ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 598 by chrisfen, Thu Sep 15 00:14:35 2005 UTC vs.
Revision 1095 by chuckv, Tue Dec 5 00:17:24 2006 UTC

# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57   #include "UseTheForce/fCutoffPolicy.h"
58 < #include "UseTheForce/fCoulombicCorrection.h"
58 > #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 > #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 > #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61   #include "UseTheForce/doForces_interface.h"
62 < #include "UseTheForce/notifyCutoffs_interface.h"
62 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
65   #include "utils/MemoryUtils.hpp"
66   #include "utils/simError.h"
67   #include "selection/SelectionManager.hpp"
68 + #include "io/ForceFieldOptions.hpp"
69 + #include "UseTheForce/ForceField.hpp"
70  
71 +
72   #ifdef IS_MPI
73   #include "UseTheForce/mpiComponentPlan.h"
74   #include "UseTheForce/DarkSide/simParallel_interface.h"
75   #endif
76  
77   namespace oopse {
78 +  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 +    std::map<int, std::set<int> >::iterator i = container.find(index);
80 +    std::set<int> result;
81 +    if (i != container.end()) {
82 +        result = i->second;
83 +    }
84  
85 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
86 <                   ForceField* ff, Globals* simParams) :
87 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
88 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
85 >    return result;
86 >  }
87 >  
88 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
89 >    forceField_(ff), simParams_(simParams),
90 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
94      nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
95 <    sman_(NULL), fortranInitialized_(false) {
95 >    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) {
96  
80            
81      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
97        MoleculeStamp* molStamp;
98        int nMolWithSameStamp;
99        int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
100 <      int nGroups = 0;          //total cutoff groups defined in meta-data file
100 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
101        CutoffGroupStamp* cgStamp;    
102        RigidBodyStamp* rbStamp;
103        int nRigidAtoms = 0;
104 <    
105 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
106 <        molStamp = i->first;
107 <        nMolWithSameStamp = i->second;
104 >      std::vector<Component*> components = simParams->getComponents();
105 >      
106 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
107 >        molStamp = (*i)->getMoleculeStamp();
108 >        nMolWithSameStamp = (*i)->getNMol();
109          
110          addMoleculeStamp(molStamp, nMolWithSameStamp);
111  
112          //calculate atoms in molecules
113          nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
114  
99
115          //calculate atoms in cutoff groups
116          int nAtomsInGroups = 0;
117          int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
118          
119          for (int j=0; j < nCutoffGroupsInStamp; j++) {
120 <          cgStamp = molStamp->getCutoffGroup(j);
120 >          cgStamp = molStamp->getCutoffGroupStamp(j);
121            nAtomsInGroups += cgStamp->getNMembers();
122          }
123  
124          nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
125 +
126          nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
127  
128          //calculate atoms in rigid bodies
# Line 114 | Line 130 | namespace oopse {
130          int nRigidBodiesInStamp = molStamp->getNRigidBodies();
131          
132          for (int j=0; j < nRigidBodiesInStamp; j++) {
133 <          rbStamp = molStamp->getRigidBody(j);
133 >          rbStamp = molStamp->getRigidBodyStamp(j);
134            nAtomsInRigidBodies += rbStamp->getNMembers();
135          }
136  
# Line 123 | Line 139 | namespace oopse {
139          
140        }
141  
142 <      //every free atom (atom does not belong to cutoff groups) is a cutoff group
143 <      //therefore the total number of cutoff groups in the system is equal to
144 <      //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
145 <      //file plus the number of cutoff groups defined in meta-data file
142 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
143 >      //group therefore the total number of cutoff groups in the system is
144 >      //equal to the total number of atoms minus number of atoms belong to
145 >      //cutoff group defined in meta-data file plus the number of cutoff
146 >      //groups defined in meta-data file
147        nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
148  
149 <      //every free atom (atom does not belong to rigid bodies) is an integrable object
150 <      //therefore the total number of  integrable objects in the system is equal to
151 <      //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
152 <      //file plus the number of  rigid bodies defined in meta-data file
153 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
154 <
149 >      //every free atom (atom does not belong to rigid bodies) is an
150 >      //integrable object therefore the total number of integrable objects
151 >      //in the system is equal to the total number of atoms minus number of
152 >      //atoms belong to rigid body defined in meta-data file plus the number
153 >      //of rigid bodies defined in meta-data file
154 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
155 >                                                + nGlobalRigidBodies_;
156 >  
157        nGlobalMols_ = molStampIds_.size();
158  
159   #ifdef IS_MPI    
# Line 150 | Line 169 | namespace oopse {
169      }
170      molecules_.clear();
171        
153    delete stamps_;
172      delete sman_;
173      delete simParams_;
174      delete forceField_;
# Line 257 | Line 275 | namespace oopse {
275            }
276          }
277              
278 <      }//end for (integrableObject)
279 <    }// end for (mol)
278 >      }
279 >    }
280      
281      // n_constraints is local, so subtract them on each processor
282      ndf_local -= nConstraints_;
# Line 275 | Line 293 | namespace oopse {
293  
294    }
295  
296 +  int SimInfo::getFdf() {
297 + #ifdef IS_MPI
298 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
299 + #else
300 +    fdf_ = fdf_local;
301 + #endif
302 +    return fdf_;
303 +  }
304 +    
305    void SimInfo::calcNdfRaw() {
306      int ndfRaw_local;
307  
# Line 337 | Line 364 | namespace oopse {
364      int b;
365      int c;
366      int d;
367 +
368 +    std::map<int, std::set<int> > atomGroups;
369 +
370 +    Molecule::RigidBodyIterator rbIter;
371 +    RigidBody* rb;
372 +    Molecule::IntegrableObjectIterator ii;
373 +    StuntDouble* integrableObject;
374      
375 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
376 +           integrableObject = mol->nextIntegrableObject(ii)) {
377 +
378 +      if (integrableObject->isRigidBody()) {
379 +          rb = static_cast<RigidBody*>(integrableObject);
380 +          std::vector<Atom*> atoms = rb->getAtoms();
381 +          std::set<int> rigidAtoms;
382 +          for (int i = 0; i < atoms.size(); ++i) {
383 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
384 +          }
385 +          for (int i = 0; i < atoms.size(); ++i) {
386 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
387 +          }      
388 +      } else {
389 +        std::set<int> oneAtomSet;
390 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
391 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
392 +      }
393 +    }  
394 +
395 +    
396 +    
397      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
398        a = bond->getAtomA()->getGlobalIndex();
399        b = bond->getAtomB()->getGlobalIndex();        
# Line 348 | Line 404 | namespace oopse {
404        a = bend->getAtomA()->getGlobalIndex();
405        b = bend->getAtomB()->getGlobalIndex();        
406        c = bend->getAtomC()->getGlobalIndex();
407 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
408 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
409 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
410  
411 <      exclude_.addPair(a, b);
412 <      exclude_.addPair(a, c);
413 <      exclude_.addPair(b, c);        
411 >      exclude_.addPairs(rigidSetA, rigidSetB);
412 >      exclude_.addPairs(rigidSetA, rigidSetC);
413 >      exclude_.addPairs(rigidSetB, rigidSetC);
414 >      
415 >      //exclude_.addPair(a, b);
416 >      //exclude_.addPair(a, c);
417 >      //exclude_.addPair(b, c);        
418      }
419  
420      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
# Line 359 | Line 422 | namespace oopse {
422        b = torsion->getAtomB()->getGlobalIndex();        
423        c = torsion->getAtomC()->getGlobalIndex();        
424        d = torsion->getAtomD()->getGlobalIndex();        
425 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
426 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
427 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
428 +      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
429  
430 +      exclude_.addPairs(rigidSetA, rigidSetB);
431 +      exclude_.addPairs(rigidSetA, rigidSetC);
432 +      exclude_.addPairs(rigidSetA, rigidSetD);
433 +      exclude_.addPairs(rigidSetB, rigidSetC);
434 +      exclude_.addPairs(rigidSetB, rigidSetD);
435 +      exclude_.addPairs(rigidSetC, rigidSetD);
436 +
437 +      /*
438 +      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
439 +      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
440 +      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
441 +      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
442 +      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
443 +      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
444 +        
445 +      
446        exclude_.addPair(a, b);
447        exclude_.addPair(a, c);
448        exclude_.addPair(a, d);
449        exclude_.addPair(b, c);
450        exclude_.addPair(b, d);
451        exclude_.addPair(c, d);        
452 +      */
453      }
454  
371    Molecule::RigidBodyIterator rbIter;
372    RigidBody* rb;
455      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
456        std::vector<Atom*> atoms = rb->getAtoms();
457        for (int i = 0; i < atoms.size() -1 ; ++i) {
# Line 394 | Line 476 | namespace oopse {
476      int b;
477      int c;
478      int d;
479 +
480 +    std::map<int, std::set<int> > atomGroups;
481 +
482 +    Molecule::RigidBodyIterator rbIter;
483 +    RigidBody* rb;
484 +    Molecule::IntegrableObjectIterator ii;
485 +    StuntDouble* integrableObject;
486      
487 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
488 +           integrableObject = mol->nextIntegrableObject(ii)) {
489 +
490 +      if (integrableObject->isRigidBody()) {
491 +          rb = static_cast<RigidBody*>(integrableObject);
492 +          std::vector<Atom*> atoms = rb->getAtoms();
493 +          std::set<int> rigidAtoms;
494 +          for (int i = 0; i < atoms.size(); ++i) {
495 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
496 +          }
497 +          for (int i = 0; i < atoms.size(); ++i) {
498 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
499 +          }      
500 +      } else {
501 +        std::set<int> oneAtomSet;
502 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
503 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
504 +      }
505 +    }  
506 +
507 +    
508      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
509        a = bond->getAtomA()->getGlobalIndex();
510        b = bond->getAtomB()->getGlobalIndex();        
# Line 406 | Line 516 | namespace oopse {
516        b = bend->getAtomB()->getGlobalIndex();        
517        c = bend->getAtomC()->getGlobalIndex();
518  
519 <      exclude_.removePair(a, b);
520 <      exclude_.removePair(a, c);
521 <      exclude_.removePair(b, c);        
519 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
520 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
521 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
522 >
523 >      exclude_.removePairs(rigidSetA, rigidSetB);
524 >      exclude_.removePairs(rigidSetA, rigidSetC);
525 >      exclude_.removePairs(rigidSetB, rigidSetC);
526 >      
527 >      //exclude_.removePair(a, b);
528 >      //exclude_.removePair(a, c);
529 >      //exclude_.removePair(b, c);        
530      }
531  
532      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
# Line 417 | Line 535 | namespace oopse {
535        c = torsion->getAtomC()->getGlobalIndex();        
536        d = torsion->getAtomD()->getGlobalIndex();        
537  
538 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
539 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
540 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
541 +      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
542 +
543 +      exclude_.removePairs(rigidSetA, rigidSetB);
544 +      exclude_.removePairs(rigidSetA, rigidSetC);
545 +      exclude_.removePairs(rigidSetA, rigidSetD);
546 +      exclude_.removePairs(rigidSetB, rigidSetC);
547 +      exclude_.removePairs(rigidSetB, rigidSetD);
548 +      exclude_.removePairs(rigidSetC, rigidSetD);
549 +
550 +      /*
551 +      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
552 +      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
553 +      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
554 +      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
555 +      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
556 +      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
557 +
558 +      
559        exclude_.removePair(a, b);
560        exclude_.removePair(a, c);
561        exclude_.removePair(a, d);
562        exclude_.removePair(b, c);
563        exclude_.removePair(b, d);
564        exclude_.removePair(c, d);        
565 +      */
566      }
567  
428    Molecule::RigidBodyIterator rbIter;
429    RigidBody* rb;
568      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
569        std::vector<Atom*> atoms = rb->getAtoms();
570        for (int i = 0; i < atoms.size() -1 ; ++i) {
# Line 465 | Line 603 | namespace oopse {
603      /** @deprecate */    
604      int isError = 0;
605      
606 <    setupCoulombicCorrection( isError );
606 >    setupCutoff();
607 >    
608 >    setupElectrostaticSummationMethod( isError );
609 >    setupSwitchingFunction();
610 >    setupAccumulateBoxDipole();
611  
612      if(isError){
613        sprintf( painCave.errMsg,
# Line 473 | Line 615 | namespace oopse {
615        painCave.isFatal = 1;
616        simError();
617      }
476  
477    
478    setupCutoff();
618  
619      calcNdf();
620      calcNdfRaw();
# Line 510 | Line 649 | namespace oopse {
649      int useLennardJones = 0;
650      int useElectrostatic = 0;
651      int useEAM = 0;
652 +    int useSC = 0;
653      int useCharge = 0;
654      int useDirectional = 0;
655      int useDipole = 0;
# Line 521 | Line 661 | namespace oopse {
661      int useDirectionalAtom = 0;    
662      int useElectrostatics = 0;
663      //usePBC and useRF are from simParams
664 <    int usePBC = simParams_->getPBC();
665 <    int useRF = simParams_->getUseRF();
664 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
665 >    int useRF;
666 >    int useSF;
667 >    int useSP;
668 >    int useBoxDipole;
669 >    std::string myMethod;
670  
671 +    // set the useRF logical
672 +    useRF = 0;
673 +    useSF = 0;
674 +    useSP = 0;
675 +
676 +
677 +    if (simParams_->haveElectrostaticSummationMethod()) {
678 +      std::string myMethod = simParams_->getElectrostaticSummationMethod();
679 +      toUpper(myMethod);
680 +      if (myMethod == "REACTION_FIELD"){
681 +        useRF = 1;
682 +      } else if (myMethod == "SHIFTED_FORCE"){
683 +        useSF = 1;
684 +      } else if (myMethod == "SHIFTED_POTENTIAL"){
685 +        useSP = 1;
686 +      }
687 +    }
688 +    
689 +    if (simParams_->haveAccumulateBoxDipole())
690 +      if (simParams_->getAccumulateBoxDipole())
691 +        useBoxDipole = 1;
692 +
693      //loop over all of the atom types
694      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
695        useLennardJones |= (*i)->isLennardJones();
696        useElectrostatic |= (*i)->isElectrostatic();
697        useEAM |= (*i)->isEAM();
698 +      useSC |= (*i)->isSC();
699        useCharge |= (*i)->isCharge();
700        useDirectional |= (*i)->isDirectional();
701        useDipole |= (*i)->isDipole();
# Line 579 | Line 746 | namespace oopse {
746      temp = useEAM;
747      MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
748  
749 +    temp = useSC;
750 +    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
751 +    
752      temp = useShape;
753      MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
754  
# Line 588 | Line 758 | namespace oopse {
758      temp = useRF;
759      MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
760  
761 <    temp = useUW;
762 <    MPI_Allreduce(&temp, &useUW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
761 >    temp = useSF;
762 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
763  
764 <    temp = useDW;
765 <    MPI_Allreduce(&temp, &useDW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
766 <    
764 >    temp = useSP;
765 >    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
766 >
767 >    temp = useBoxDipole;
768 >    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
769 >
770   #endif
771  
772      fInfo_.SIM_uses_PBC = usePBC;    
# Line 606 | Line 779 | namespace oopse {
779      fInfo_.SIM_uses_StickyPower = useStickyPower;
780      fInfo_.SIM_uses_GayBerne = useGayBerne;
781      fInfo_.SIM_uses_EAM = useEAM;
782 +    fInfo_.SIM_uses_SC = useSC;
783      fInfo_.SIM_uses_Shapes = useShape;
784      fInfo_.SIM_uses_FLARB = useFLARB;
785      fInfo_.SIM_uses_RF = useRF;
786 <
787 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
788 <
615 <      if (simParams_->haveDielectric()) {
616 <        fInfo_.dielect = simParams_->getDielectric();
617 <      } else {
618 <        sprintf(painCave.errMsg,
619 <                "SimSetup Error: No Dielectric constant was set.\n"
620 <                "\tYou are trying to use Reaction Field without"
621 <                "\tsetting a dielectric constant!\n");
622 <        painCave.isFatal = 1;
623 <        simError();
624 <      }
625 <        
626 <    } else {
627 <      fInfo_.dielect = 0.0;
628 <    }
629 <
786 >    fInfo_.SIM_uses_SF = useSF;
787 >    fInfo_.SIM_uses_SP = useSP;
788 >    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
789    }
790  
791    void SimInfo::setupFortranSim() {
# Line 643 | Line 802 | namespace oopse {
802      }
803  
804      //calculate mass ratio of cutoff group
805 <    std::vector<double> mfact;
805 >    std::vector<RealType> mfact;
806      SimInfo::MoleculeIterator mi;
807      Molecule* mol;
808      Molecule::CutoffGroupIterator ci;
809      CutoffGroup* cg;
810      Molecule::AtomIterator ai;
811      Atom* atom;
812 <    double totalMass;
812 >    RealType totalMass;
813  
814      //to avoid memory reallocation, reserve enough space for mfact
815      mfact.reserve(getNCutoffGroups());
# Line 660 | Line 819 | namespace oopse {
819  
820          totalMass = cg->getMass();
821          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
822 <          mfact.push_back(atom->getMass()/totalMass);
822 >          // Check for massless groups - set mfact to 1 if true
823 >          if (totalMass != 0)
824 >            mfact.push_back(atom->getMass()/totalMass);
825 >          else
826 >            mfact.push_back( 1.0 );
827          }
828  
829        }      
# Line 707 | Line 870 | namespace oopse {
870               "succesfully sent the simulation information to fortran.\n");
871      MPIcheckPoint();
872   #endif // is_mpi
873 +
874 +    // Setup number of neighbors in neighbor list if present
875 +    if (simParams_->haveNeighborListNeighbors()) {
876 +      setNeighbors(simParams_->getNeighborListNeighbors());
877 +    }
878 +  
879 +
880    }
881  
882  
# Line 769 | Line 939 | namespace oopse {
939  
940   #endif
941  
942 <  double SimInfo::calcMaxCutoffRadius() {
942 >  void SimInfo::setupCutoff() {          
943 >    
944 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
945  
946 +    // Check the cutoff policy
947 +    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
948  
949 <    std::set<AtomType*> atomTypes;
950 <    std::set<AtomType*>::iterator i;
951 <    std::vector<double> cutoffRadius;
952 <
953 <    //get the unique atom types
780 <    atomTypes = getUniqueAtomTypes();
781 <
782 <    //query the max cutoff radius among these atom types
783 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
784 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
949 >    std::string myPolicy;
950 >    if (forceFieldOptions_.haveCutoffPolicy()){
951 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
952 >    }else if (simParams_->haveCutoffPolicy()) {
953 >      myPolicy = simParams_->getCutoffPolicy();
954      }
955  
956 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
957 < #ifdef IS_MPI
789 <    //pick the max cutoff radius among the processors
790 < #endif
791 <
792 <    return maxCutoffRadius;
793 <  }
794 <
795 <  void SimInfo::getCutoff(double& rcut, double& rsw) {
796 <    
797 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
798 <        
799 <      if (!simParams_->haveRcut()){
800 <        sprintf(painCave.errMsg,
801 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
802 <                "\tOOPSE will use a default value of 15.0 angstroms"
803 <                "\tfor the cutoffRadius.\n");
804 <        painCave.isFatal = 0;
805 <        simError();
806 <        rcut = 15.0;
807 <      } else{
808 <        rcut = simParams_->getRcut();
809 <      }
810 <
811 <      if (!simParams_->haveRsw()){
812 <        sprintf(painCave.errMsg,
813 <                "SimCreator Warning: No value was set for switchingRadius.\n"
814 <                "\tOOPSE will use a default value of\n"
815 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
816 <        painCave.isFatal = 0;
817 <        simError();
818 <        rsw = 0.95 * rcut;
819 <      } else{
820 <        rsw = simParams_->getRsw();
821 <      }
822 <
823 <    } else {
824 <      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
825 <      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
826 <        
827 <      if (simParams_->haveRcut()) {
828 <        rcut = simParams_->getRcut();
829 <      } else {
830 <        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
831 <        rcut = calcMaxCutoffRadius();
832 <      }
833 <
834 <      if (simParams_->haveRsw()) {
835 <        rsw  = simParams_->getRsw();
836 <      } else {
837 <        rsw = rcut;
838 <      }
839 <    
840 <    }
841 <  }
842 <
843 <  void SimInfo::setupCutoff() {    
844 <    getCutoff(rcut_, rsw_);    
845 <    double rnblist = rcut_ + 1; // skin of neighbor list
846 <
847 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
848 <    
849 <    int cp =  TRADITIONAL_CUTOFF_POLICY;
850 <    if (simParams_->haveCutoffPolicy()) {
851 <      std::string myPolicy = simParams_->getCutoffPolicy();
956 >    if (!myPolicy.empty()){
957 >      toUpper(myPolicy);
958        if (myPolicy == "MIX") {
959          cp = MIX_CUTOFF_POLICY;
960        } else {
# Line 866 | Line 972 | namespace oopse {
972            }    
973          }          
974        }
975 +    }          
976 +    notifyFortranCutoffPolicy(&cp);
977 +
978 +    // Check the Skin Thickness for neighborlists
979 +    RealType skin;
980 +    if (simParams_->haveSkinThickness()) {
981 +      skin = simParams_->getSkinThickness();
982 +      notifyFortranSkinThickness(&skin);
983 +    }            
984 +        
985 +    // Check if the cutoff was set explicitly:
986 +    if (simParams_->haveCutoffRadius()) {
987 +      rcut_ = simParams_->getCutoffRadius();
988 +      if (simParams_->haveSwitchingRadius()) {
989 +        rsw_  = simParams_->getSwitchingRadius();
990 +      } else {
991 +        if (fInfo_.SIM_uses_Charges |
992 +            fInfo_.SIM_uses_Dipoles |
993 +            fInfo_.SIM_uses_RF) {
994 +          
995 +          rsw_ = 0.85 * rcut_;
996 +          sprintf(painCave.errMsg,
997 +                  "SimCreator Warning: No value was set for the switchingRadius.\n"
998 +                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
999 +                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1000 +        painCave.isFatal = 0;
1001 +        simError();
1002 +        } else {
1003 +          rsw_ = rcut_;
1004 +          sprintf(painCave.errMsg,
1005 +                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1006 +                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1007 +                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1008 +          painCave.isFatal = 0;
1009 +          simError();
1010 +        }
1011 +      }
1012 +      
1013 +      notifyFortranCutoffs(&rcut_, &rsw_);
1014 +      
1015 +    } else {
1016 +      
1017 +      // For electrostatic atoms, we'll assume a large safe value:
1018 +      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1019 +        sprintf(painCave.errMsg,
1020 +                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1021 +                "\tOOPSE will use a default value of 15.0 angstroms"
1022 +                "\tfor the cutoffRadius.\n");
1023 +        painCave.isFatal = 0;
1024 +        simError();
1025 +        rcut_ = 15.0;
1026 +      
1027 +        if (simParams_->haveElectrostaticSummationMethod()) {
1028 +          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1029 +          toUpper(myMethod);
1030 +          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1031 +            if (simParams_->haveSwitchingRadius()){
1032 +              sprintf(painCave.errMsg,
1033 +                      "SimInfo Warning: A value was set for the switchingRadius\n"
1034 +                      "\teven though the electrostaticSummationMethod was\n"
1035 +                      "\tset to %s\n", myMethod.c_str());
1036 +              painCave.isFatal = 1;
1037 +              simError();            
1038 +            }
1039 +          }
1040 +        }
1041 +      
1042 +        if (simParams_->haveSwitchingRadius()){
1043 +          rsw_ = simParams_->getSwitchingRadius();
1044 +        } else {        
1045 +          sprintf(painCave.errMsg,
1046 +                  "SimCreator Warning: No value was set for switchingRadius.\n"
1047 +                  "\tOOPSE will use a default value of\n"
1048 +                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1049 +          painCave.isFatal = 0;
1050 +          simError();
1051 +          rsw_ = 0.85 * rcut_;
1052 +        }
1053 +        notifyFortranCutoffs(&rcut_, &rsw_);
1054 +      } else {
1055 +        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1056 +        // We'll punt and let fortran figure out the cutoffs later.
1057 +        
1058 +        notifyFortranYouAreOnYourOwn();
1059 +
1060 +      }
1061      }
870    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
1062    }
1063  
1064 <  void SimInfo::setupCoulombicCorrection( int isError ) {    
1064 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1065      
1066      int errorOut;
1067 <    int cc =  NONE;
1068 <    double alphaVal;
1069 <
1067 >    int esm =  NONE;
1068 >    int sm = UNDAMPED;
1069 >    RealType alphaVal;
1070 >    RealType dielectric;
1071 >    
1072      errorOut = isError;
1073  
1074 <    if (simParams_->haveCoulombicCorrection()) {
1075 <      std::string myCorrection = simParams_->getCoulombicCorrection();
1076 <      if (myCorrection == "NONE") {
1077 <        cc = NONE;
1074 >    if (simParams_->haveElectrostaticSummationMethod()) {
1075 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1076 >      toUpper(myMethod);
1077 >      if (myMethod == "NONE") {
1078 >        esm = NONE;
1079        } else {
1080 <        if (myCorrection == "UNDAMPED_WOLF") {
1081 <          cc = UNDAMPED_WOLF;
1080 >        if (myMethod == "SWITCHING_FUNCTION") {
1081 >          esm = SWITCHING_FUNCTION;
1082          } else {
1083 <          if (myCorrection == "WOLF") {            
1084 <            cc = WOLF;
1085 <            if (!simParams_->haveDampingAlpha()) {
1086 <              //throw error
1087 <              sprintf( painCave.errMsg,
894 <                       "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Wolf Coulombic Correction.", simParams_->getDampingAlpha());
895 <              painCave.isFatal = 0;
896 <              simError();
897 <            }
898 <            alphaVal = simParams_->getDampingAlpha();
899 <          } else {
900 <            if (myCorrection == "REACTION_FIELD") {
901 <              cc = REACTION_FIELD;
1083 >          if (myMethod == "SHIFTED_POTENTIAL") {
1084 >            esm = SHIFTED_POTENTIAL;
1085 >          } else {
1086 >            if (myMethod == "SHIFTED_FORCE") {            
1087 >              esm = SHIFTED_FORCE;
1088              } else {
1089 <              // throw error        
1090 <              sprintf( painCave.errMsg,
1091 <                       "SimInfo error: Unknown coulombicCorrection. (Input file specified %s .)\n\tcoulombicCorrection must be one of: \"none\", \"undamped_wolf\", \"wolf\", or \"reaction_field\".", myCorrection.c_str() );
1092 <              painCave.isFatal = 1;
1093 <              simError();
1094 <            }    
1095 <          }          
1089 >              if (myMethod == "REACTION_FIELD") {
1090 >                esm = REACTION_FIELD;
1091 >                dielectric = simParams_->getDielectric();
1092 >                if (!simParams_->haveDielectric()) {
1093 >                  // throw warning
1094 >                  sprintf( painCave.errMsg,
1095 >                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1096 >                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1097 >                  painCave.isFatal = 0;
1098 >                  simError();
1099 >                }
1100 >              } else {
1101 >                // throw error        
1102 >                sprintf( painCave.errMsg,
1103 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1104 >                         "\t(Input file specified %s .)\n"
1105 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1106 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1107 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1108 >                painCave.isFatal = 1;
1109 >                simError();
1110 >              }    
1111 >            }          
1112 >          }
1113          }
1114        }
1115      }
1116 <    initFortranFF( &fInfo_.SIM_uses_RF, &cc, &alphaVal, &errorOut );
1116 >    
1117 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1118 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1119 >      toUpper(myScreen);
1120 >      if (myScreen == "UNDAMPED") {
1121 >        sm = UNDAMPED;
1122 >      } else {
1123 >        if (myScreen == "DAMPED") {
1124 >          sm = DAMPED;
1125 >          if (!simParams_->haveDampingAlpha()) {
1126 >            // first set a cutoff dependent alpha value
1127 >            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1128 >            alphaVal = 0.5125 - rcut_* 0.025;
1129 >            // for values rcut > 20.5, alpha is zero
1130 >            if (alphaVal < 0) alphaVal = 0;
1131 >
1132 >            // throw warning
1133 >            sprintf( painCave.errMsg,
1134 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1135 >                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1136 >            painCave.isFatal = 0;
1137 >            simError();
1138 >          } else {
1139 >            alphaVal = simParams_->getDampingAlpha();
1140 >          }
1141 >          
1142 >        } else {
1143 >          // throw error        
1144 >          sprintf( painCave.errMsg,
1145 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1146 >                   "\t(Input file specified %s .)\n"
1147 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1148 >                   "or \"damped\".\n", myScreen.c_str() );
1149 >          painCave.isFatal = 1;
1150 >          simError();
1151 >        }
1152 >      }
1153 >    }
1154 >    
1155 >    // let's pass some summation method variables to fortran
1156 >    setElectrostaticSummationMethod( &esm );
1157 >    setFortranElectrostaticMethod( &esm );
1158 >    setScreeningMethod( &sm );
1159 >    setDampingAlpha( &alphaVal );
1160 >    setReactionFieldDielectric( &dielectric );
1161 >    initFortranFF( &errorOut );
1162 >  }
1163 >
1164 >  void SimInfo::setupSwitchingFunction() {    
1165 >    int ft = CUBIC;
1166 >
1167 >    if (simParams_->haveSwitchingFunctionType()) {
1168 >      std::string funcType = simParams_->getSwitchingFunctionType();
1169 >      toUpper(funcType);
1170 >      if (funcType == "CUBIC") {
1171 >        ft = CUBIC;
1172 >      } else {
1173 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1174 >          ft = FIFTH_ORDER_POLY;
1175 >        } else {
1176 >          // throw error        
1177 >          sprintf( painCave.errMsg,
1178 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1179 >          painCave.isFatal = 1;
1180 >          simError();
1181 >        }          
1182 >      }
1183 >    }
1184 >
1185 >    // send switching function notification to switcheroo
1186 >    setFunctionType(&ft);
1187 >
1188 >  }
1189 >
1190 >  void SimInfo::setupAccumulateBoxDipole() {    
1191 >
1192 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1193 >    if ( simParams_->haveAccumulateBoxDipole() )
1194 >      if ( simParams_->getAccumulateBoxDipole() ) {
1195 >        setAccumulateBoxDipole();
1196 >        calcBoxDipole_ = true;
1197 >      }
1198 >
1199    }
1200  
1201    void SimInfo::addProperty(GenericData* genData) {
# Line 969 | Line 1254 | namespace oopse {
1254      Molecule* mol;
1255  
1256      Vector3d comVel(0.0);
1257 <    double totalMass = 0.0;
1257 >    RealType totalMass = 0.0;
1258      
1259  
1260      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1261 <      double mass = mol->getMass();
1261 >      RealType mass = mol->getMass();
1262        totalMass += mass;
1263        comVel += mass * mol->getComVel();
1264      }  
1265  
1266   #ifdef IS_MPI
1267 <    double tmpMass = totalMass;
1267 >    RealType tmpMass = totalMass;
1268      Vector3d tmpComVel(comVel);    
1269 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1270 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1269 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1270 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1271   #endif
1272  
1273      comVel /= totalMass;
# Line 995 | Line 1280 | namespace oopse {
1280      Molecule* mol;
1281  
1282      Vector3d com(0.0);
1283 <    double totalMass = 0.0;
1283 >    RealType totalMass = 0.0;
1284      
1285      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1286 <      double mass = mol->getMass();
1286 >      RealType mass = mol->getMass();
1287        totalMass += mass;
1288        com += mass * mol->getCom();
1289      }  
1290  
1291   #ifdef IS_MPI
1292 <    double tmpMass = totalMass;
1292 >    RealType tmpMass = totalMass;
1293      Vector3d tmpCom(com);    
1294 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1295 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1294 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1295 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1296   #endif
1297  
1298      com /= totalMass;
# Line 1031 | Line 1316 | namespace oopse {
1316        Molecule* mol;
1317        
1318      
1319 <      double totalMass = 0.0;
1319 >      RealType totalMass = 0.0;
1320      
1321  
1322        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1323 <         double mass = mol->getMass();
1323 >         RealType mass = mol->getMass();
1324           totalMass += mass;
1325           com += mass * mol->getCom();
1326           comVel += mass * mol->getComVel();          
1327        }  
1328        
1329   #ifdef IS_MPI
1330 <      double tmpMass = totalMass;
1330 >      RealType tmpMass = totalMass;
1331        Vector3d tmpCom(com);  
1332        Vector3d tmpComVel(comVel);
1333 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1334 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1335 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1333 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1334 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1335 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1336   #endif
1337        
1338        com /= totalMass;
# Line 1066 | Line 1351 | namespace oopse {
1351     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1352        
1353  
1354 <      double xx = 0.0;
1355 <      double yy = 0.0;
1356 <      double zz = 0.0;
1357 <      double xy = 0.0;
1358 <      double xz = 0.0;
1359 <      double yz = 0.0;
1354 >      RealType xx = 0.0;
1355 >      RealType yy = 0.0;
1356 >      RealType zz = 0.0;
1357 >      RealType xy = 0.0;
1358 >      RealType xz = 0.0;
1359 >      RealType yz = 0.0;
1360        Vector3d com(0.0);
1361        Vector3d comVel(0.0);
1362        
# Line 1083 | Line 1368 | namespace oopse {
1368        Vector3d thisq(0.0);
1369        Vector3d thisv(0.0);
1370  
1371 <      double thisMass = 0.0;
1371 >      RealType thisMass = 0.0;
1372      
1373        
1374        
# Line 1121 | Line 1406 | namespace oopse {
1406   #ifdef IS_MPI
1407        Mat3x3d tmpI(inertiaTensor);
1408        Vector3d tmpAngMom;
1409 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1410 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1409 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1410 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1411   #endif
1412                
1413        return;
# Line 1143 | Line 1428 | namespace oopse {
1428        Vector3d thisr(0.0);
1429        Vector3d thisp(0.0);
1430        
1431 <      double thisMass;
1431 >      RealType thisMass;
1432        
1433        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1434          thisMass = mol->getMass();
# Line 1156 | Line 1441 | namespace oopse {
1441        
1442   #ifdef IS_MPI
1443        Vector3d tmpAngMom;
1444 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1444 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1445   #endif
1446        
1447        return angularMomentum;
1448     }
1449    
1450 <  
1450 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1451 >    return IOIndexToIntegrableObject.at(index);
1452 >  }
1453 >  
1454 >  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1455 >    IOIndexToIntegrableObject= v;
1456 >  }
1457 >
1458 > /*
1459 >   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1460 >      assert( v.size() == nAtoms_ + nRigidBodies_);
1461 >      sdByGlobalIndex_ = v;
1462 >    }
1463 >
1464 >    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1465 >      //assert(index < nAtoms_ + nRigidBodies_);
1466 >      return sdByGlobalIndex_.at(index);
1467 >    }  
1468 > */  
1469   }//end namespace oopse
1470  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines