
839          }
840  
841        }      
# Line 759 | Line 944 | namespace oopse {
944  
945   #endif
946  
947 <  double SimInfo::calcMaxCutoffRadius() {
947 >  void SimInfo::setupCutoff() {          
948 >    
949 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
950  
951 +    // Check the cutoff policy
952 +    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
953  
954 <    std::set<AtomType*> atomTypes;
955 <    std::set<AtomType*>::iterator i;
956 <    std::vector<double> cutoffRadius;
957 <
958 <    //get the unique atom types
770 <    atomTypes = getUniqueAtomTypes();
771 <
772 <    //query the max cutoff radius among these atom types
773 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
774 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
954 >    std::string myPolicy;
955 >    if (forceFieldOptions_.haveCutoffPolicy()){
956 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
957 >    }else if (simParams_->haveCutoffPolicy()) {
958 >      myPolicy = simParams_->getCutoffPolicy();
959      }
960  
961 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
962 < #ifdef IS_MPI
963 <    //pick the max cutoff radius among the processors
964 < #endif
961 >    if (!myPolicy.empty()){
962 >      toUpper(myPolicy);
963 >      if (myPolicy == "MIX") {
964 >        cp = MIX_CUTOFF_POLICY;
965 >      } else {
966 >        if (myPolicy == "MAX") {
967 >          cp = MAX_CUTOFF_POLICY;
968 >        } else {
969 >          if (myPolicy == "TRADITIONAL") {            
970 >            cp = TRADITIONAL_CUTOFF_POLICY;
971 >          } else {
972 >            // throw error        
973 >            sprintf( painCave.errMsg,
974 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
975 >            painCave.isFatal = 1;
976 >            simError();
977 >          }    
978 >        }          
979 >      }
980 >    }          
981 >    notifyFortranCutoffPolicy(&cp);
982  
983 <    return maxCutoffRadius;
984 <  }
985 <
986 <  void SimInfo::getCutoff(double& rcut, double& rsw) {
987 <    
988 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
983 >    // Check the Skin Thickness for neighborlists
984 >    RealType skin;
985 >    if (simParams_->haveSkinThickness()) {
986 >      skin = simParams_->getSkinThickness();
987 >      notifyFortranSkinThickness(&skin);
988 >    }            
989          
990 <      if (!simParams_->haveRcut()){
991 <        sprintf(painCave.errMsg,
990 >    // Check if the cutoff was set explicitly:
991 >    if (simParams_->haveCutoffRadius()) {
992 >      rcut_ = simParams_->getCutoffRadius();
993 >      if (simParams_->haveSwitchingRadius()) {
994 >        rsw_  = simParams_->getSwitchingRadius();
995 >      } else {
996 >        if (fInfo_.SIM_uses_Charges |
997 >            fInfo_.SIM_uses_Dipoles |
998 >            fInfo_.SIM_uses_RF) {
999 >          
1000 >          rsw_ = 0.85 * rcut_;
1001 >          sprintf(painCave.errMsg,
1002 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1003 >                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1004 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1005 >        painCave.isFatal = 0;
1006 >        simError();
1007 >        } else {
1008 >          rsw_ = rcut_;
1009 >          sprintf(painCave.errMsg,
1010 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1011 >                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1012 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1013 >          painCave.isFatal = 0;
1014 >          simError();
1015 >        }
1016 >      }
1017 >      
1018 >      notifyFortranCutoffs(&rcut_, &rsw_);
1019 >      
1020 >    } else {
1021 >      
1022 >      // For electrostatic atoms, we'll assume a large safe value:
1023 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1024 >        sprintf(painCave.errMsg,
1025                  "SimCreator Warning: No value was set for the cutoffRadius.\n"
1026                  "\tOOPSE will use a default value of 15.0 angstroms"
1027                  "\tfor the cutoffRadius.\n");
1028 <        painCave.isFatal = 0;
1028 >        painCave.isFatal = 0;
1029          simError();
1030 <        rcut = 15.0;
1031 <      } else{
1032 <        rcut = simParams_->getRcut();
1033 <      }
1030 >        rcut_ = 15.0;
1031 >      
1032 >        if (simParams_->haveElectrostaticSummationMethod()) {
1033 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1034 >          toUpper(myMethod);
1035 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1036 >            if (simParams_->haveSwitchingRadius()){
1037 >              sprintf(painCave.errMsg,
1038 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
1039 >                      "\teven though the electrostaticSummationMethod was\n"
1040 >                      "\tset to %s\n", myMethod.c_str());
1041 >              painCave.isFatal = 1;
1042 >              simError();            
1043 >            }
1044 >          }
1045 >        }
1046 >      
1047 >        if (simParams_->haveSwitchingRadius()){
1048 >          rsw_ = simParams_->getSwitchingRadius();
1049 >        } else {        
1050 >          sprintf(painCave.errMsg,
1051 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1052 >                  "\tOOPSE will use a default value of\n"
1053 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1054 >          painCave.isFatal = 0;
1055 >          simError();
1056 >          rsw_ = 0.85 * rcut_;
1057 >        }
1058 >        notifyFortranCutoffs(&rcut_, &rsw_);
1059 >      } else {
1060 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1061 >        // We'll punt and let fortran figure out the cutoffs later.
1062 >        
1063 >        notifyFortranYouAreOnYourOwn();
1064  
801      if (!simParams_->haveRsw()){
802        sprintf(painCave.errMsg,
803                "SimCreator Warning: No value was set for switchingRadius.\n"
804                "\tOOPSE will use a default value of\n"
805                "\t0.95 * cutoffRadius for the switchingRadius\n");
806        painCave.isFatal = 0;
807        simError();
808        rsw = 0.95 * rcut;
809      } else{
810        rsw = simParams_->getRsw();
1065        }
1066 +    }
1067 +  }
1068  
1069 <    } else {
1070 <      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
1071 <      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
1072 <        
1073 <      if (simParams_->haveRcut()) {
1074 <        rcut = simParams_->getRcut();
1069 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1070 >    
1071 >    int errorOut;
1072 >    int esm =  NONE;
1073 >    int sm = UNDAMPED;
1074 >    RealType alphaVal;
1075 >    RealType dielectric;
1076 >    
1077 >    errorOut = isError;
1078 >    dielectric = simParams_->getDielectric();
1079 >
1080 >    if (simParams_->haveElectrostaticSummationMethod()) {
1081 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1082 >      toUpper(myMethod);
1083 >      if (myMethod == "NONE") {
1084 >        esm = NONE;
1085        } else {
1086 <        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
1087 <        rcut = calcMaxCutoffRadius();
1086 >        if (myMethod == "SWITCHING_FUNCTION") {
1087 >          esm = SWITCHING_FUNCTION;
1088 >        } else {
1089 >          if (myMethod == "SHIFTED_POTENTIAL") {
1090 >            esm = SHIFTED_POTENTIAL;
1091 >          } else {
1092 >            if (myMethod == "SHIFTED_FORCE") {            
1093 >              esm = SHIFTED_FORCE;
1094 >            } else {
1095 >              if (myMethod == "REACTION_FIELD") {            
1096 >                esm = REACTION_FIELD;
1097 >              } else {
1098 >                // throw error        
1099 >                sprintf( painCave.errMsg,
1100 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1101 >                         "\t(Input file specified %s .)\n"
1102 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1103 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1104 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1105 >                painCave.isFatal = 1;
1106 >                simError();
1107 >              }    
1108 >            }          
1109 >          }
1110 >        }
1111        }
1112 <
1113 <      if (simParams_->haveRsw()) {
1114 <        rsw  = simParams_->getRsw();
1112 >    }
1113 >    
1114 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1115 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1116 >      toUpper(myScreen);
1117 >      if (myScreen == "UNDAMPED") {
1118 >        sm = UNDAMPED;
1119        } else {
1120 <        rsw = rcut;
1120 >        if (myScreen == "DAMPED") {
1121 >          sm = DAMPED;
1122 >          if (!simParams_->haveDampingAlpha()) {
1123 >            // first set a cutoff dependent alpha value
1124 >            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1125 >            alphaVal = 0.5125 - rcut_* 0.025;
1126 >            // for values rcut > 20.5, alpha is zero
1127 >            if (alphaVal < 0) alphaVal = 0;
1128 >
1129 >            // throw warning
1130 >            sprintf( painCave.errMsg,
1131 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1132 >                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1133 >            painCave.isFatal = 0;
1134 >            simError();
1135 >          }
1136 >        } else {
1137 >          // throw error        
1138 >          sprintf( painCave.errMsg,
1139 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1140 >                   "\t(Input file specified %s .)\n"
1141 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1142 >                   "or \"damped\".\n", myScreen.c_str() );
1143 >          painCave.isFatal = 1;
1144 >          simError();
1145 >        }
1146        }
1147 +    }
1148      
1149 +    // let's pass some summation method variables to fortran
1150 +    setElectrostaticSummationMethod( &esm );
1151 +    setFortranElectrostaticMethod( &esm );
1152 +    setScreeningMethod( &sm );
1153 +    setDampingAlpha( &alphaVal );
1154 +    setReactionFieldDielectric( &dielectric );
1155 +    initFortranFF( &errorOut );
1156 +  }
1157 +
1158 +  void SimInfo::setupSwitchingFunction() {    
1159 +    int ft = CUBIC;
1160 +
1161 +    if (simParams_->haveSwitchingFunctionType()) {
1162 +      std::string funcType = simParams_->getSwitchingFunctionType();
1163 +      toUpper(funcType);
1164 +      if (funcType == "CUBIC") {
1165 +        ft = CUBIC;
1166 +      } else {
1167 +        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1168 +          ft = FIFTH_ORDER_POLY;
1169 +        } else {
1170 +          // throw error        
1171 +          sprintf( painCave.errMsg,
1172 +                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1173 +          painCave.isFatal = 1;
1174 +          simError();
1175 +        }          
1176 +      }
1177      }
1178 +
1179 +    // send switching function notification to switcheroo
1180 +    setFunctionType(&ft);
1181 +
1182    }
1183  
1184 <  void SimInfo::setupCutoff() {
834 <    getCutoff(rcut_, rsw_);    
835 <    double rnblist = rcut_ + 1; // skin of neighbor list
1184 >  void SimInfo::setupAccumulateBoxDipole() {    
1185  
1186 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
1187 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
1186 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1187 >    if ( simParams_->haveAccumulateBoxDipole() )
1188 >      if ( simParams_->getAccumulateBoxDipole() ) {
1189 >        setAccumulateBoxDipole();
1190 >        calcBoxDipole_ = true;
1191 >      }
1192 >
1193    }
1194  
1195    void SimInfo::addProperty(GenericData* genData) {
# Line 894 | Line 1248 | namespace oopse {
1248      Molecule* mol;
1249  
1250      Vector3d comVel(0.0);
1251 <    double totalMass = 0.0;
1251 >    RealType totalMass = 0.0;
1252      
1253  
1254      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1255 <      double mass = mol->getMass();
1255 >      RealType mass = mol->getMass();
1256        totalMass += mass;
1257        comVel += mass * mol->getComVel();
1258      }  
1259  
1260   #ifdef IS_MPI
1261 <    double tmpMass = totalMass;
1261 >    RealType tmpMass = totalMass;
1262      Vector3d tmpComVel(comVel);    
1263 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1264 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1263 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1264 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1265   #endif
1266  
1267      comVel /= totalMass;
# Line 920 | Line 1274 | namespace oopse {
1274      Molecule* mol;
1275  
1276      Vector3d com(0.0);
1277 <    double totalMass = 0.0;
1277 >    RealType totalMass = 0.0;
1278      
1279      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1280 <      double mass = mol->getMass();
1280 >      RealType mass = mol->getMass();
1281        totalMass += mass;
1282        com += mass * mol->getCom();
1283      }  
1284  
1285   #ifdef IS_MPI
1286 <    double tmpMass = totalMass;
1286 >    RealType tmpMass = totalMass;
1287      Vector3d tmpCom(com);    
1288 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1289 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1288 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1289 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1290   #endif
1291  
1292      com /= totalMass;
# Line 945 | Line 1299 | namespace oopse {
1299  
1300      return o;
1301    }
1302 +  
1303 +  
1304 +   /*
1305 +   Returns center of mass and center of mass velocity in one function call.
1306 +   */
1307 +  
1308 +   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1309 +      SimInfo::MoleculeIterator i;
1310 +      Molecule* mol;
1311 +      
1312 +    
1313 +      RealType totalMass = 0.0;
1314 +    
1315  
1316 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1317 +         RealType mass = mol->getMass();
1318 +         totalMass += mass;
1319 +         com += mass * mol->getCom();
1320 +         comVel += mass * mol->getComVel();          
1321 +      }  
1322 +      
1323 + #ifdef IS_MPI
1324 +      RealType tmpMass = totalMass;
1325 +      Vector3d tmpCom(com);  
1326 +      Vector3d tmpComVel(comVel);
1327 +      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1328 +      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1329 +      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1330 + #endif
1331 +      
1332 +      com /= totalMass;
1333 +      comVel /= totalMass;
1334 +   }        
1335 +  
1336 +   /*
1337 +   Return intertia tensor for entire system and angular momentum Vector.
1338 +
1339 +
1340 +       [  Ixx -Ixy  -Ixz ]
1341 +  J =| -Iyx  Iyy  -Iyz |
1342 +       [ -Izx -Iyz   Izz ]
1343 +    */
1344 +
1345 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1346 +      
1347 +
1348 +      RealType xx = 0.0;
1349 +      RealType yy = 0.0;
1350 +      RealType zz = 0.0;
1351 +      RealType xy = 0.0;
1352 +      RealType xz = 0.0;
1353 +      RealType yz = 0.0;
1354 +      Vector3d com(0.0);
1355 +      Vector3d comVel(0.0);
1356 +      
1357 +      getComAll(com, comVel);
1358 +      
1359 +      SimInfo::MoleculeIterator i;
1360 +      Molecule* mol;
1361 +      
1362 +      Vector3d thisq(0.0);
1363 +      Vector3d thisv(0.0);
1364 +
1365 +      RealType thisMass = 0.0;
1366 +    
1367 +      
1368 +      
1369 +  
1370 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1371 +        
1372 +         thisq = mol->getCom()-com;
1373 +         thisv = mol->getComVel()-comVel;
1374 +         thisMass = mol->getMass();
1375 +         // Compute moment of intertia coefficients.
1376 +         xx += thisq[0]*thisq[0]*thisMass;
1377 +         yy += thisq[1]*thisq[1]*thisMass;
1378 +         zz += thisq[2]*thisq[2]*thisMass;
1379 +        
1380 +         // compute products of intertia
1381 +         xy += thisq[0]*thisq[1]*thisMass;
1382 +         xz += thisq[0]*thisq[2]*thisMass;
1383 +         yz += thisq[1]*thisq[2]*thisMass;
1384 +            
1385 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1386 +            
1387 +      }  
1388 +      
1389 +      
1390 +      inertiaTensor(0,0) = yy + zz;
1391 +      inertiaTensor(0,1) = -xy;
1392 +      inertiaTensor(0,2) = -xz;
1393 +      inertiaTensor(1,0) = -xy;
1394 +      inertiaTensor(1,1) = xx + zz;
1395 +      inertiaTensor(1,2) = -yz;
1396 +      inertiaTensor(2,0) = -xz;
1397 +      inertiaTensor(2,1) = -yz;
1398 +      inertiaTensor(2,2) = xx + yy;
1399 +      
1400 + #ifdef IS_MPI
1401 +      Mat3x3d tmpI(inertiaTensor);
1402 +      Vector3d tmpAngMom;
1403 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1404 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1405 + #endif
1406 +              
1407 +      return;
1408 +   }
1409 +
1410 +   //Returns the angular momentum of the system
1411 +   Vector3d SimInfo::getAngularMomentum(){
1412 +      
1413 +      Vector3d com(0.0);
1414 +      Vector3d comVel(0.0);
1415 +      Vector3d angularMomentum(0.0);
1416 +      
1417 +      getComAll(com,comVel);
1418 +      
1419 +      SimInfo::MoleculeIterator i;
1420 +      Molecule* mol;
1421 +      
1422 +      Vector3d thisr(0.0);
1423 +      Vector3d thisp(0.0);
1424 +      
1425 +      RealType thisMass;
1426 +      
1427 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1428 +        thisMass = mol->getMass();
1429 +        thisr = mol->getCom()-com;
1430 +        thisp = (mol->getComVel()-comVel)*thisMass;
1431 +        
1432 +        angularMomentum += cross( thisr, thisp );
1433 +        
1434 +      }  
1435 +      
1436 + #ifdef IS_MPI
1437 +      Vector3d tmpAngMom;
1438 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1439 + #endif
1440 +      
1441 +      return angularMomentum;
1442 +   }
1443 +  
1444 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1445 +    return IOIndexToIntegrableObject.at(index);
1446 +  }
1447 +  
1448 +  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1449 +    IOIndexToIntegrableObject= v;
1450 +  }
1451 +
1452 + /*
1453 +   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1454 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1455 +      sdByGlobalIndex_ = v;
1456 +    }
1457 +
1458 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1459 +      //assert(index < nAtoms_ + nRigidBodies_);
1460 +      return sdByGlobalIndex_.at(index);
1461 +    }  
1462 + */  
1463   }//end namespace oopse
1464  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines