ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 749 by tim, Wed Nov 16 23:10:02 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1465 by chuckv, Fri Jul 9 23:08:25 2010 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 53 | Line 53
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57   #include "UseTheForce/fCutoffPolicy.h"
58   #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59   #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60   #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61   #include "UseTheForce/doForces_interface.h"
62 + #include "UseTheForce/DarkSide/neighborLists_interface.h"
63   #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 #include "UseTheForce/notifyCutoffs_interface.h"
64   #include "UseTheForce/DarkSide/switcheroo_interface.h"
65   #include "utils/MemoryUtils.hpp"
66   #include "utils/simError.h"
67   #include "selection/SelectionManager.hpp"
68 + #include "io/ForceFieldOptions.hpp"
69 + #include "UseTheForce/ForceField.hpp"
70  
71 +
72   #ifdef IS_MPI
73   #include "UseTheForce/mpiComponentPlan.h"
74   #include "UseTheForce/DarkSide/simParallel_interface.h"
75   #endif
76  
77 < namespace oopse {
77 > namespace OpenMD {
78    std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79      std::map<int, std::set<int> >::iterator i = container.find(index);
80      std::set<int> result;
# Line 81 | Line 85 | namespace oopse {
85      return result;
86    }
87    
88 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
89 <                   ForceField* ff, Globals* simParams) :
90 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
87 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
88 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
89 >    forceField_(ff), simParams_(simParams),
90 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
94 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
95 <    sman_(NULL), fortranInitialized_(false) {
93 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
94 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
95 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
96 >    calcBoxDipole_(false), useAtomicVirial_(true) {
97  
98 <            
95 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
98 >
99        MoleculeStamp* molStamp;
100        int nMolWithSameStamp;
101        int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
# Line 100 | Line 103 | namespace oopse {
103        CutoffGroupStamp* cgStamp;    
104        RigidBodyStamp* rbStamp;
105        int nRigidAtoms = 0;
106 <    
107 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
108 <        molStamp = i->first;
109 <        nMolWithSameStamp = i->second;
106 >
107 >      std::vector<Component*> components = simParams->getComponents();
108 >      
109 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
110 >        molStamp = (*i)->getMoleculeStamp();
111 >        nMolWithSameStamp = (*i)->getNMol();
112          
113          addMoleculeStamp(molStamp, nMolWithSameStamp);
114  
115          //calculate atoms in molecules
116          nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
117  
113
118          //calculate atoms in cutoff groups
119          int nAtomsInGroups = 0;
120          int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
121          
122          for (int j=0; j < nCutoffGroupsInStamp; j++) {
123 <          cgStamp = molStamp->getCutoffGroup(j);
123 >          cgStamp = molStamp->getCutoffGroupStamp(j);
124            nAtomsInGroups += cgStamp->getNMembers();
125          }
126  
# Line 129 | Line 133 | namespace oopse {
133          int nRigidBodiesInStamp = molStamp->getNRigidBodies();
134          
135          for (int j=0; j < nRigidBodiesInStamp; j++) {
136 <          rbStamp = molStamp->getRigidBody(j);
136 >          rbStamp = molStamp->getRigidBodyStamp(j);
137            nAtomsInRigidBodies += rbStamp->getNMembers();
138          }
139  
# Line 154 | Line 158 | namespace oopse {
158                                                  + nGlobalRigidBodies_;
159    
160        nGlobalMols_ = molStampIds_.size();
157
158 #ifdef IS_MPI    
161        molToProcMap_.resize(nGlobalMols_);
160 #endif
161
162      }
163  
164    SimInfo::~SimInfo() {
# Line 168 | Line 168 | namespace oopse {
168      }
169      molecules_.clear();
170        
171    delete stamps_;
171      delete sman_;
172      delete simParams_;
173      delete forceField_;
# Line 197 | Line 196 | namespace oopse {
196        nBonds_ += mol->getNBonds();
197        nBends_ += mol->getNBends();
198        nTorsions_ += mol->getNTorsions();
199 +      nInversions_ += mol->getNInversions();
200        nRigidBodies_ += mol->getNRigidBodies();
201        nIntegrableObjects_ += mol->getNIntegrableObjects();
202        nCutoffGroups_ += mol->getNCutoffGroups();
203        nConstraints_ += mol->getNConstraintPairs();
204  
205 <      addExcludePairs(mol);
206 <        
205 >      addInteractionPairs(mol);
206 >  
207        return true;
208      } else {
209        return false;
# Line 222 | Line 222 | namespace oopse {
222        nBonds_ -= mol->getNBonds();
223        nBends_ -= mol->getNBends();
224        nTorsions_ -= mol->getNTorsions();
225 +      nInversions_ -= mol->getNInversions();
226        nRigidBodies_ -= mol->getNRigidBodies();
227        nIntegrableObjects_ -= mol->getNIntegrableObjects();
228        nCutoffGroups_ -= mol->getNCutoffGroups();
229        nConstraints_ -= mol->getNConstraintPairs();
230  
231 <      removeExcludePairs(mol);
231 >      removeInteractionPairs(mol);
232        molecules_.erase(mol->getGlobalIndex());
233  
234        delete mol;
# Line 275 | Line 276 | namespace oopse {
276            }
277          }
278              
279 <      }//end for (integrableObject)
280 <    }// end for (mol)
279 >      }
280 >    }
281      
282      // n_constraints is local, so subtract them on each processor
283      ndf_local -= nConstraints_;
# Line 293 | Line 294 | namespace oopse {
294  
295    }
296  
297 +  int SimInfo::getFdf() {
298 + #ifdef IS_MPI
299 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
300 + #else
301 +    fdf_ = fdf_local;
302 + #endif
303 +    return fdf_;
304 +  }
305 +    
306    void SimInfo::calcNdfRaw() {
307      int ndfRaw_local;
308  
# Line 344 | Line 354 | namespace oopse {
354  
355    }
356  
357 <  void SimInfo::addExcludePairs(Molecule* mol) {
357 >  void SimInfo::addInteractionPairs(Molecule* mol) {
358 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
359      std::vector<Bond*>::iterator bondIter;
360      std::vector<Bend*>::iterator bendIter;
361      std::vector<Torsion*>::iterator torsionIter;
362 +    std::vector<Inversion*>::iterator inversionIter;
363      Bond* bond;
364      Bend* bend;
365      Torsion* torsion;
366 +    Inversion* inversion;
367      int a;
368      int b;
369      int c;
370      int d;
371  
372 <    std::map<int, std::set<int> > atomGroups;
372 >    // atomGroups can be used to add special interaction maps between
373 >    // groups of atoms that are in two separate rigid bodies.
374 >    // However, most site-site interactions between two rigid bodies
375 >    // are probably not special, just the ones between the physically
376 >    // bonded atoms.  Interactions *within* a single rigid body should
377 >    // always be excluded.  These are done at the bottom of this
378 >    // function.
379  
380 +    std::map<int, std::set<int> > atomGroups;
381      Molecule::RigidBodyIterator rbIter;
382      RigidBody* rb;
383      Molecule::IntegrableObjectIterator ii;
384      StuntDouble* integrableObject;
385      
386 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
387 <           integrableObject = mol->nextIntegrableObject(ii)) {
388 <
386 >    for (integrableObject = mol->beginIntegrableObject(ii);
387 >         integrableObject != NULL;
388 >         integrableObject = mol->nextIntegrableObject(ii)) {
389 >      
390        if (integrableObject->isRigidBody()) {
391 <          rb = static_cast<RigidBody*>(integrableObject);
392 <          std::vector<Atom*> atoms = rb->getAtoms();
393 <          std::set<int> rigidAtoms;
394 <          for (int i = 0; i < atoms.size(); ++i) {
395 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
396 <          }
397 <          for (int i = 0; i < atoms.size(); ++i) {
398 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
399 <          }      
391 >        rb = static_cast<RigidBody*>(integrableObject);
392 >        std::vector<Atom*> atoms = rb->getAtoms();
393 >        std::set<int> rigidAtoms;
394 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
395 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
396 >        }
397 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
398 >          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
399 >        }      
400        } else {
401          std::set<int> oneAtomSet;
402          oneAtomSet.insert(integrableObject->getGlobalIndex());
403          atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
404        }
405      }  
406 +          
407 +    for (bond= mol->beginBond(bondIter); bond != NULL;
408 +         bond = mol->nextBond(bondIter)) {
409  
386    
387    
388    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
410        a = bond->getAtomA()->getGlobalIndex();
411 <      b = bond->getAtomB()->getGlobalIndex();        
412 <      exclude_.addPair(a, b);
411 >      b = bond->getAtomB()->getGlobalIndex();  
412 >    
413 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
414 >        oneTwoInteractions_.addPair(a, b);
415 >      } else {
416 >        excludedInteractions_.addPair(a, b);
417 >      }
418      }
419  
420 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
420 >    for (bend= mol->beginBend(bendIter); bend != NULL;
421 >         bend = mol->nextBend(bendIter)) {
422 >
423        a = bend->getAtomA()->getGlobalIndex();
424        b = bend->getAtomB()->getGlobalIndex();        
425        c = bend->getAtomC()->getGlobalIndex();
398      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
399      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
400      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
401
402      exclude_.addPairs(rigidSetA, rigidSetB);
403      exclude_.addPairs(rigidSetA, rigidSetC);
404      exclude_.addPairs(rigidSetB, rigidSetC);
426        
427 <      //exclude_.addPair(a, b);
428 <      //exclude_.addPair(a, c);
429 <      //exclude_.addPair(b, c);        
427 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
428 >        oneTwoInteractions_.addPair(a, b);      
429 >        oneTwoInteractions_.addPair(b, c);
430 >      } else {
431 >        excludedInteractions_.addPair(a, b);
432 >        excludedInteractions_.addPair(b, c);
433 >      }
434 >
435 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
436 >        oneThreeInteractions_.addPair(a, c);      
437 >      } else {
438 >        excludedInteractions_.addPair(a, c);
439 >      }
440      }
441  
442 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
442 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
443 >         torsion = mol->nextTorsion(torsionIter)) {
444 >
445        a = torsion->getAtomA()->getGlobalIndex();
446        b = torsion->getAtomB()->getGlobalIndex();        
447        c = torsion->getAtomC()->getGlobalIndex();        
448 <      d = torsion->getAtomD()->getGlobalIndex();        
416 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
417 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
418 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
419 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
448 >      d = torsion->getAtomD()->getGlobalIndex();      
449  
450 <      exclude_.addPairs(rigidSetA, rigidSetB);
451 <      exclude_.addPairs(rigidSetA, rigidSetC);
452 <      exclude_.addPairs(rigidSetA, rigidSetD);
453 <      exclude_.addPairs(rigidSetB, rigidSetC);
454 <      exclude_.addPairs(rigidSetB, rigidSetD);
455 <      exclude_.addPairs(rigidSetC, rigidSetD);
450 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
451 >        oneTwoInteractions_.addPair(a, b);      
452 >        oneTwoInteractions_.addPair(b, c);
453 >        oneTwoInteractions_.addPair(c, d);
454 >      } else {
455 >        excludedInteractions_.addPair(a, b);
456 >        excludedInteractions_.addPair(b, c);
457 >        excludedInteractions_.addPair(c, d);
458 >      }
459  
460 <      /*
461 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
462 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
463 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
464 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
465 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
466 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
467 <        
468 <      
469 <      exclude_.addPair(a, b);
470 <      exclude_.addPair(a, c);
471 <      exclude_.addPair(a, d);
472 <      exclude_.addPair(b, c);
441 <      exclude_.addPair(b, d);
442 <      exclude_.addPair(c, d);        
443 <      */
460 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
461 >        oneThreeInteractions_.addPair(a, c);      
462 >        oneThreeInteractions_.addPair(b, d);      
463 >      } else {
464 >        excludedInteractions_.addPair(a, c);
465 >        excludedInteractions_.addPair(b, d);
466 >      }
467 >
468 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
469 >        oneFourInteractions_.addPair(a, d);      
470 >      } else {
471 >        excludedInteractions_.addPair(a, d);
472 >      }
473      }
474  
475 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
475 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
476 >         inversion = mol->nextInversion(inversionIter)) {
477 >
478 >      a = inversion->getAtomA()->getGlobalIndex();
479 >      b = inversion->getAtomB()->getGlobalIndex();        
480 >      c = inversion->getAtomC()->getGlobalIndex();        
481 >      d = inversion->getAtomD()->getGlobalIndex();        
482 >
483 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
484 >        oneTwoInteractions_.addPair(a, b);      
485 >        oneTwoInteractions_.addPair(a, c);
486 >        oneTwoInteractions_.addPair(a, d);
487 >      } else {
488 >        excludedInteractions_.addPair(a, b);
489 >        excludedInteractions_.addPair(a, c);
490 >        excludedInteractions_.addPair(a, d);
491 >      }
492 >
493 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
494 >        oneThreeInteractions_.addPair(b, c);    
495 >        oneThreeInteractions_.addPair(b, d);    
496 >        oneThreeInteractions_.addPair(c, d);      
497 >      } else {
498 >        excludedInteractions_.addPair(b, c);
499 >        excludedInteractions_.addPair(b, d);
500 >        excludedInteractions_.addPair(c, d);
501 >      }
502 >    }
503 >
504 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
505 >         rb = mol->nextRigidBody(rbIter)) {
506        std::vector<Atom*> atoms = rb->getAtoms();
507 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
508 <        for (int j = i + 1; j < atoms.size(); ++j) {
507 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
508 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
509            a = atoms[i]->getGlobalIndex();
510            b = atoms[j]->getGlobalIndex();
511 <          exclude_.addPair(a, b);
511 >          excludedInteractions_.addPair(a, b);
512          }
513        }
514      }        
515  
516    }
517  
518 <  void SimInfo::removeExcludePairs(Molecule* mol) {
518 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
519 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
520      std::vector<Bond*>::iterator bondIter;
521      std::vector<Bend*>::iterator bendIter;
522      std::vector<Torsion*>::iterator torsionIter;
523 +    std::vector<Inversion*>::iterator inversionIter;
524      Bond* bond;
525      Bend* bend;
526      Torsion* torsion;
527 +    Inversion* inversion;
528      int a;
529      int b;
530      int c;
531      int d;
532  
533      std::map<int, std::set<int> > atomGroups;
472
534      Molecule::RigidBodyIterator rbIter;
535      RigidBody* rb;
536      Molecule::IntegrableObjectIterator ii;
537      StuntDouble* integrableObject;
538      
539 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
540 <           integrableObject = mol->nextIntegrableObject(ii)) {
541 <
539 >    for (integrableObject = mol->beginIntegrableObject(ii);
540 >         integrableObject != NULL;
541 >         integrableObject = mol->nextIntegrableObject(ii)) {
542 >      
543        if (integrableObject->isRigidBody()) {
544 <          rb = static_cast<RigidBody*>(integrableObject);
545 <          std::vector<Atom*> atoms = rb->getAtoms();
546 <          std::set<int> rigidAtoms;
547 <          for (int i = 0; i < atoms.size(); ++i) {
548 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
549 <          }
550 <          for (int i = 0; i < atoms.size(); ++i) {
551 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
552 <          }      
544 >        rb = static_cast<RigidBody*>(integrableObject);
545 >        std::vector<Atom*> atoms = rb->getAtoms();
546 >        std::set<int> rigidAtoms;
547 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
548 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
549 >        }
550 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
551 >          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
552 >        }      
553        } else {
554          std::set<int> oneAtomSet;
555          oneAtomSet.insert(integrableObject->getGlobalIndex());
# Line 495 | Line 557 | namespace oopse {
557        }
558      }  
559  
560 <    
561 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
560 >    for (bond= mol->beginBond(bondIter); bond != NULL;
561 >         bond = mol->nextBond(bondIter)) {
562 >      
563        a = bond->getAtomA()->getGlobalIndex();
564 <      b = bond->getAtomB()->getGlobalIndex();        
565 <      exclude_.removePair(a, b);
564 >      b = bond->getAtomB()->getGlobalIndex();  
565 >    
566 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
567 >        oneTwoInteractions_.removePair(a, b);
568 >      } else {
569 >        excludedInteractions_.removePair(a, b);
570 >      }
571      }
572  
573 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
573 >    for (bend= mol->beginBend(bendIter); bend != NULL;
574 >         bend = mol->nextBend(bendIter)) {
575 >
576        a = bend->getAtomA()->getGlobalIndex();
577        b = bend->getAtomB()->getGlobalIndex();        
578        c = bend->getAtomC()->getGlobalIndex();
509
510      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
511      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
512      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
513
514      exclude_.removePairs(rigidSetA, rigidSetB);
515      exclude_.removePairs(rigidSetA, rigidSetC);
516      exclude_.removePairs(rigidSetB, rigidSetC);
579        
580 <      //exclude_.removePair(a, b);
581 <      //exclude_.removePair(a, c);
582 <      //exclude_.removePair(b, c);        
580 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
581 >        oneTwoInteractions_.removePair(a, b);      
582 >        oneTwoInteractions_.removePair(b, c);
583 >      } else {
584 >        excludedInteractions_.removePair(a, b);
585 >        excludedInteractions_.removePair(b, c);
586 >      }
587 >
588 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
589 >        oneThreeInteractions_.removePair(a, c);      
590 >      } else {
591 >        excludedInteractions_.removePair(a, c);
592 >      }
593      }
594  
595 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
595 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
596 >         torsion = mol->nextTorsion(torsionIter)) {
597 >
598        a = torsion->getAtomA()->getGlobalIndex();
599        b = torsion->getAtomB()->getGlobalIndex();        
600        c = torsion->getAtomC()->getGlobalIndex();        
601 <      d = torsion->getAtomD()->getGlobalIndex();        
601 >      d = torsion->getAtomD()->getGlobalIndex();      
602 >  
603 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
604 >        oneTwoInteractions_.removePair(a, b);      
605 >        oneTwoInteractions_.removePair(b, c);
606 >        oneTwoInteractions_.removePair(c, d);
607 >      } else {
608 >        excludedInteractions_.removePair(a, b);
609 >        excludedInteractions_.removePair(b, c);
610 >        excludedInteractions_.removePair(c, d);
611 >      }
612  
613 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
614 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
615 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
616 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
617 <
618 <      exclude_.removePairs(rigidSetA, rigidSetB);
619 <      exclude_.removePairs(rigidSetA, rigidSetC);
536 <      exclude_.removePairs(rigidSetA, rigidSetD);
537 <      exclude_.removePairs(rigidSetB, rigidSetC);
538 <      exclude_.removePairs(rigidSetB, rigidSetD);
539 <      exclude_.removePairs(rigidSetC, rigidSetD);
613 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
614 >        oneThreeInteractions_.removePair(a, c);      
615 >        oneThreeInteractions_.removePair(b, d);      
616 >      } else {
617 >        excludedInteractions_.removePair(a, c);
618 >        excludedInteractions_.removePair(b, d);
619 >      }
620  
621 <      /*
622 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
623 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
624 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
625 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
626 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
547 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
621 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
622 >        oneFourInteractions_.removePair(a, d);      
623 >      } else {
624 >        excludedInteractions_.removePair(a, d);
625 >      }
626 >    }
627  
628 <      
629 <      exclude_.removePair(a, b);
630 <      exclude_.removePair(a, c);
631 <      exclude_.removePair(a, d);
632 <      exclude_.removePair(b, c);
633 <      exclude_.removePair(b, d);
634 <      exclude_.removePair(c, d);        
635 <      */
628 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
629 >         inversion = mol->nextInversion(inversionIter)) {
630 >
631 >      a = inversion->getAtomA()->getGlobalIndex();
632 >      b = inversion->getAtomB()->getGlobalIndex();        
633 >      c = inversion->getAtomC()->getGlobalIndex();        
634 >      d = inversion->getAtomD()->getGlobalIndex();        
635 >
636 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
637 >        oneTwoInteractions_.removePair(a, b);      
638 >        oneTwoInteractions_.removePair(a, c);
639 >        oneTwoInteractions_.removePair(a, d);
640 >      } else {
641 >        excludedInteractions_.removePair(a, b);
642 >        excludedInteractions_.removePair(a, c);
643 >        excludedInteractions_.removePair(a, d);
644 >      }
645 >
646 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
647 >        oneThreeInteractions_.removePair(b, c);    
648 >        oneThreeInteractions_.removePair(b, d);    
649 >        oneThreeInteractions_.removePair(c, d);      
650 >      } else {
651 >        excludedInteractions_.removePair(b, c);
652 >        excludedInteractions_.removePair(b, d);
653 >        excludedInteractions_.removePair(c, d);
654 >      }
655      }
656  
657 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
657 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
658 >         rb = mol->nextRigidBody(rbIter)) {
659        std::vector<Atom*> atoms = rb->getAtoms();
660 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
661 <        for (int j = i + 1; j < atoms.size(); ++j) {
660 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
661 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
662            a = atoms[i]->getGlobalIndex();
663            b = atoms[j]->getGlobalIndex();
664 <          exclude_.removePair(a, b);
664 >          excludedInteractions_.removePair(a, b);
665          }
666        }
667      }        
668 <
668 >    
669    }
670 <
671 <
670 >  
671 >  
672    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
673      int curStampId;
674 <
674 >    
675      //index from 0
676      curStampId = moleculeStamps_.size();
677  
# Line 594 | Line 693 | namespace oopse {
693      /** @deprecate */    
694      int isError = 0;
695      
696 +    setupCutoff();
697 +    
698      setupElectrostaticSummationMethod( isError );
699      setupSwitchingFunction();
700 +    setupAccumulateBoxDipole();
701  
702      if(isError){
703        sprintf( painCave.errMsg,
# Line 603 | Line 705 | namespace oopse {
705        painCave.isFatal = 1;
706        simError();
707      }
606  
607    
608    setupCutoff();
708  
709      calcNdf();
710      calcNdfRaw();
# Line 655 | Line 754 | namespace oopse {
754      int usePBC = simParams_->getUsePeriodicBoundaryConditions();
755      int useRF;
756      int useSF;
757 +    int useSP;
758 +    int useBoxDipole;
759 +
760      std::string myMethod;
761  
762      // set the useRF logical
763      useRF = 0;
764      useSF = 0;
765 +    useSP = 0;
766 +    useBoxDipole = 0;
767  
768  
769      if (simParams_->haveElectrostaticSummationMethod()) {
770        std::string myMethod = simParams_->getElectrostaticSummationMethod();
771        toUpper(myMethod);
772 <      if (myMethod == "REACTION_FIELD") {
773 <        useRF=1;
774 <      } else {
775 <        if (myMethod == "SHIFTED_FORCE") {
776 <          useSF = 1;
777 <        }
772 >      if (myMethod == "REACTION_FIELD"){
773 >        useRF = 1;
774 >      } else if (myMethod == "SHIFTED_FORCE"){
775 >        useSF = 1;
776 >      } else if (myMethod == "SHIFTED_POTENTIAL"){
777 >        useSP = 1;
778        }
779      }
780 +    
781 +    if (simParams_->haveAccumulateBoxDipole())
782 +      if (simParams_->getAccumulateBoxDipole())
783 +        useBoxDipole = 1;
784  
785 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
786 +
787      //loop over all of the atom types
788      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
789        useLennardJones |= (*i)->isLennardJones();
# Line 743 | Line 853 | namespace oopse {
853      MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
854  
855      temp = useSF;
856 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
856 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
857  
858 +    temp = useSP;
859 +    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
860 +
861 +    temp = useBoxDipole;
862 +    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
863 +
864 +    temp = useAtomicVirial_;
865 +    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
866 +
867   #endif
868  
869      fInfo_.SIM_uses_PBC = usePBC;    
# Line 762 | Line 881 | namespace oopse {
881      fInfo_.SIM_uses_FLARB = useFLARB;
882      fInfo_.SIM_uses_RF = useRF;
883      fInfo_.SIM_uses_SF = useSF;
884 <
885 <    if( myMethod == "REACTION_FIELD") {
886 <      
768 <      if (simParams_->haveDielectric()) {
769 <        fInfo_.dielect = simParams_->getDielectric();
770 <      } else {
771 <        sprintf(painCave.errMsg,
772 <                "SimSetup Error: No Dielectric constant was set.\n"
773 <                "\tYou are trying to use Reaction Field without"
774 <                "\tsetting a dielectric constant!\n");
775 <        painCave.isFatal = 1;
776 <        simError();
777 <      }      
778 <    }
779 <
884 >    fInfo_.SIM_uses_SP = useSP;
885 >    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
886 >    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
887    }
888  
889    void SimInfo::setupFortranSim() {
890      int isError;
891 <    int nExclude;
891 >    int nExclude, nOneTwo, nOneThree, nOneFour;
892      std::vector<int> fortranGlobalGroupMembership;
893      
787    nExclude = exclude_.getSize();
894      isError = 0;
895  
896      //globalGroupMembership_ is filled by SimCreator    
# Line 793 | Line 899 | namespace oopse {
899      }
900  
901      //calculate mass ratio of cutoff group
902 <    std::vector<double> mfact;
902 >    std::vector<RealType> mfact;
903      SimInfo::MoleculeIterator mi;
904      Molecule* mol;
905      Molecule::CutoffGroupIterator ci;
906      CutoffGroup* cg;
907      Molecule::AtomIterator ai;
908      Atom* atom;
909 <    double totalMass;
909 >    RealType totalMass;
910  
911      //to avoid memory reallocation, reserve enough space for mfact
912      mfact.reserve(getNCutoffGroups());
# Line 816 | Line 922 | namespace oopse {
922            else
923              mfact.push_back( 1.0 );
924          }
819
925        }      
926      }
927  
# Line 840 | Line 945 | namespace oopse {
945      }
946      
947      //setup fortran simulation
843    int nGlobalExcludes = 0;
844    int* globalExcludes = NULL;
845    int* excludeList = exclude_.getExcludeList();
846    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
847                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
848                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
948  
949 <    if( isError ){
949 >    nExclude = excludedInteractions_.getSize();
950 >    nOneTwo = oneTwoInteractions_.getSize();
951 >    nOneThree = oneThreeInteractions_.getSize();
952 >    nOneFour = oneFourInteractions_.getSize();
953  
954 +    int* excludeList = excludedInteractions_.getPairList();
955 +    int* oneTwoList = oneTwoInteractions_.getPairList();
956 +    int* oneThreeList = oneThreeInteractions_.getPairList();
957 +    int* oneFourList = oneFourInteractions_.getPairList();
958 +
959 +    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
960 +                   &nExclude, excludeList,
961 +                   &nOneTwo, oneTwoList,
962 +                   &nOneThree, oneThreeList,
963 +                   &nOneFour, oneFourList,
964 +                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
965 +                   &fortranGlobalGroupMembership[0], &isError);
966 +    
967 +    if( isError ){
968 +      
969        sprintf( painCave.errMsg,
970                 "There was an error setting the simulation information in fortran.\n" );
971        painCave.isFatal = 1;
972 <      painCave.severity = OOPSE_ERROR;
972 >      painCave.severity = OPENMD_ERROR;
973        simError();
974      }
975 <
976 < #ifdef IS_MPI
975 >    
976 >    
977      sprintf( checkPointMsg,
978               "succesfully sent the simulation information to fortran.\n");
979 <    MPIcheckPoint();
980 < #endif // is_mpi
979 >    
980 >    errorCheckPoint();
981 >    
982 >    // Setup number of neighbors in neighbor list if present
983 >    if (simParams_->haveNeighborListNeighbors()) {
984 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
985 >      setNeighbors(&nlistNeighbors);
986 >    }
987 >  
988 >
989    }
990  
991  
867 #ifdef IS_MPI
992    void SimInfo::setupFortranParallel() {
993 <    
993 > #ifdef IS_MPI    
994      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
995      std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
996      std::vector<int> localToGlobalCutoffGroupIndex;
# Line 916 | Line 1040 | namespace oopse {
1040      }
1041  
1042      sprintf(checkPointMsg, " mpiRefresh successful.\n");
1043 <    MPIcheckPoint();
1043 >    errorCheckPoint();
1044  
1045 <
1045 > #endif
1046    }
1047  
1048 < #endif
1048 >  void SimInfo::setupCutoff() {          
1049 >    
1050 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
1051  
1052 <  double SimInfo::calcMaxCutoffRadius() {
1052 >    // Check the cutoff policy
1053 >    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1054  
1055 +    // Set LJ shifting bools to false
1056 +    ljsp_ = 0;
1057 +    ljsf_ = 0;
1058  
1059 <    std::set<AtomType*> atomTypes;
1060 <    std::set<AtomType*>::iterator i;
1061 <    std::vector<double> cutoffRadius;
1062 <
1063 <    //get the unique atom types
934 <    atomTypes = getUniqueAtomTypes();
935 <
936 <    //query the max cutoff radius among these atom types
937 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
938 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
1059 >    std::string myPolicy;
1060 >    if (forceFieldOptions_.haveCutoffPolicy()){
1061 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
1062 >    }else if (simParams_->haveCutoffPolicy()) {
1063 >      myPolicy = simParams_->getCutoffPolicy();
1064      }
1065  
1066 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
942 < #ifdef IS_MPI
943 <    //pick the max cutoff radius among the processors
944 < #endif
945 <
946 <    return maxCutoffRadius;
947 <  }
948 <
949 <  void SimInfo::getCutoff(double& rcut, double& rsw) {
950 <    
951 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
952 <        
953 <      if (!simParams_->haveCutoffRadius()){
954 <        sprintf(painCave.errMsg,
955 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
956 <                "\tOOPSE will use a default value of 15.0 angstroms"
957 <                "\tfor the cutoffRadius.\n");
958 <        painCave.isFatal = 0;
959 <        simError();
960 <        rcut = 15.0;
961 <      } else{
962 <        rcut = simParams_->getCutoffRadius();
963 <      }
964 <
965 <      if (!simParams_->haveSwitchingRadius()){
966 <        sprintf(painCave.errMsg,
967 <                "SimCreator Warning: No value was set for switchingRadius.\n"
968 <                "\tOOPSE will use a default value of\n"
969 <                "\t0.85 * cutoffRadius for the switchingRadius\n");
970 <        painCave.isFatal = 0;
971 <        simError();
972 <        rsw = 0.85 * rcut;
973 <      } else{
974 <        rsw = simParams_->getSwitchingRadius();
975 <      }
976 <
977 <    } else {
978 <      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
979 <      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
980 <        
981 <      if (simParams_->haveCutoffRadius()) {
982 <        rcut = simParams_->getCutoffRadius();
983 <      } else {
984 <        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
985 <        rcut = calcMaxCutoffRadius();
986 <      }
987 <
988 <      if (simParams_->haveSwitchingRadius()) {
989 <        rsw  = simParams_->getSwitchingRadius();
990 <      } else {
991 <        rsw = rcut;
992 <      }
993 <    
994 <    }
995 <  }
996 <
997 <  void SimInfo::setupCutoff() {    
998 <    getCutoff(rcut_, rsw_);    
999 <    double rnblist = rcut_ + 1; // skin of neighbor list
1000 <
1001 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
1002 <    
1003 <    int cp =  TRADITIONAL_CUTOFF_POLICY;
1004 <    if (simParams_->haveCutoffPolicy()) {
1005 <      std::string myPolicy = simParams_->getCutoffPolicy();
1066 >    if (!myPolicy.empty()){
1067        toUpper(myPolicy);
1068        if (myPolicy == "MIX") {
1069          cp = MIX_CUTOFF_POLICY;
# Line 1021 | Line 1082 | namespace oopse {
1082            }    
1083          }          
1084        }
1085 <    }
1085 >    }          
1086 >    notifyFortranCutoffPolicy(&cp);
1087  
1088 <
1088 >    // Check the Skin Thickness for neighborlists
1089 >    RealType skin;
1090      if (simParams_->haveSkinThickness()) {
1091 <      double skinThickness = simParams_->getSkinThickness();
1092 <    }
1091 >      skin = simParams_->getSkinThickness();
1092 >      notifyFortranSkinThickness(&skin);
1093 >    }            
1094 >        
1095 >    // Check if the cutoff was set explicitly:
1096 >    if (simParams_->haveCutoffRadius()) {
1097 >      rcut_ = simParams_->getCutoffRadius();
1098 >      if (simParams_->haveSwitchingRadius()) {
1099 >        rsw_  = simParams_->getSwitchingRadius();
1100 >      } else {
1101 >        if (fInfo_.SIM_uses_Charges |
1102 >            fInfo_.SIM_uses_Dipoles |
1103 >            fInfo_.SIM_uses_RF) {
1104 >          
1105 >          rsw_ = 0.85 * rcut_;
1106 >          sprintf(painCave.errMsg,
1107 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1108 >                  "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
1109 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1110 >        painCave.isFatal = 0;
1111 >        simError();
1112 >        } else {
1113 >          rsw_ = rcut_;
1114 >          sprintf(painCave.errMsg,
1115 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1116 >                  "\tOpenMD will use the same value as the cutoffRadius.\n"
1117 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1118 >          painCave.isFatal = 0;
1119 >          simError();
1120 >        }
1121 >      }
1122  
1123 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
1124 <    // also send cutoff notification to electrostatics
1125 <    setElectrostaticCutoffRadius(&rcut_, &rsw_);
1123 >      if (simParams_->haveElectrostaticSummationMethod()) {
1124 >        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1125 >        toUpper(myMethod);
1126 >        
1127 >        if (myMethod == "SHIFTED_POTENTIAL") {
1128 >          ljsp_ = 1;
1129 >        } else if (myMethod == "SHIFTED_FORCE") {
1130 >          ljsf_ = 1;
1131 >        }
1132 >      }
1133 >
1134 >      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1135 >      
1136 >    } else {
1137 >      
1138 >      // For electrostatic atoms, we'll assume a large safe value:
1139 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1140 >        sprintf(painCave.errMsg,
1141 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1142 >                "\tOpenMD will use a default value of 15.0 angstroms"
1143 >                "\tfor the cutoffRadius.\n");
1144 >        painCave.isFatal = 0;
1145 >        simError();
1146 >        rcut_ = 15.0;
1147 >      
1148 >        if (simParams_->haveElectrostaticSummationMethod()) {
1149 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1150 >          toUpper(myMethod);
1151 >      
1152 >      // For the time being, we're tethering the LJ shifted behavior to the
1153 >      // electrostaticSummationMethod keyword options
1154 >          if (myMethod == "SHIFTED_POTENTIAL") {
1155 >            ljsp_ = 1;
1156 >          } else if (myMethod == "SHIFTED_FORCE") {
1157 >            ljsf_ = 1;
1158 >          }
1159 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1160 >            if (simParams_->haveSwitchingRadius()){
1161 >              sprintf(painCave.errMsg,
1162 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
1163 >                      "\teven though the electrostaticSummationMethod was\n"
1164 >                      "\tset to %s\n", myMethod.c_str());
1165 >              painCave.isFatal = 1;
1166 >              simError();            
1167 >            }
1168 >          }
1169 >        }
1170 >      
1171 >        if (simParams_->haveSwitchingRadius()){
1172 >          rsw_ = simParams_->getSwitchingRadius();
1173 >        } else {        
1174 >          sprintf(painCave.errMsg,
1175 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1176 >                  "\tOpenMD will use a default value of\n"
1177 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1178 >          painCave.isFatal = 0;
1179 >          simError();
1180 >          rsw_ = 0.85 * rcut_;
1181 >        }
1182 >
1183 >        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1184 >
1185 >      } else {
1186 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1187 >        // We'll punt and let fortran figure out the cutoffs later.
1188 >        
1189 >        notifyFortranYouAreOnYourOwn();
1190 >
1191 >      }
1192 >    }
1193    }
1194  
1195    void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
# Line 1038 | Line 1197 | namespace oopse {
1197      int errorOut;
1198      int esm =  NONE;
1199      int sm = UNDAMPED;
1200 <    double alphaVal;
1201 <    double dielectric;
1202 <
1200 >    RealType alphaVal;
1201 >    RealType dielectric;
1202 >    
1203      errorOut = isError;
1045    alphaVal = simParams_->getDampingAlpha();
1046    dielectric = simParams_->getDielectric();
1204  
1205      if (simParams_->haveElectrostaticSummationMethod()) {
1206        std::string myMethod = simParams_->getElectrostaticSummationMethod();
# Line 1060 | Line 1217 | namespace oopse {
1217              if (myMethod == "SHIFTED_FORCE") {            
1218                esm = SHIFTED_FORCE;
1219              } else {
1220 <              if (myMethod == "REACTION_FIELD") {            
1220 >              if (myMethod == "REACTION_FIELD") {
1221                  esm = REACTION_FIELD;
1222 +                dielectric = simParams_->getDielectric();
1223 +                if (!simParams_->haveDielectric()) {
1224 +                  // throw warning
1225 +                  sprintf( painCave.errMsg,
1226 +                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1227 +                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1228 +                  painCave.isFatal = 0;
1229 +                  simError();
1230 +                }
1231                } else {
1232                  // throw error        
1233                  sprintf( painCave.errMsg,
1234 <                         "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"shifted_potential\", \"shifted_force\", or \"reaction_field\".", myMethod.c_str() );
1234 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1235 >                         "\t(Input file specified %s .)\n"
1236 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1237 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1238 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1239                  painCave.isFatal = 1;
1240                  simError();
1241                }    
# Line 1084 | Line 1254 | namespace oopse {
1254          if (myScreen == "DAMPED") {
1255            sm = DAMPED;
1256            if (!simParams_->haveDampingAlpha()) {
1257 <            //throw error
1257 >            // first set a cutoff dependent alpha value
1258 >            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1259 >            alphaVal = 0.5125 - rcut_* 0.025;
1260 >            // for values rcut > 20.5, alpha is zero
1261 >            if (alphaVal < 0) alphaVal = 0;
1262 >
1263 >            // throw warning
1264              sprintf( painCave.errMsg,
1265 <                     "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used.", alphaVal);
1265 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1266 >                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1267              painCave.isFatal = 0;
1268              simError();
1269 +          } else {
1270 +            alphaVal = simParams_->getDampingAlpha();
1271            }
1272 +          
1273          } else {
1274            // throw error        
1275            sprintf( painCave.errMsg,
1276 <                   "SimInfo error: Unknown electrostaticScreeningMethod. (Input file specified %s .)\n\telectrostaticScreeningMethod must be one of: \"undamped\" or \"damped\".", myScreen.c_str() );
1276 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1277 >                   "\t(Input file specified %s .)\n"
1278 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1279 >                   "or \"damped\".\n", myScreen.c_str() );
1280            painCave.isFatal = 1;
1281            simError();
1282          }
# Line 1102 | Line 1285 | namespace oopse {
1285      
1286      // let's pass some summation method variables to fortran
1287      setElectrostaticSummationMethod( &esm );
1288 +    setFortranElectrostaticMethod( &esm );
1289      setScreeningMethod( &sm );
1290      setDampingAlpha( &alphaVal );
1291      setReactionFieldDielectric( &dielectric );
1292 <    initFortranFF( &esm, &errorOut );
1292 >    initFortranFF( &errorOut );
1293    }
1294  
1295    void SimInfo::setupSwitchingFunction() {    
# Line 1134 | Line 1318 | namespace oopse {
1318  
1319    }
1320  
1321 +  void SimInfo::setupAccumulateBoxDipole() {    
1322 +
1323 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1324 +    if ( simParams_->haveAccumulateBoxDipole() )
1325 +      if ( simParams_->getAccumulateBoxDipole() ) {
1326 +        setAccumulateBoxDipole();
1327 +        calcBoxDipole_ = true;
1328 +      }
1329 +
1330 +  }
1331 +
1332    void SimInfo::addProperty(GenericData* genData) {
1333      properties_.addProperty(genData);  
1334    }
# Line 1190 | Line 1385 | namespace oopse {
1385      Molecule* mol;
1386  
1387      Vector3d comVel(0.0);
1388 <    double totalMass = 0.0;
1388 >    RealType totalMass = 0.0;
1389      
1390  
1391      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1392 <      double mass = mol->getMass();
1392 >      RealType mass = mol->getMass();
1393        totalMass += mass;
1394        comVel += mass * mol->getComVel();
1395      }  
1396  
1397   #ifdef IS_MPI
1398 <    double tmpMass = totalMass;
1398 >    RealType tmpMass = totalMass;
1399      Vector3d tmpComVel(comVel);    
1400 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1401 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1400 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1401 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1402   #endif
1403  
1404      comVel /= totalMass;
# Line 1216 | Line 1411 | namespace oopse {
1411      Molecule* mol;
1412  
1413      Vector3d com(0.0);
1414 <    double totalMass = 0.0;
1414 >    RealType totalMass = 0.0;
1415      
1416      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1417 <      double mass = mol->getMass();
1417 >      RealType mass = mol->getMass();
1418        totalMass += mass;
1419        com += mass * mol->getCom();
1420      }  
1421  
1422   #ifdef IS_MPI
1423 <    double tmpMass = totalMass;
1423 >    RealType tmpMass = totalMass;
1424      Vector3d tmpCom(com);    
1425 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1426 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1425 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1426 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1427   #endif
1428  
1429      com /= totalMass;
# Line 1252 | Line 1447 | namespace oopse {
1447        Molecule* mol;
1448        
1449      
1450 <      double totalMass = 0.0;
1450 >      RealType totalMass = 0.0;
1451      
1452  
1453        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1454 <         double mass = mol->getMass();
1454 >         RealType mass = mol->getMass();
1455           totalMass += mass;
1456           com += mass * mol->getCom();
1457           comVel += mass * mol->getComVel();          
1458        }  
1459        
1460   #ifdef IS_MPI
1461 <      double tmpMass = totalMass;
1461 >      RealType tmpMass = totalMass;
1462        Vector3d tmpCom(com);  
1463        Vector3d tmpComVel(comVel);
1464 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1465 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1466 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1464 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1465 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1466 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1467   #endif
1468        
1469        com /= totalMass;
# Line 1287 | Line 1482 | namespace oopse {
1482     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1483        
1484  
1485 <      double xx = 0.0;
1486 <      double yy = 0.0;
1487 <      double zz = 0.0;
1488 <      double xy = 0.0;
1489 <      double xz = 0.0;
1490 <      double yz = 0.0;
1485 >      RealType xx = 0.0;
1486 >      RealType yy = 0.0;
1487 >      RealType zz = 0.0;
1488 >      RealType xy = 0.0;
1489 >      RealType xz = 0.0;
1490 >      RealType yz = 0.0;
1491        Vector3d com(0.0);
1492        Vector3d comVel(0.0);
1493        
# Line 1304 | Line 1499 | namespace oopse {
1499        Vector3d thisq(0.0);
1500        Vector3d thisv(0.0);
1501  
1502 <      double thisMass = 0.0;
1502 >      RealType thisMass = 0.0;
1503      
1504        
1505        
# Line 1342 | Line 1537 | namespace oopse {
1537   #ifdef IS_MPI
1538        Mat3x3d tmpI(inertiaTensor);
1539        Vector3d tmpAngMom;
1540 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1541 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1540 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1541 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1542   #endif
1543                
1544        return;
# Line 1364 | Line 1559 | namespace oopse {
1559        Vector3d thisr(0.0);
1560        Vector3d thisp(0.0);
1561        
1562 <      double thisMass;
1562 >      RealType thisMass;
1563        
1564        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1565          thisMass = mol->getMass();
# Line 1377 | Line 1572 | namespace oopse {
1572        
1573   #ifdef IS_MPI
1574        Vector3d tmpAngMom;
1575 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1575 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1576   #endif
1577        
1578        return angularMomentum;
1579     }
1580    
1581 <  
1582 < }//end namespace oopse
1581 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1582 >    return IOIndexToIntegrableObject.at(index);
1583 >  }
1584 >  
1585 >  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1586 >    IOIndexToIntegrableObject= v;
1587 >  }
1588  
1589 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1590 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1591 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1592 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1593 +  */
1594 +  void SimInfo::getGyrationalVolume(RealType &volume){
1595 +    Mat3x3d intTensor;
1596 +    RealType det;
1597 +    Vector3d dummyAngMom;
1598 +    RealType sysconstants;
1599 +    RealType geomCnst;
1600 +
1601 +    geomCnst = 3.0/2.0;
1602 +    /* Get the inertial tensor and angular momentum for free*/
1603 +    getInertiaTensor(intTensor,dummyAngMom);
1604 +    
1605 +    det = intTensor.determinant();
1606 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1607 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1608 +    return;
1609 +  }
1610 +
1611 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1612 +    Mat3x3d intTensor;
1613 +    Vector3d dummyAngMom;
1614 +    RealType sysconstants;
1615 +    RealType geomCnst;
1616 +
1617 +    geomCnst = 3.0/2.0;
1618 +    /* Get the inertial tensor and angular momentum for free*/
1619 +    getInertiaTensor(intTensor,dummyAngMom);
1620 +    
1621 +    detI = intTensor.determinant();
1622 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1623 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1624 +    return;
1625 +  }
1626 + /*
1627 +   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1628 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1629 +      sdByGlobalIndex_ = v;
1630 +    }
1631 +
1632 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1633 +      //assert(index < nAtoms_ + nRigidBodies_);
1634 +      return sdByGlobalIndex_.at(index);
1635 +    }  
1636 + */  
1637 + }//end namespace OpenMD
1638 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 749 by tim, Wed Nov 16 23:10:02 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1465 by chuckv, Fri Jul 9 23:08:25 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines