ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 398 by tim, Mon Mar 7 22:39:33 2005 UTC vs.
Revision 1045 by chrisfen, Thu Sep 21 18:25:17 2006 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57 + #include "UseTheForce/fCutoffPolicy.h"
58 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 + #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61   #include "UseTheForce/doForces_interface.h"
62 < #include "UseTheForce/notifyCutoffs_interface.h"
62 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
63 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
64   #include "utils/MemoryUtils.hpp"
65   #include "utils/simError.h"
66   #include "selection/SelectionManager.hpp"
67 + #include "io/ForceFieldOptions.hpp"
68 + #include "UseTheForce/ForceField.hpp"
69  
70   #ifdef IS_MPI
71   #include "UseTheForce/mpiComponentPlan.h"
# Line 64 | Line 73 | namespace oopse {
73   #endif
74  
75   namespace oopse {
76 +  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
77 +    std::map<int, std::set<int> >::iterator i = container.find(index);
78 +    std::set<int> result;
79 +    if (i != container.end()) {
80 +        result = i->second;
81 +    }
82  
83 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
84 <                                ForceField* ff, Globals* simParams) :
85 <                                forceField_(ff), simParams_(simParams),
86 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
87 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
88 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
89 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
90 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
91 <                                sman_(NULL), fortranInitialized_(false), selectMan_(NULL) {
83 >    return result;
84 >  }
85 >  
86 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
87 >    forceField_(ff), simParams_(simParams),
88 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
89 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
90 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
91 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
92 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
93 >    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) {
94  
95 <            
96 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
97 <    MoleculeStamp* molStamp;
98 <    int nMolWithSameStamp;
99 <    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
100 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
101 <    CutoffGroupStamp* cgStamp;    
102 <    RigidBodyStamp* rbStamp;
103 <    int nRigidAtoms = 0;
104 <    
105 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
106 <        molStamp = i->first;
90 <        nMolWithSameStamp = i->second;
95 >      MoleculeStamp* molStamp;
96 >      int nMolWithSameStamp;
97 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
98 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
99 >      CutoffGroupStamp* cgStamp;    
100 >      RigidBodyStamp* rbStamp;
101 >      int nRigidAtoms = 0;
102 >      std::vector<Component*> components = simParams->getComponents();
103 >      
104 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
105 >        molStamp = (*i)->getMoleculeStamp();
106 >        nMolWithSameStamp = (*i)->getNMol();
107          
108          addMoleculeStamp(molStamp, nMolWithSameStamp);
109  
110          //calculate atoms in molecules
111          nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
112  
97
113          //calculate atoms in cutoff groups
114          int nAtomsInGroups = 0;
115          int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
116          
117          for (int j=0; j < nCutoffGroupsInStamp; j++) {
118 <            cgStamp = molStamp->getCutoffGroup(j);
119 <            nAtomsInGroups += cgStamp->getNMembers();
118 >          cgStamp = molStamp->getCutoffGroupStamp(j);
119 >          nAtomsInGroups += cgStamp->getNMembers();
120          }
121  
122          nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
123 +
124          nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
125  
126          //calculate atoms in rigid bodies
# Line 112 | Line 128 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
128          int nRigidBodiesInStamp = molStamp->getNRigidBodies();
129          
130          for (int j=0; j < nRigidBodiesInStamp; j++) {
131 <            rbStamp = molStamp->getRigidBody(j);
132 <            nAtomsInRigidBodies += rbStamp->getNMembers();
131 >          rbStamp = molStamp->getRigidBodyStamp(j);
132 >          nAtomsInRigidBodies += rbStamp->getNMembers();
133          }
134  
135          nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
136          nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
137          
138 <    }
138 >      }
139  
140 <    //every free atom (atom does not belong to cutoff groups) is a cutoff group
141 <    //therefore the total number of cutoff groups in the system is equal to
142 <    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
143 <    //file plus the number of cutoff groups defined in meta-data file
144 <    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
140 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
141 >      //group therefore the total number of cutoff groups in the system is
142 >      //equal to the total number of atoms minus number of atoms belong to
143 >      //cutoff group defined in meta-data file plus the number of cutoff
144 >      //groups defined in meta-data file
145 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
146  
147 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
148 <    //therefore the total number of  integrable objects in the system is equal to
149 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
150 <    //file plus the number of  rigid bodies defined in meta-data file
151 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
147 >      //every free atom (atom does not belong to rigid bodies) is an
148 >      //integrable object therefore the total number of integrable objects
149 >      //in the system is equal to the total number of atoms minus number of
150 >      //atoms belong to rigid body defined in meta-data file plus the number
151 >      //of rigid bodies defined in meta-data file
152 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
153 >                                                + nGlobalRigidBodies_;
154 >  
155 >      nGlobalMols_ = molStampIds_.size();
156  
136    nGlobalMols_ = molStampIds_.size();
137
157   #ifdef IS_MPI    
158 <    molToProcMap_.resize(nGlobalMols_);
158 >      molToProcMap_.resize(nGlobalMols_);
159   #endif
160  
161 <    selectMan_ = new SelectionManager(this);
143 <    selectMan_->selectAll();
144 < }
161 >    }
162  
163 < SimInfo::~SimInfo() {
163 >  SimInfo::~SimInfo() {
164      std::map<int, Molecule*>::iterator i;
165      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
166 <        delete i->second;
166 >      delete i->second;
167      }
168      molecules_.clear();
169 <    
153 <    MemoryUtils::deletePointers(moleculeStamps_);
154 <    
169 >      
170      delete sman_;
171      delete simParams_;
172      delete forceField_;
173 <    delete selectMan_;
159 < }
173 >  }
174  
175 < int SimInfo::getNGlobalConstraints() {
175 >  int SimInfo::getNGlobalConstraints() {
176      int nGlobalConstraints;
177   #ifdef IS_MPI
178      MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
# Line 167 | Line 181 | int SimInfo::getNGlobalConstraints() {
181      nGlobalConstraints =  nConstraints_;
182   #endif
183      return nGlobalConstraints;
184 < }
184 >  }
185  
186 < bool SimInfo::addMolecule(Molecule* mol) {
186 >  bool SimInfo::addMolecule(Molecule* mol) {
187      MoleculeIterator i;
188  
189      i = molecules_.find(mol->getGlobalIndex());
190      if (i == molecules_.end() ) {
191  
192 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
192 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
193          
194 <        nAtoms_ += mol->getNAtoms();
195 <        nBonds_ += mol->getNBonds();
196 <        nBends_ += mol->getNBends();
197 <        nTorsions_ += mol->getNTorsions();
198 <        nRigidBodies_ += mol->getNRigidBodies();
199 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
200 <        nCutoffGroups_ += mol->getNCutoffGroups();
201 <        nConstraints_ += mol->getNConstraintPairs();
194 >      nAtoms_ += mol->getNAtoms();
195 >      nBonds_ += mol->getNBonds();
196 >      nBends_ += mol->getNBends();
197 >      nTorsions_ += mol->getNTorsions();
198 >      nRigidBodies_ += mol->getNRigidBodies();
199 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
200 >      nCutoffGroups_ += mol->getNCutoffGroups();
201 >      nConstraints_ += mol->getNConstraintPairs();
202  
203 <        addExcludePairs(mol);
203 >      addExcludePairs(mol);
204          
205 <        return true;
205 >      return true;
206      } else {
207 <        return false;
207 >      return false;
208      }
209 < }
209 >  }
210  
211 < bool SimInfo::removeMolecule(Molecule* mol) {
211 >  bool SimInfo::removeMolecule(Molecule* mol) {
212      MoleculeIterator i;
213      i = molecules_.find(mol->getGlobalIndex());
214  
215      if (i != molecules_.end() ) {
216  
217 <        assert(mol == i->second);
217 >      assert(mol == i->second);
218          
219 <        nAtoms_ -= mol->getNAtoms();
220 <        nBonds_ -= mol->getNBonds();
221 <        nBends_ -= mol->getNBends();
222 <        nTorsions_ -= mol->getNTorsions();
223 <        nRigidBodies_ -= mol->getNRigidBodies();
224 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
225 <        nCutoffGroups_ -= mol->getNCutoffGroups();
226 <        nConstraints_ -= mol->getNConstraintPairs();
219 >      nAtoms_ -= mol->getNAtoms();
220 >      nBonds_ -= mol->getNBonds();
221 >      nBends_ -= mol->getNBends();
222 >      nTorsions_ -= mol->getNTorsions();
223 >      nRigidBodies_ -= mol->getNRigidBodies();
224 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
225 >      nCutoffGroups_ -= mol->getNCutoffGroups();
226 >      nConstraints_ -= mol->getNConstraintPairs();
227  
228 <        removeExcludePairs(mol);
229 <        molecules_.erase(mol->getGlobalIndex());
228 >      removeExcludePairs(mol);
229 >      molecules_.erase(mol->getGlobalIndex());
230  
231 <        delete mol;
231 >      delete mol;
232          
233 <        return true;
233 >      return true;
234      } else {
235 <        return false;
235 >      return false;
236      }
237  
238  
239 < }    
239 >  }    
240  
241          
242 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
242 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
243      i = molecules_.begin();
244      return i == molecules_.end() ? NULL : i->second;
245 < }    
245 >  }    
246  
247 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
247 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
248      ++i;
249      return i == molecules_.end() ? NULL : i->second;    
250 < }
250 >  }
251  
252  
253 < void SimInfo::calcNdf() {
253 >  void SimInfo::calcNdf() {
254      int ndf_local;
255      MoleculeIterator i;
256      std::vector<StuntDouble*>::iterator j;
# Line 246 | Line 260 | void SimInfo::calcNdf() {
260      ndf_local = 0;
261      
262      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
263 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
264 <               integrableObject = mol->nextIntegrableObject(j)) {
263 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
264 >           integrableObject = mol->nextIntegrableObject(j)) {
265  
266 <            ndf_local += 3;
266 >        ndf_local += 3;
267  
268 <            if (integrableObject->isDirectional()) {
269 <                if (integrableObject->isLinear()) {
270 <                    ndf_local += 2;
271 <                } else {
272 <                    ndf_local += 3;
273 <                }
274 <            }
268 >        if (integrableObject->isDirectional()) {
269 >          if (integrableObject->isLinear()) {
270 >            ndf_local += 2;
271 >          } else {
272 >            ndf_local += 3;
273 >          }
274 >        }
275              
276 <        }//end for (integrableObject)
277 <    }// end for (mol)
276 >      }
277 >    }
278      
279      // n_constraints is local, so subtract them on each processor
280      ndf_local -= nConstraints_;
# Line 275 | Line 289 | void SimInfo::calcNdf() {
289      // entire system:
290      ndf_ = ndf_ - 3 - nZconstraint_;
291  
292 < }
292 >  }
293  
294 < void SimInfo::calcNdfRaw() {
294 >  int SimInfo::getFdf() {
295 > #ifdef IS_MPI
296 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
297 > #else
298 >    fdf_ = fdf_local;
299 > #endif
300 >    return fdf_;
301 >  }
302 >    
303 >  void SimInfo::calcNdfRaw() {
304      int ndfRaw_local;
305  
306      MoleculeIterator i;
# Line 289 | Line 312 | void SimInfo::calcNdfRaw() {
312      ndfRaw_local = 0;
313      
314      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
315 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
316 <               integrableObject = mol->nextIntegrableObject(j)) {
315 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
316 >           integrableObject = mol->nextIntegrableObject(j)) {
317  
318 <            ndfRaw_local += 3;
318 >        ndfRaw_local += 3;
319  
320 <            if (integrableObject->isDirectional()) {
321 <                if (integrableObject->isLinear()) {
322 <                    ndfRaw_local += 2;
323 <                } else {
324 <                    ndfRaw_local += 3;
325 <                }
326 <            }
320 >        if (integrableObject->isDirectional()) {
321 >          if (integrableObject->isLinear()) {
322 >            ndfRaw_local += 2;
323 >          } else {
324 >            ndfRaw_local += 3;
325 >          }
326 >        }
327              
328 <        }
328 >      }
329      }
330      
331   #ifdef IS_MPI
# Line 310 | Line 333 | void SimInfo::calcNdfRaw() {
333   #else
334      ndfRaw_ = ndfRaw_local;
335   #endif
336 < }
336 >  }
337  
338 < void SimInfo::calcNdfTrans() {
338 >  void SimInfo::calcNdfTrans() {
339      int ndfTrans_local;
340  
341      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 326 | Line 349 | void SimInfo::calcNdfTrans() {
349  
350      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
351  
352 < }
352 >  }
353  
354 < void SimInfo::addExcludePairs(Molecule* mol) {
354 >  void SimInfo::addExcludePairs(Molecule* mol) {
355      std::vector<Bond*>::iterator bondIter;
356      std::vector<Bend*>::iterator bendIter;
357      std::vector<Torsion*>::iterator torsionIter;
# Line 339 | Line 362 | void SimInfo::addExcludePairs(Molecule* mol) {
362      int b;
363      int c;
364      int d;
365 +
366 +    std::map<int, std::set<int> > atomGroups;
367 +
368 +    Molecule::RigidBodyIterator rbIter;
369 +    RigidBody* rb;
370 +    Molecule::IntegrableObjectIterator ii;
371 +    StuntDouble* integrableObject;
372      
373 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
374 +           integrableObject = mol->nextIntegrableObject(ii)) {
375 +
376 +      if (integrableObject->isRigidBody()) {
377 +          rb = static_cast<RigidBody*>(integrableObject);
378 +          std::vector<Atom*> atoms = rb->getAtoms();
379 +          std::set<int> rigidAtoms;
380 +          for (int i = 0; i < atoms.size(); ++i) {
381 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
382 +          }
383 +          for (int i = 0; i < atoms.size(); ++i) {
384 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
385 +          }      
386 +      } else {
387 +        std::set<int> oneAtomSet;
388 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
389 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
390 +      }
391 +    }  
392 +
393 +    
394 +    
395      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
396 <        a = bond->getAtomA()->getGlobalIndex();
397 <        b = bond->getAtomB()->getGlobalIndex();        
398 <        exclude_.addPair(a, b);
396 >      a = bond->getAtomA()->getGlobalIndex();
397 >      b = bond->getAtomB()->getGlobalIndex();        
398 >      exclude_.addPair(a, b);
399      }
400  
401      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
402 <        a = bend->getAtomA()->getGlobalIndex();
403 <        b = bend->getAtomB()->getGlobalIndex();        
404 <        c = bend->getAtomC()->getGlobalIndex();
402 >      a = bend->getAtomA()->getGlobalIndex();
403 >      b = bend->getAtomB()->getGlobalIndex();        
404 >      c = bend->getAtomC()->getGlobalIndex();
405 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
406 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
407 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
408  
409 <        exclude_.addPair(a, b);
410 <        exclude_.addPair(a, c);
411 <        exclude_.addPair(b, c);        
409 >      exclude_.addPairs(rigidSetA, rigidSetB);
410 >      exclude_.addPairs(rigidSetA, rigidSetC);
411 >      exclude_.addPairs(rigidSetB, rigidSetC);
412 >      
413 >      //exclude_.addPair(a, b);
414 >      //exclude_.addPair(a, c);
415 >      //exclude_.addPair(b, c);        
416      }
417  
418      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
419 <        a = torsion->getAtomA()->getGlobalIndex();
420 <        b = torsion->getAtomB()->getGlobalIndex();        
421 <        c = torsion->getAtomC()->getGlobalIndex();        
422 <        d = torsion->getAtomD()->getGlobalIndex();        
419 >      a = torsion->getAtomA()->getGlobalIndex();
420 >      b = torsion->getAtomB()->getGlobalIndex();        
421 >      c = torsion->getAtomC()->getGlobalIndex();        
422 >      d = torsion->getAtomD()->getGlobalIndex();        
423 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
424 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
425 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
426 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
427  
428 <        exclude_.addPair(a, b);
429 <        exclude_.addPair(a, c);
430 <        exclude_.addPair(a, d);
431 <        exclude_.addPair(b, c);
432 <        exclude_.addPair(b, d);
433 <        exclude_.addPair(c, d);        
371 <    }
428 >      exclude_.addPairs(rigidSetA, rigidSetB);
429 >      exclude_.addPairs(rigidSetA, rigidSetC);
430 >      exclude_.addPairs(rigidSetA, rigidSetD);
431 >      exclude_.addPairs(rigidSetB, rigidSetC);
432 >      exclude_.addPairs(rigidSetB, rigidSetD);
433 >      exclude_.addPairs(rigidSetC, rigidSetD);
434  
435 <    
436 < }
435 >      /*
436 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
437 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
438 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
439 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
440 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
441 >      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
442 >        
443 >      
444 >      exclude_.addPair(a, b);
445 >      exclude_.addPair(a, c);
446 >      exclude_.addPair(a, d);
447 >      exclude_.addPair(b, c);
448 >      exclude_.addPair(b, d);
449 >      exclude_.addPair(c, d);        
450 >      */
451 >    }
452  
453 < void SimInfo::removeExcludePairs(Molecule* mol) {
453 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
454 >      std::vector<Atom*> atoms = rb->getAtoms();
455 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
456 >        for (int j = i + 1; j < atoms.size(); ++j) {
457 >          a = atoms[i]->getGlobalIndex();
458 >          b = atoms[j]->getGlobalIndex();
459 >          exclude_.addPair(a, b);
460 >        }
461 >      }
462 >    }        
463 >
464 >  }
465 >
466 >  void SimInfo::removeExcludePairs(Molecule* mol) {
467      std::vector<Bond*>::iterator bondIter;
468      std::vector<Bend*>::iterator bendIter;
469      std::vector<Torsion*>::iterator torsionIter;
# Line 384 | Line 474 | void SimInfo::removeExcludePairs(Molecule* mol) {
474      int b;
475      int c;
476      int d;
477 +
478 +    std::map<int, std::set<int> > atomGroups;
479 +
480 +    Molecule::RigidBodyIterator rbIter;
481 +    RigidBody* rb;
482 +    Molecule::IntegrableObjectIterator ii;
483 +    StuntDouble* integrableObject;
484      
485 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
486 +           integrableObject = mol->nextIntegrableObject(ii)) {
487 +
488 +      if (integrableObject->isRigidBody()) {
489 +          rb = static_cast<RigidBody*>(integrableObject);
490 +          std::vector<Atom*> atoms = rb->getAtoms();
491 +          std::set<int> rigidAtoms;
492 +          for (int i = 0; i < atoms.size(); ++i) {
493 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
494 +          }
495 +          for (int i = 0; i < atoms.size(); ++i) {
496 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
497 +          }      
498 +      } else {
499 +        std::set<int> oneAtomSet;
500 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
501 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
502 +      }
503 +    }  
504 +
505 +    
506      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
507 <        a = bond->getAtomA()->getGlobalIndex();
508 <        b = bond->getAtomB()->getGlobalIndex();        
509 <        exclude_.removePair(a, b);
507 >      a = bond->getAtomA()->getGlobalIndex();
508 >      b = bond->getAtomB()->getGlobalIndex();        
509 >      exclude_.removePair(a, b);
510      }
511  
512      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
513 <        a = bend->getAtomA()->getGlobalIndex();
514 <        b = bend->getAtomB()->getGlobalIndex();        
515 <        c = bend->getAtomC()->getGlobalIndex();
513 >      a = bend->getAtomA()->getGlobalIndex();
514 >      b = bend->getAtomB()->getGlobalIndex();        
515 >      c = bend->getAtomC()->getGlobalIndex();
516  
517 <        exclude_.removePair(a, b);
518 <        exclude_.removePair(a, c);
519 <        exclude_.removePair(b, c);        
517 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
518 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
519 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
520 >
521 >      exclude_.removePairs(rigidSetA, rigidSetB);
522 >      exclude_.removePairs(rigidSetA, rigidSetC);
523 >      exclude_.removePairs(rigidSetB, rigidSetC);
524 >      
525 >      //exclude_.removePair(a, b);
526 >      //exclude_.removePair(a, c);
527 >      //exclude_.removePair(b, c);        
528      }
529  
530      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
531 <        a = torsion->getAtomA()->getGlobalIndex();
532 <        b = torsion->getAtomB()->getGlobalIndex();        
533 <        c = torsion->getAtomC()->getGlobalIndex();        
534 <        d = torsion->getAtomD()->getGlobalIndex();        
531 >      a = torsion->getAtomA()->getGlobalIndex();
532 >      b = torsion->getAtomB()->getGlobalIndex();        
533 >      c = torsion->getAtomC()->getGlobalIndex();        
534 >      d = torsion->getAtomD()->getGlobalIndex();        
535  
536 <        exclude_.removePair(a, b);
537 <        exclude_.removePair(a, c);
538 <        exclude_.removePair(a, d);
539 <        exclude_.removePair(b, c);
540 <        exclude_.removePair(b, d);
541 <        exclude_.removePair(c, d);        
536 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
537 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
538 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
539 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
540 >
541 >      exclude_.removePairs(rigidSetA, rigidSetB);
542 >      exclude_.removePairs(rigidSetA, rigidSetC);
543 >      exclude_.removePairs(rigidSetA, rigidSetD);
544 >      exclude_.removePairs(rigidSetB, rigidSetC);
545 >      exclude_.removePairs(rigidSetB, rigidSetD);
546 >      exclude_.removePairs(rigidSetC, rigidSetD);
547 >
548 >      /*
549 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
550 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
551 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
552 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
553 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
554 >      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
555 >
556 >      
557 >      exclude_.removePair(a, b);
558 >      exclude_.removePair(a, c);
559 >      exclude_.removePair(a, d);
560 >      exclude_.removePair(b, c);
561 >      exclude_.removePair(b, d);
562 >      exclude_.removePair(c, d);        
563 >      */
564      }
565  
566 < }
566 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
567 >      std::vector<Atom*> atoms = rb->getAtoms();
568 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
569 >        for (int j = i + 1; j < atoms.size(); ++j) {
570 >          a = atoms[i]->getGlobalIndex();
571 >          b = atoms[j]->getGlobalIndex();
572 >          exclude_.removePair(a, b);
573 >        }
574 >      }
575 >    }        
576  
577 +  }
578  
579 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
579 >
580 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
581      int curStampId;
582  
583      //index from 0
# Line 426 | Line 585 | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp
585  
586      moleculeStamps_.push_back(molStamp);
587      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
588 < }
588 >  }
589  
590 < void SimInfo::update() {
590 >  void SimInfo::update() {
591  
592      setupSimType();
593  
# Line 441 | Line 600 | void SimInfo::update() {
600      //setup fortran force field
601      /** @deprecate */    
602      int isError = 0;
444    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
445    if(isError){
446        sprintf( painCave.errMsg,
447         "ForceField error: There was an error initializing the forceField in fortran.\n" );
448        painCave.isFatal = 1;
449        simError();
450    }
451  
603      
604      setupCutoff();
605 +    
606 +    setupElectrostaticSummationMethod( isError );
607 +    setupSwitchingFunction();
608 +    setupAccumulateBoxDipole();
609  
610 +    if(isError){
611 +      sprintf( painCave.errMsg,
612 +               "ForceField error: There was an error initializing the forceField in fortran.\n" );
613 +      painCave.isFatal = 1;
614 +      simError();
615 +    }
616 +
617      calcNdf();
618      calcNdfRaw();
619      calcNdfTrans();
620  
621      fortranInitialized_ = true;
622 < }
622 >  }
623  
624 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
624 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
625      SimInfo::MoleculeIterator mi;
626      Molecule* mol;
627      Molecule::AtomIterator ai;
# Line 468 | Line 630 | std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
630  
631      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
632  
633 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
634 <            atomTypes.insert(atom->getAtomType());
635 <        }
633 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
634 >        atomTypes.insert(atom->getAtomType());
635 >      }
636          
637      }
638  
639      return atomTypes;        
640 < }
640 >  }
641  
642 < void SimInfo::setupSimType() {
642 >  void SimInfo::setupSimType() {
643      std::set<AtomType*>::iterator i;
644      std::set<AtomType*> atomTypes;
645      atomTypes = getUniqueAtomTypes();
# Line 485 | Line 647 | void SimInfo::setupSimType() {
647      int useLennardJones = 0;
648      int useElectrostatic = 0;
649      int useEAM = 0;
650 +    int useSC = 0;
651      int useCharge = 0;
652      int useDirectional = 0;
653      int useDipole = 0;
654      int useGayBerne = 0;
655      int useSticky = 0;
656 +    int useStickyPower = 0;
657      int useShape = 0;
658      int useFLARB = 0; //it is not in AtomType yet
659      int useDirectionalAtom = 0;    
660      int useElectrostatics = 0;
661      //usePBC and useRF are from simParams
662 <    int usePBC = simParams_->getPBC();
663 <    int useRF = simParams_->getUseRF();
662 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
663 >    int useRF;
664 >    int useSF;
665 >    int useSP;
666 >    int useBoxDipole;
667 >    std::string myMethod;
668  
669 +    // set the useRF logical
670 +    useRF = 0;
671 +    useSF = 0;
672 +
673 +
674 +    if (simParams_->haveElectrostaticSummationMethod()) {
675 +      std::string myMethod = simParams_->getElectrostaticSummationMethod();
676 +      toUpper(myMethod);
677 +      if (myMethod == "REACTION_FIELD"){
678 +        useRF=1;
679 +      } else if (myMethod == "SHIFTED_FORCE"){
680 +        useSF = 1;
681 +      } else if (myMethod == "SHIFTED_POTENTIAL"){
682 +        useSP = 1;
683 +      }
684 +    }
685 +    
686 +    if (simParams_->haveAccumulateBoxDipole())
687 +      if (simParams_->getAccumulateBoxDipole())
688 +        useBoxDipole = 1;
689 +
690      //loop over all of the atom types
691      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
692 <        useLennardJones |= (*i)->isLennardJones();
693 <        useElectrostatic |= (*i)->isElectrostatic();
694 <        useEAM |= (*i)->isEAM();
695 <        useCharge |= (*i)->isCharge();
696 <        useDirectional |= (*i)->isDirectional();
697 <        useDipole |= (*i)->isDipole();
698 <        useGayBerne |= (*i)->isGayBerne();
699 <        useSticky |= (*i)->isSticky();
700 <        useShape |= (*i)->isShape();
692 >      useLennardJones |= (*i)->isLennardJones();
693 >      useElectrostatic |= (*i)->isElectrostatic();
694 >      useEAM |= (*i)->isEAM();
695 >      useSC |= (*i)->isSC();
696 >      useCharge |= (*i)->isCharge();
697 >      useDirectional |= (*i)->isDirectional();
698 >      useDipole |= (*i)->isDipole();
699 >      useGayBerne |= (*i)->isGayBerne();
700 >      useSticky |= (*i)->isSticky();
701 >      useStickyPower |= (*i)->isStickyPower();
702 >      useShape |= (*i)->isShape();
703      }
704  
705 <    if (useSticky || useDipole || useGayBerne || useShape) {
706 <        useDirectionalAtom = 1;
705 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
706 >      useDirectionalAtom = 1;
707      }
708  
709      if (useCharge || useDipole) {
710 <        useElectrostatics = 1;
710 >      useElectrostatics = 1;
711      }
712  
713   #ifdef IS_MPI    
# Line 543 | Line 734 | void SimInfo::setupSimType() {
734      temp = useSticky;
735      MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
736  
737 +    temp = useStickyPower;
738 +    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
739 +    
740      temp = useGayBerne;
741      MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
742  
743      temp = useEAM;
744      MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
745  
746 +    temp = useSC;
747 +    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
748 +    
749      temp = useShape;
750      MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
751  
# Line 557 | Line 754 | void SimInfo::setupSimType() {
754  
755      temp = useRF;
756      MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
757 <    
757 >
758 >    temp = useSF;
759 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
760 >
761 >    temp = useSP;
762 >    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
763 >
764 >    temp = useBoxDipole;
765 >    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
766 >
767   #endif
768  
769      fInfo_.SIM_uses_PBC = usePBC;    
# Line 567 | Line 773 | void SimInfo::setupSimType() {
773      fInfo_.SIM_uses_Charges = useCharge;
774      fInfo_.SIM_uses_Dipoles = useDipole;
775      fInfo_.SIM_uses_Sticky = useSticky;
776 +    fInfo_.SIM_uses_StickyPower = useStickyPower;
777      fInfo_.SIM_uses_GayBerne = useGayBerne;
778      fInfo_.SIM_uses_EAM = useEAM;
779 +    fInfo_.SIM_uses_SC = useSC;
780      fInfo_.SIM_uses_Shapes = useShape;
781      fInfo_.SIM_uses_FLARB = useFLARB;
782      fInfo_.SIM_uses_RF = useRF;
783 +    fInfo_.SIM_uses_SF = useSF;
784 +    fInfo_.SIM_uses_SP = useSP;
785 +    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
786  
787 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
788 <
789 <        if (simParams_->haveDielectric()) {
790 <            fInfo_.dielect = simParams_->getDielectric();
791 <        } else {
792 <            sprintf(painCave.errMsg,
793 <                    "SimSetup Error: No Dielectric constant was set.\n"
794 <                    "\tYou are trying to use Reaction Field without"
795 <                    "\tsetting a dielectric constant!\n");
796 <            painCave.isFatal = 1;
797 <            simError();
798 <        }
588 <        
589 <    } else {
590 <        fInfo_.dielect = 0.0;
787 >    if( myMethod == "REACTION_FIELD") {
788 >      
789 >      if (simParams_->haveDielectric()) {
790 >        fInfo_.dielect = simParams_->getDielectric();
791 >      } else {
792 >        sprintf(painCave.errMsg,
793 >                "SimSetup Error: No Dielectric constant was set.\n"
794 >                "\tYou are trying to use Reaction Field without"
795 >                "\tsetting a dielectric constant!\n");
796 >        painCave.isFatal = 1;
797 >        simError();
798 >      }      
799      }
800  
801 < }
801 >  }
802  
803 < void SimInfo::setupFortranSim() {
803 >  void SimInfo::setupFortranSim() {
804      int isError;
805      int nExclude;
806      std::vector<int> fortranGlobalGroupMembership;
# Line 602 | Line 810 | void SimInfo::setupFortranSim() {
810  
811      //globalGroupMembership_ is filled by SimCreator    
812      for (int i = 0; i < nGlobalAtoms_; i++) {
813 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
813 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
814      }
815  
816      //calculate mass ratio of cutoff group
817 <    std::vector<double> mfact;
817 >    std::vector<RealType> mfact;
818      SimInfo::MoleculeIterator mi;
819      Molecule* mol;
820      Molecule::CutoffGroupIterator ci;
821      CutoffGroup* cg;
822      Molecule::AtomIterator ai;
823      Atom* atom;
824 <    double totalMass;
824 >    RealType totalMass;
825  
826      //to avoid memory reallocation, reserve enough space for mfact
827      mfact.reserve(getNCutoffGroups());
828      
829      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
830 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
830 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
831  
832 <            totalMass = cg->getMass();
833 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
834 <                        mfact.push_back(atom->getMass()/totalMass);
835 <            }
832 >        totalMass = cg->getMass();
833 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
834 >          // Check for massless groups - set mfact to 1 if true
835 >          if (totalMass != 0)
836 >            mfact.push_back(atom->getMass()/totalMass);
837 >          else
838 >            mfact.push_back( 1.0 );
839 >        }
840  
841 <        }      
841 >      }      
842      }
843  
844      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
# Line 636 | Line 848 | void SimInfo::setupFortranSim() {
848      identArray.reserve(getNAtoms());
849      
850      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
851 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
852 <            identArray.push_back(atom->getIdent());
853 <        }
851 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
852 >        identArray.push_back(atom->getIdent());
853 >      }
854      }    
855  
856      //fill molMembershipArray
857      //molMembershipArray is filled by SimCreator    
858      std::vector<int> molMembershipArray(nGlobalAtoms_);
859      for (int i = 0; i < nGlobalAtoms_; i++) {
860 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
860 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
861      }
862      
863      //setup fortran simulation
652    //gloalExcludes and molMembershipArray should go away (They are never used)
653    //why the hell fortran need to know molecule?
654    //OOPSE = Object-Obfuscated Parallel Simulation Engine
864      int nGlobalExcludes = 0;
865      int* globalExcludes = NULL;
866      int* excludeList = exclude_.getExcludeList();
867      setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
868 <                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
869 <                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
868 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
869 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
870  
871      if( isError ){
872  
873 <        sprintf( painCave.errMsg,
874 <                 "There was an error setting the simulation information in fortran.\n" );
875 <        painCave.isFatal = 1;
876 <        painCave.severity = OOPSE_ERROR;
877 <        simError();
873 >      sprintf( painCave.errMsg,
874 >               "There was an error setting the simulation information in fortran.\n" );
875 >      painCave.isFatal = 1;
876 >      painCave.severity = OOPSE_ERROR;
877 >      simError();
878      }
879  
880   #ifdef IS_MPI
881      sprintf( checkPointMsg,
882 <       "succesfully sent the simulation information to fortran.\n");
882 >             "succesfully sent the simulation information to fortran.\n");
883      MPIcheckPoint();
884   #endif // is_mpi
885 < }
885 >  }
886  
887  
888   #ifdef IS_MPI
889 < void SimInfo::setupFortranParallel() {
889 >  void SimInfo::setupFortranParallel() {
890      
891      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
892      std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
# Line 693 | Line 902 | void SimInfo::setupFortranParallel() {
902  
903      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
904  
905 <        //local index(index in DataStorge) of atom is important
906 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
907 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
908 <        }
905 >      //local index(index in DataStorge) of atom is important
906 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
907 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
908 >      }
909  
910 <        //local index of cutoff group is trivial, it only depends on the order of travesing
911 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
912 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
913 <        }        
910 >      //local index of cutoff group is trivial, it only depends on the order of travesing
911 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
912 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
913 >      }        
914          
915      }
916  
# Line 721 | Line 930 | void SimInfo::setupFortranParallel() {
930                      &localToGlobalCutoffGroupIndex[0], &isError);
931  
932      if (isError) {
933 <        sprintf(painCave.errMsg,
934 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
935 <        painCave.isFatal = 1;
936 <        simError();
933 >      sprintf(painCave.errMsg,
934 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
935 >      painCave.isFatal = 1;
936 >      simError();
937      }
938  
939      sprintf(checkPointMsg, " mpiRefresh successful.\n");
940      MPIcheckPoint();
941  
942  
943 < }
943 >  }
944  
945   #endif
946  
947 < double SimInfo::calcMaxCutoffRadius() {
947 >  void SimInfo::setupCutoff() {          
948 >    
949 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
950  
951 +    // Check the cutoff policy
952 +    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
953  
954 <    std::set<AtomType*> atomTypes;
955 <    std::set<AtomType*>::iterator i;
956 <    std::vector<double> cutoffRadius;
957 <
958 <    //get the unique atom types
746 <    atomTypes = getUniqueAtomTypes();
747 <
748 <    //query the max cutoff radius among these atom types
749 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
750 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
954 >    std::string myPolicy;
955 >    if (forceFieldOptions_.haveCutoffPolicy()){
956 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
957 >    }else if (simParams_->haveCutoffPolicy()) {
958 >      myPolicy = simParams_->getCutoffPolicy();
959      }
960  
961 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
962 < #ifdef IS_MPI
963 <    //pick the max cutoff radius among the processors
964 < #endif
961 >    if (!myPolicy.empty()){
962 >      toUpper(myPolicy);
963 >      if (myPolicy == "MIX") {
964 >        cp = MIX_CUTOFF_POLICY;
965 >      } else {
966 >        if (myPolicy == "MAX") {
967 >          cp = MAX_CUTOFF_POLICY;
968 >        } else {
969 >          if (myPolicy == "TRADITIONAL") {            
970 >            cp = TRADITIONAL_CUTOFF_POLICY;
971 >          } else {
972 >            // throw error        
973 >            sprintf( painCave.errMsg,
974 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
975 >            painCave.isFatal = 1;
976 >            simError();
977 >          }    
978 >        }          
979 >      }
980 >    }          
981 >    notifyFortranCutoffPolicy(&cp);
982  
983 <    return maxCutoffRadius;
984 < }
985 <
986 < void SimInfo::getCutoff(double& rcut, double& rsw) {
987 <    
988 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
983 >    // Check the Skin Thickness for neighborlists
984 >    RealType skin;
985 >    if (simParams_->haveSkinThickness()) {
986 >      skin = simParams_->getSkinThickness();
987 >      notifyFortranSkinThickness(&skin);
988 >    }            
989          
990 <        if (!simParams_->haveRcut()){
991 <            sprintf(painCave.errMsg,
990 >    // Check if the cutoff was set explicitly:
991 >    if (simParams_->haveCutoffRadius()) {
992 >      rcut_ = simParams_->getCutoffRadius();
993 >      if (simParams_->haveSwitchingRadius()) {
994 >        rsw_  = simParams_->getSwitchingRadius();
995 >      } else {
996 >        if (fInfo_.SIM_uses_Charges |
997 >            fInfo_.SIM_uses_Dipoles |
998 >            fInfo_.SIM_uses_RF) {
999 >          
1000 >          rsw_ = 0.85 * rcut_;
1001 >          sprintf(painCave.errMsg,
1002 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1003 >                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1004 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1005 >        painCave.isFatal = 0;
1006 >        simError();
1007 >        } else {
1008 >          rsw_ = rcut_;
1009 >          sprintf(painCave.errMsg,
1010 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1011 >                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1012 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1013 >          painCave.isFatal = 0;
1014 >          simError();
1015 >        }
1016 >      }
1017 >      
1018 >      notifyFortranCutoffs(&rcut_, &rsw_);
1019 >      
1020 >    } else {
1021 >      
1022 >      // For electrostatic atoms, we'll assume a large safe value:
1023 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1024 >        sprintf(painCave.errMsg,
1025                  "SimCreator Warning: No value was set for the cutoffRadius.\n"
1026                  "\tOOPSE will use a default value of 15.0 angstroms"
1027                  "\tfor the cutoffRadius.\n");
1028 <            painCave.isFatal = 0;
1029 <            simError();
1030 <            rcut = 15.0;
1031 <        } else{
1032 <            rcut = simParams_->getRcut();
1028 >        painCave.isFatal = 0;
1029 >        simError();
1030 >        rcut_ = 15.0;
1031 >      
1032 >        if (simParams_->haveElectrostaticSummationMethod()) {
1033 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1034 >          toUpper(myMethod);
1035 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1036 >            if (simParams_->haveSwitchingRadius()){
1037 >              sprintf(painCave.errMsg,
1038 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
1039 >                      "\teven though the electrostaticSummationMethod was\n"
1040 >                      "\tset to %s\n", myMethod.c_str());
1041 >              painCave.isFatal = 1;
1042 >              simError();            
1043 >            }
1044 >          }
1045          }
1046 <
1047 <        if (!simParams_->haveRsw()){
1048 <            sprintf(painCave.errMsg,
1049 <                "SimCreator Warning: No value was set for switchingRadius.\n"
1050 <                "\tOOPSE will use a default value of\n"
1051 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
1052 <            painCave.isFatal = 0;
1053 <            simError();
1054 <            rsw = 0.95 * rcut;
1055 <        } else{
1056 <            rsw = simParams_->getRsw();
1046 >      
1047 >        if (simParams_->haveSwitchingRadius()){
1048 >          rsw_ = simParams_->getSwitchingRadius();
1049 >        } else {        
1050 >          sprintf(painCave.errMsg,
1051 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1052 >                  "\tOOPSE will use a default value of\n"
1053 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1054 >          painCave.isFatal = 0;
1055 >          simError();
1056 >          rsw_ = 0.85 * rcut_;
1057          }
1058 <
1059 <    } else {
1060 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
1061 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
1058 >        notifyFortranCutoffs(&rcut_, &rsw_);
1059 >      } else {
1060 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1061 >        // We'll punt and let fortran figure out the cutoffs later.
1062          
1063 <        if (simParams_->haveRcut()) {
794 <            rcut = simParams_->getRcut();
795 <        } else {
796 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
797 <            rcut = calcMaxCutoffRadius();
798 <        }
1063 >        notifyFortranYouAreOnYourOwn();
1064  
1065 <        if (simParams_->haveRsw()) {
801 <            rsw  = simParams_->getRsw();
802 <        } else {
803 <            rsw = rcut;
804 <        }
805 <    
1065 >      }
1066      }
1067 < }
1067 >  }
1068  
1069 < void SimInfo::setupCutoff() {
1070 <    getCutoff(rcut_, rsw_);    
1071 <    double rnblist = rcut_ + 1; // skin of neighbor list
1069 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1070 >    
1071 >    int errorOut;
1072 >    int esm =  NONE;
1073 >    int sm = UNDAMPED;
1074 >    RealType alphaVal;
1075 >    RealType dielectric;
1076 >    
1077 >    errorOut = isError;
1078 >    dielectric = simParams_->getDielectric();
1079  
1080 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
1081 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
1082 < }
1080 >    if (simParams_->haveElectrostaticSummationMethod()) {
1081 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1082 >      toUpper(myMethod);
1083 >      if (myMethod == "NONE") {
1084 >        esm = NONE;
1085 >      } else {
1086 >        if (myMethod == "SWITCHING_FUNCTION") {
1087 >          esm = SWITCHING_FUNCTION;
1088 >        } else {
1089 >          if (myMethod == "SHIFTED_POTENTIAL") {
1090 >            esm = SHIFTED_POTENTIAL;
1091 >          } else {
1092 >            if (myMethod == "SHIFTED_FORCE") {            
1093 >              esm = SHIFTED_FORCE;
1094 >            } else {
1095 >              if (myMethod == "REACTION_FIELD") {            
1096 >                esm = REACTION_FIELD;
1097 >              } else {
1098 >                // throw error        
1099 >                sprintf( painCave.errMsg,
1100 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1101 >                         "\t(Input file specified %s .)\n"
1102 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1103 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1104 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1105 >                painCave.isFatal = 1;
1106 >                simError();
1107 >              }    
1108 >            }          
1109 >          }
1110 >        }
1111 >      }
1112 >    }
1113 >    
1114 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1115 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1116 >      toUpper(myScreen);
1117 >      if (myScreen == "UNDAMPED") {
1118 >        sm = UNDAMPED;
1119 >      } else {
1120 >        if (myScreen == "DAMPED") {
1121 >          sm = DAMPED;
1122 >          if (!simParams_->haveDampingAlpha()) {
1123 >            // first set a cutoff dependent alpha value
1124 >            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1125 >            alphaVal = 0.5125 - rcut_* 0.025;
1126 >            // for values rcut > 20.5, alpha is zero
1127 >            if (alphaVal < 0) alphaVal = 0;
1128  
1129 < void SimInfo::addProperty(GenericData* genData) {
1130 <    properties_.addProperty(genData);  
1131 < }
1129 >            // throw warning
1130 >            sprintf( painCave.errMsg,
1131 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1132 >                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1133 >            painCave.isFatal = 0;
1134 >            simError();
1135 >          }
1136 >        } else {
1137 >          // throw error        
1138 >          sprintf( painCave.errMsg,
1139 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1140 >                   "\t(Input file specified %s .)\n"
1141 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1142 >                   "or \"damped\".\n", myScreen.c_str() );
1143 >          painCave.isFatal = 1;
1144 >          simError();
1145 >        }
1146 >      }
1147 >    }
1148 >    
1149 >    // let's pass some summation method variables to fortran
1150 >    setElectrostaticSummationMethod( &esm );
1151 >    setFortranElectrostaticMethod( &esm );
1152 >    setScreeningMethod( &sm );
1153 >    setDampingAlpha( &alphaVal );
1154 >    setReactionFieldDielectric( &dielectric );
1155 >    initFortranFF( &errorOut );
1156 >  }
1157  
1158 < void SimInfo::removeProperty(const std::string& propName) {
1159 <    properties_.removeProperty(propName);  
823 < }
1158 >  void SimInfo::setupSwitchingFunction() {    
1159 >    int ft = CUBIC;
1160  
1161 < void SimInfo::clearProperties() {
1161 >    if (simParams_->haveSwitchingFunctionType()) {
1162 >      std::string funcType = simParams_->getSwitchingFunctionType();
1163 >      toUpper(funcType);
1164 >      if (funcType == "CUBIC") {
1165 >        ft = CUBIC;
1166 >      } else {
1167 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1168 >          ft = FIFTH_ORDER_POLY;
1169 >        } else {
1170 >          // throw error        
1171 >          sprintf( painCave.errMsg,
1172 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1173 >          painCave.isFatal = 1;
1174 >          simError();
1175 >        }          
1176 >      }
1177 >    }
1178 >
1179 >    // send switching function notification to switcheroo
1180 >    setFunctionType(&ft);
1181 >
1182 >  }
1183 >
1184 >  void SimInfo::setupAccumulateBoxDipole() {    
1185 >
1186 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1187 >    if ( simParams_->haveAccumulateBoxDipole() )
1188 >      if ( simParams_->getAccumulateBoxDipole() ) {
1189 >        setAccumulateBoxDipole();
1190 >        calcBoxDipole_ = true;
1191 >      }
1192 >
1193 >  }
1194 >
1195 >  void SimInfo::addProperty(GenericData* genData) {
1196 >    properties_.addProperty(genData);  
1197 >  }
1198 >
1199 >  void SimInfo::removeProperty(const std::string& propName) {
1200 >    properties_.removeProperty(propName);  
1201 >  }
1202 >
1203 >  void SimInfo::clearProperties() {
1204      properties_.clearProperties();
1205 < }
1205 >  }
1206  
1207 < std::vector<std::string> SimInfo::getPropertyNames() {
1207 >  std::vector<std::string> SimInfo::getPropertyNames() {
1208      return properties_.getPropertyNames();  
1209 < }
1209 >  }
1210        
1211 < std::vector<GenericData*> SimInfo::getProperties() {
1211 >  std::vector<GenericData*> SimInfo::getProperties() {
1212      return properties_.getProperties();
1213 < }
1213 >  }
1214  
1215 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1215 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1216      return properties_.getPropertyByName(propName);
1217 < }
1217 >  }
1218  
1219 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1220 <    //if (sman_ == sman_) {
1221 <    //    return;
1222 <    //}
1223 <    
846 <    //delete sman_;
1219 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1220 >    if (sman_ == sman) {
1221 >      return;
1222 >    }    
1223 >    delete sman_;
1224      sman_ = sman;
1225  
1226      Molecule* mol;
# Line 855 | Line 1232 | void SimInfo::setSnapshotManager(SnapshotManager* sman
1232  
1233      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1234          
1235 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1236 <            atom->setSnapshotManager(sman_);
1237 <        }
1235 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1236 >        atom->setSnapshotManager(sman_);
1237 >      }
1238          
1239 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1240 <            rb->setSnapshotManager(sman_);
1241 <        }
1239 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1240 >        rb->setSnapshotManager(sman_);
1241 >      }
1242      }    
1243      
1244 < }
1244 >  }
1245  
1246 < Vector3d SimInfo::getComVel(){
1246 >  Vector3d SimInfo::getComVel(){
1247      SimInfo::MoleculeIterator i;
1248      Molecule* mol;
1249  
1250      Vector3d comVel(0.0);
1251 <    double totalMass = 0.0;
1251 >    RealType totalMass = 0.0;
1252      
1253  
1254      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1255 <        double mass = mol->getMass();
1256 <        totalMass += mass;
1257 <        comVel += mass * mol->getComVel();
1255 >      RealType mass = mol->getMass();
1256 >      totalMass += mass;
1257 >      comVel += mass * mol->getComVel();
1258      }  
1259  
1260   #ifdef IS_MPI
1261 <    double tmpMass = totalMass;
1261 >    RealType tmpMass = totalMass;
1262      Vector3d tmpComVel(comVel);    
1263 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1264 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1263 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1264 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1265   #endif
1266  
1267      comVel /= totalMass;
1268  
1269      return comVel;
1270 < }
1270 >  }
1271  
1272 < Vector3d SimInfo::getCom(){
1272 >  Vector3d SimInfo::getCom(){
1273      SimInfo::MoleculeIterator i;
1274      Molecule* mol;
1275  
1276      Vector3d com(0.0);
1277 <    double totalMass = 0.0;
1277 >    RealType totalMass = 0.0;
1278      
1279      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1280 <        double mass = mol->getMass();
1281 <        totalMass += mass;
1282 <        com += mass * mol->getCom();
1280 >      RealType mass = mol->getMass();
1281 >      totalMass += mass;
1282 >      com += mass * mol->getCom();
1283      }  
1284  
1285   #ifdef IS_MPI
1286 <    double tmpMass = totalMass;
1286 >    RealType tmpMass = totalMass;
1287      Vector3d tmpCom(com);    
1288 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1289 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1288 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1289 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1290   #endif
1291  
1292      com /= totalMass;
1293  
1294      return com;
1295  
1296 < }        
1296 >  }        
1297  
1298 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1298 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1299  
1300      return o;
1301 < }
1301 >  }
1302 >  
1303 >  
1304 >   /*
1305 >   Returns center of mass and center of mass velocity in one function call.
1306 >   */
1307 >  
1308 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1309 >      SimInfo::MoleculeIterator i;
1310 >      Molecule* mol;
1311 >      
1312 >    
1313 >      RealType totalMass = 0.0;
1314 >    
1315  
1316 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1317 +         RealType mass = mol->getMass();
1318 +         totalMass += mass;
1319 +         com += mass * mol->getCom();
1320 +         comVel += mass * mol->getComVel();          
1321 +      }  
1322 +      
1323 + #ifdef IS_MPI
1324 +      RealType tmpMass = totalMass;
1325 +      Vector3d tmpCom(com);  
1326 +      Vector3d tmpComVel(comVel);
1327 +      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1328 +      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1329 +      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1330 + #endif
1331 +      
1332 +      com /= totalMass;
1333 +      comVel /= totalMass;
1334 +   }        
1335 +  
1336 +   /*
1337 +   Return intertia tensor for entire system and angular momentum Vector.
1338 +
1339 +
1340 +       [  Ixx -Ixy  -Ixz ]
1341 +  J =| -Iyx  Iyy  -Iyz |
1342 +       [ -Izx -Iyz   Izz ]
1343 +    */
1344 +
1345 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1346 +      
1347 +
1348 +      RealType xx = 0.0;
1349 +      RealType yy = 0.0;
1350 +      RealType zz = 0.0;
1351 +      RealType xy = 0.0;
1352 +      RealType xz = 0.0;
1353 +      RealType yz = 0.0;
1354 +      Vector3d com(0.0);
1355 +      Vector3d comVel(0.0);
1356 +      
1357 +      getComAll(com, comVel);
1358 +      
1359 +      SimInfo::MoleculeIterator i;
1360 +      Molecule* mol;
1361 +      
1362 +      Vector3d thisq(0.0);
1363 +      Vector3d thisv(0.0);
1364 +
1365 +      RealType thisMass = 0.0;
1366 +    
1367 +      
1368 +      
1369 +  
1370 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1371 +        
1372 +         thisq = mol->getCom()-com;
1373 +         thisv = mol->getComVel()-comVel;
1374 +         thisMass = mol->getMass();
1375 +         // Compute moment of intertia coefficients.
1376 +         xx += thisq[0]*thisq[0]*thisMass;
1377 +         yy += thisq[1]*thisq[1]*thisMass;
1378 +         zz += thisq[2]*thisq[2]*thisMass;
1379 +        
1380 +         // compute products of intertia
1381 +         xy += thisq[0]*thisq[1]*thisMass;
1382 +         xz += thisq[0]*thisq[2]*thisMass;
1383 +         yz += thisq[1]*thisq[2]*thisMass;
1384 +            
1385 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1386 +            
1387 +      }  
1388 +      
1389 +      
1390 +      inertiaTensor(0,0) = yy + zz;
1391 +      inertiaTensor(0,1) = -xy;
1392 +      inertiaTensor(0,2) = -xz;
1393 +      inertiaTensor(1,0) = -xy;
1394 +      inertiaTensor(1,1) = xx + zz;
1395 +      inertiaTensor(1,2) = -yz;
1396 +      inertiaTensor(2,0) = -xz;
1397 +      inertiaTensor(2,1) = -yz;
1398 +      inertiaTensor(2,2) = xx + yy;
1399 +      
1400 + #ifdef IS_MPI
1401 +      Mat3x3d tmpI(inertiaTensor);
1402 +      Vector3d tmpAngMom;
1403 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1404 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1405 + #endif
1406 +              
1407 +      return;
1408 +   }
1409 +
1410 +   //Returns the angular momentum of the system
1411 +   Vector3d SimInfo::getAngularMomentum(){
1412 +      
1413 +      Vector3d com(0.0);
1414 +      Vector3d comVel(0.0);
1415 +      Vector3d angularMomentum(0.0);
1416 +      
1417 +      getComAll(com,comVel);
1418 +      
1419 +      SimInfo::MoleculeIterator i;
1420 +      Molecule* mol;
1421 +      
1422 +      Vector3d thisr(0.0);
1423 +      Vector3d thisp(0.0);
1424 +      
1425 +      RealType thisMass;
1426 +      
1427 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1428 +        thisMass = mol->getMass();
1429 +        thisr = mol->getCom()-com;
1430 +        thisp = (mol->getComVel()-comVel)*thisMass;
1431 +        
1432 +        angularMomentum += cross( thisr, thisp );
1433 +        
1434 +      }  
1435 +      
1436 + #ifdef IS_MPI
1437 +      Vector3d tmpAngMom;
1438 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1439 + #endif
1440 +      
1441 +      return angularMomentum;
1442 +   }
1443 +  
1444 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1445 +    return IOIndexToIntegrableObject.at(index);
1446 +  }
1447 +  
1448 +  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1449 +    IOIndexToIntegrableObject= v;
1450 +  }
1451 +
1452 + /*
1453 +   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1454 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1455 +      sdByGlobalIndex_ = v;
1456 +    }
1457 +
1458 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1459 +      //assert(index < nAtoms_ + nRigidBodies_);
1460 +      return sdByGlobalIndex_.at(index);
1461 +    }  
1462 + */  
1463   }//end namespace oopse
1464  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines