ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 608 by chrisfen, Fri Sep 16 21:07:45 2005 UTC vs.
Revision 1045 by chrisfen, Thu Sep 21 18:25:17 2006 UTC

# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57   #include "UseTheForce/fCutoffPolicy.h"
58   #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 + #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61   #include "UseTheForce/doForces_interface.h"
62 < #include "UseTheForce/notifyCutoffs_interface.h"
62 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
63 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
64   #include "utils/MemoryUtils.hpp"
65   #include "utils/simError.h"
66   #include "selection/SelectionManager.hpp"
67 + #include "io/ForceFieldOptions.hpp"
68 + #include "UseTheForce/ForceField.hpp"
69  
70   #ifdef IS_MPI
71   #include "UseTheForce/mpiComponentPlan.h"
# Line 66 | Line 73 | namespace oopse {
73   #endif
74  
75   namespace oopse {
76 +  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
77 +    std::map<int, std::set<int> >::iterator i = container.find(index);
78 +    std::set<int> result;
79 +    if (i != container.end()) {
80 +        result = i->second;
81 +    }
82  
83 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
84 <                   ForceField* ff, Globals* simParams) :
85 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
86 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
83 >    return result;
84 >  }
85 >  
86 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
87 >    forceField_(ff), simParams_(simParams),
88 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
89      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
90      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
91      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
92      nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
93 <    sman_(NULL), fortranInitialized_(false) {
93 >    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) {
94  
80            
81      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
95        MoleculeStamp* molStamp;
96        int nMolWithSameStamp;
97        int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
98 <      int nGroups = 0;          //total cutoff groups defined in meta-data file
98 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
99        CutoffGroupStamp* cgStamp;    
100        RigidBodyStamp* rbStamp;
101        int nRigidAtoms = 0;
102 <    
103 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
104 <        molStamp = i->first;
105 <        nMolWithSameStamp = i->second;
102 >      std::vector<Component*> components = simParams->getComponents();
103 >      
104 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
105 >        molStamp = (*i)->getMoleculeStamp();
106 >        nMolWithSameStamp = (*i)->getNMol();
107          
108          addMoleculeStamp(molStamp, nMolWithSameStamp);
109  
110          //calculate atoms in molecules
111          nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
112  
99
113          //calculate atoms in cutoff groups
114          int nAtomsInGroups = 0;
115          int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
116          
117          for (int j=0; j < nCutoffGroupsInStamp; j++) {
118 <          cgStamp = molStamp->getCutoffGroup(j);
118 >          cgStamp = molStamp->getCutoffGroupStamp(j);
119            nAtomsInGroups += cgStamp->getNMembers();
120          }
121  
122          nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
123 +
124          nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
125  
126          //calculate atoms in rigid bodies
# Line 114 | Line 128 | namespace oopse {
128          int nRigidBodiesInStamp = molStamp->getNRigidBodies();
129          
130          for (int j=0; j < nRigidBodiesInStamp; j++) {
131 <          rbStamp = molStamp->getRigidBody(j);
131 >          rbStamp = molStamp->getRigidBodyStamp(j);
132            nAtomsInRigidBodies += rbStamp->getNMembers();
133          }
134  
# Line 123 | Line 137 | namespace oopse {
137          
138        }
139  
140 <      //every free atom (atom does not belong to cutoff groups) is a cutoff group
141 <      //therefore the total number of cutoff groups in the system is equal to
142 <      //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
143 <      //file plus the number of cutoff groups defined in meta-data file
140 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
141 >      //group therefore the total number of cutoff groups in the system is
142 >      //equal to the total number of atoms minus number of atoms belong to
143 >      //cutoff group defined in meta-data file plus the number of cutoff
144 >      //groups defined in meta-data file
145        nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
146  
147 <      //every free atom (atom does not belong to rigid bodies) is an integrable object
148 <      //therefore the total number of  integrable objects in the system is equal to
149 <      //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
150 <      //file plus the number of  rigid bodies defined in meta-data file
151 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
152 <
147 >      //every free atom (atom does not belong to rigid bodies) is an
148 >      //integrable object therefore the total number of integrable objects
149 >      //in the system is equal to the total number of atoms minus number of
150 >      //atoms belong to rigid body defined in meta-data file plus the number
151 >      //of rigid bodies defined in meta-data file
152 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
153 >                                                + nGlobalRigidBodies_;
154 >  
155        nGlobalMols_ = molStampIds_.size();
156  
157   #ifdef IS_MPI    
# Line 150 | Line 167 | namespace oopse {
167      }
168      molecules_.clear();
169        
153    delete stamps_;
170      delete sman_;
171      delete simParams_;
172      delete forceField_;
# Line 257 | Line 273 | namespace oopse {
273            }
274          }
275              
276 <      }//end for (integrableObject)
277 <    }// end for (mol)
276 >      }
277 >    }
278      
279      // n_constraints is local, so subtract them on each processor
280      ndf_local -= nConstraints_;
# Line 275 | Line 291 | namespace oopse {
291  
292    }
293  
294 +  int SimInfo::getFdf() {
295 + #ifdef IS_MPI
296 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
297 + #else
298 +    fdf_ = fdf_local;
299 + #endif
300 +    return fdf_;
301 +  }
302 +    
303    void SimInfo::calcNdfRaw() {
304      int ndfRaw_local;
305  
# Line 337 | Line 362 | namespace oopse {
362      int b;
363      int c;
364      int d;
365 +
366 +    std::map<int, std::set<int> > atomGroups;
367 +
368 +    Molecule::RigidBodyIterator rbIter;
369 +    RigidBody* rb;
370 +    Molecule::IntegrableObjectIterator ii;
371 +    StuntDouble* integrableObject;
372      
373 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
374 +           integrableObject = mol->nextIntegrableObject(ii)) {
375 +
376 +      if (integrableObject->isRigidBody()) {
377 +          rb = static_cast<RigidBody*>(integrableObject);
378 +          std::vector<Atom*> atoms = rb->getAtoms();
379 +          std::set<int> rigidAtoms;
380 +          for (int i = 0; i < atoms.size(); ++i) {
381 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
382 +          }
383 +          for (int i = 0; i < atoms.size(); ++i) {
384 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
385 +          }      
386 +      } else {
387 +        std::set<int> oneAtomSet;
388 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
389 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
390 +      }
391 +    }  
392 +
393 +    
394 +    
395      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
396        a = bond->getAtomA()->getGlobalIndex();
397        b = bond->getAtomB()->getGlobalIndex();        
# Line 348 | Line 402 | namespace oopse {
402        a = bend->getAtomA()->getGlobalIndex();
403        b = bend->getAtomB()->getGlobalIndex();        
404        c = bend->getAtomC()->getGlobalIndex();
405 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
406 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
407 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
408  
409 <      exclude_.addPair(a, b);
410 <      exclude_.addPair(a, c);
411 <      exclude_.addPair(b, c);        
409 >      exclude_.addPairs(rigidSetA, rigidSetB);
410 >      exclude_.addPairs(rigidSetA, rigidSetC);
411 >      exclude_.addPairs(rigidSetB, rigidSetC);
412 >      
413 >      //exclude_.addPair(a, b);
414 >      //exclude_.addPair(a, c);
415 >      //exclude_.addPair(b, c);        
416      }
417  
418      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
# Line 359 | Line 420 | namespace oopse {
420        b = torsion->getAtomB()->getGlobalIndex();        
421        c = torsion->getAtomC()->getGlobalIndex();        
422        d = torsion->getAtomD()->getGlobalIndex();        
423 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
424 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
425 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
426 +      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
427  
428 +      exclude_.addPairs(rigidSetA, rigidSetB);
429 +      exclude_.addPairs(rigidSetA, rigidSetC);
430 +      exclude_.addPairs(rigidSetA, rigidSetD);
431 +      exclude_.addPairs(rigidSetB, rigidSetC);
432 +      exclude_.addPairs(rigidSetB, rigidSetD);
433 +      exclude_.addPairs(rigidSetC, rigidSetD);
434 +
435 +      /*
436 +      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
437 +      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
438 +      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
439 +      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
440 +      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
441 +      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
442 +        
443 +      
444        exclude_.addPair(a, b);
445        exclude_.addPair(a, c);
446        exclude_.addPair(a, d);
447        exclude_.addPair(b, c);
448        exclude_.addPair(b, d);
449        exclude_.addPair(c, d);        
450 +      */
451      }
452  
371    Molecule::RigidBodyIterator rbIter;
372    RigidBody* rb;
453      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
454        std::vector<Atom*> atoms = rb->getAtoms();
455        for (int i = 0; i < atoms.size() -1 ; ++i) {
# Line 394 | Line 474 | namespace oopse {
474      int b;
475      int c;
476      int d;
477 +
478 +    std::map<int, std::set<int> > atomGroups;
479 +
480 +    Molecule::RigidBodyIterator rbIter;
481 +    RigidBody* rb;
482 +    Molecule::IntegrableObjectIterator ii;
483 +    StuntDouble* integrableObject;
484      
485 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
486 +           integrableObject = mol->nextIntegrableObject(ii)) {
487 +
488 +      if (integrableObject->isRigidBody()) {
489 +          rb = static_cast<RigidBody*>(integrableObject);
490 +          std::vector<Atom*> atoms = rb->getAtoms();
491 +          std::set<int> rigidAtoms;
492 +          for (int i = 0; i < atoms.size(); ++i) {
493 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
494 +          }
495 +          for (int i = 0; i < atoms.size(); ++i) {
496 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
497 +          }      
498 +      } else {
499 +        std::set<int> oneAtomSet;
500 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
501 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
502 +      }
503 +    }  
504 +
505 +    
506      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
507        a = bond->getAtomA()->getGlobalIndex();
508        b = bond->getAtomB()->getGlobalIndex();        
# Line 406 | Line 514 | namespace oopse {
514        b = bend->getAtomB()->getGlobalIndex();        
515        c = bend->getAtomC()->getGlobalIndex();
516  
517 <      exclude_.removePair(a, b);
518 <      exclude_.removePair(a, c);
519 <      exclude_.removePair(b, c);        
517 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
518 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
519 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
520 >
521 >      exclude_.removePairs(rigidSetA, rigidSetB);
522 >      exclude_.removePairs(rigidSetA, rigidSetC);
523 >      exclude_.removePairs(rigidSetB, rigidSetC);
524 >      
525 >      //exclude_.removePair(a, b);
526 >      //exclude_.removePair(a, c);
527 >      //exclude_.removePair(b, c);        
528      }
529  
530      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
# Line 417 | Line 533 | namespace oopse {
533        c = torsion->getAtomC()->getGlobalIndex();        
534        d = torsion->getAtomD()->getGlobalIndex();        
535  
536 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
537 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
538 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
539 +      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
540 +
541 +      exclude_.removePairs(rigidSetA, rigidSetB);
542 +      exclude_.removePairs(rigidSetA, rigidSetC);
543 +      exclude_.removePairs(rigidSetA, rigidSetD);
544 +      exclude_.removePairs(rigidSetB, rigidSetC);
545 +      exclude_.removePairs(rigidSetB, rigidSetD);
546 +      exclude_.removePairs(rigidSetC, rigidSetD);
547 +
548 +      /*
549 +      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
550 +      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
551 +      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
552 +      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
553 +      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
554 +      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
555 +
556 +      
557        exclude_.removePair(a, b);
558        exclude_.removePair(a, c);
559        exclude_.removePair(a, d);
560        exclude_.removePair(b, c);
561        exclude_.removePair(b, d);
562        exclude_.removePair(c, d);        
563 +      */
564      }
565  
428    Molecule::RigidBodyIterator rbIter;
429    RigidBody* rb;
566      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
567        std::vector<Atom*> atoms = rb->getAtoms();
568        for (int i = 0; i < atoms.size() -1 ; ++i) {
# Line 465 | Line 601 | namespace oopse {
601      /** @deprecate */    
602      int isError = 0;
603      
604 +    setupCutoff();
605 +    
606      setupElectrostaticSummationMethod( isError );
607 +    setupSwitchingFunction();
608 +    setupAccumulateBoxDipole();
609  
610      if(isError){
611        sprintf( painCave.errMsg,
# Line 473 | Line 613 | namespace oopse {
613        painCave.isFatal = 1;
614        simError();
615      }
476  
477    
478    setupCutoff();
616  
617      calcNdf();
618      calcNdfRaw();
# Line 510 | Line 647 | namespace oopse {
647      int useLennardJones = 0;
648      int useElectrostatic = 0;
649      int useEAM = 0;
650 +    int useSC = 0;
651      int useCharge = 0;
652      int useDirectional = 0;
653      int useDipole = 0;
# Line 521 | Line 659 | namespace oopse {
659      int useDirectionalAtom = 0;    
660      int useElectrostatics = 0;
661      //usePBC and useRF are from simParams
662 <    int usePBC = simParams_->getPBC();
662 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
663 >    int useRF;
664 >    int useSF;
665 >    int useSP;
666 >    int useBoxDipole;
667 >    std::string myMethod;
668  
669 +    // set the useRF logical
670 +    useRF = 0;
671 +    useSF = 0;
672 +
673 +
674 +    if (simParams_->haveElectrostaticSummationMethod()) {
675 +      std::string myMethod = simParams_->getElectrostaticSummationMethod();
676 +      toUpper(myMethod);
677 +      if (myMethod == "REACTION_FIELD"){
678 +        useRF=1;
679 +      } else if (myMethod == "SHIFTED_FORCE"){
680 +        useSF = 1;
681 +      } else if (myMethod == "SHIFTED_POTENTIAL"){
682 +        useSP = 1;
683 +      }
684 +    }
685 +    
686 +    if (simParams_->haveAccumulateBoxDipole())
687 +      if (simParams_->getAccumulateBoxDipole())
688 +        useBoxDipole = 1;
689 +
690      //loop over all of the atom types
691      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
692        useLennardJones |= (*i)->isLennardJones();
693        useElectrostatic |= (*i)->isElectrostatic();
694        useEAM |= (*i)->isEAM();
695 +      useSC |= (*i)->isSC();
696        useCharge |= (*i)->isCharge();
697        useDirectional |= (*i)->isDirectional();
698        useDipole |= (*i)->isDipole();
# Line 578 | Line 743 | namespace oopse {
743      temp = useEAM;
744      MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
745  
746 +    temp = useSC;
747 +    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
748 +    
749      temp = useShape;
750      MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
751  
752      temp = useFLARB;
753      MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
754 +
755 +    temp = useRF;
756 +    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
757 +
758 +    temp = useSF;
759 +    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
760  
761 +    temp = useSP;
762 +    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
763 +
764 +    temp = useBoxDipole;
765 +    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
766 +
767   #endif
768  
769      fInfo_.SIM_uses_PBC = usePBC;    
# Line 596 | Line 776 | namespace oopse {
776      fInfo_.SIM_uses_StickyPower = useStickyPower;
777      fInfo_.SIM_uses_GayBerne = useGayBerne;
778      fInfo_.SIM_uses_EAM = useEAM;
779 +    fInfo_.SIM_uses_SC = useSC;
780      fInfo_.SIM_uses_Shapes = useShape;
781      fInfo_.SIM_uses_FLARB = useFLARB;
782 +    fInfo_.SIM_uses_RF = useRF;
783 +    fInfo_.SIM_uses_SF = useSF;
784 +    fInfo_.SIM_uses_SP = useSP;
785 +    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
786  
787 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
788 <
787 >    if( myMethod == "REACTION_FIELD") {
788 >      
789        if (simParams_->haveDielectric()) {
790          fInfo_.dielect = simParams_->getDielectric();
791        } else {
# Line 610 | Line 795 | namespace oopse {
795                  "\tsetting a dielectric constant!\n");
796          painCave.isFatal = 1;
797          simError();
798 <      }
614 <        
615 <    } else {
616 <      fInfo_.dielect = 0.0;
798 >      }      
799      }
800  
801    }
# Line 632 | Line 814 | namespace oopse {
814      }
815  
816      //calculate mass ratio of cutoff group
817 <    std::vector<double> mfact;
817 >    std::vector<RealType> mfact;
818      SimInfo::MoleculeIterator mi;
819      Molecule* mol;
820      Molecule::CutoffGroupIterator ci;
821      CutoffGroup* cg;
822      Molecule::AtomIterator ai;
823      Atom* atom;
824 <    double totalMass;
824 >    RealType totalMass;
825  
826      //to avoid memory reallocation, reserve enough space for mfact
827      mfact.reserve(getNCutoffGroups());
# Line 649 | Line 831 | namespace oopse {
831  
832          totalMass = cg->getMass();
833          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
834 <          mfact.push_back(atom->getMass()/totalMass);
834 >          // Check for massless groups - set mfact to 1 if true
835 >          if (totalMass != 0)
836 >            mfact.push_back(atom->getMass()/totalMass);
837 >          else
838 >            mfact.push_back( 1.0 );
839          }
840  
841        }      
# Line 758 | Line 944 | namespace oopse {
944  
945   #endif
946  
947 <  double SimInfo::calcMaxCutoffRadius() {
947 >  void SimInfo::setupCutoff() {          
948 >    
949 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
950  
951 +    // Check the cutoff policy
952 +    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
953  
954 <    std::set<AtomType*> atomTypes;
955 <    std::set<AtomType*>::iterator i;
956 <    std::vector<double> cutoffRadius;
957 <
958 <    //get the unique atom types
769 <    atomTypes = getUniqueAtomTypes();
770 <
771 <    //query the max cutoff radius among these atom types
772 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
773 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
954 >    std::string myPolicy;
955 >    if (forceFieldOptions_.haveCutoffPolicy()){
956 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
957 >    }else if (simParams_->haveCutoffPolicy()) {
958 >      myPolicy = simParams_->getCutoffPolicy();
959      }
960  
961 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
962 < #ifdef IS_MPI
778 <    //pick the max cutoff radius among the processors
779 < #endif
780 <
781 <    return maxCutoffRadius;
782 <  }
783 <
784 <  void SimInfo::getCutoff(double& rcut, double& rsw) {
785 <    
786 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
787 <        
788 <      if (!simParams_->haveRcut()){
789 <        sprintf(painCave.errMsg,
790 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
791 <                "\tOOPSE will use a default value of 15.0 angstroms"
792 <                "\tfor the cutoffRadius.\n");
793 <        painCave.isFatal = 0;
794 <        simError();
795 <        rcut = 15.0;
796 <      } else{
797 <        rcut = simParams_->getRcut();
798 <      }
799 <
800 <      if (!simParams_->haveRsw()){
801 <        sprintf(painCave.errMsg,
802 <                "SimCreator Warning: No value was set for switchingRadius.\n"
803 <                "\tOOPSE will use a default value of\n"
804 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
805 <        painCave.isFatal = 0;
806 <        simError();
807 <        rsw = 0.95 * rcut;
808 <      } else{
809 <        rsw = simParams_->getRsw();
810 <      }
811 <
812 <    } else {
813 <      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
814 <      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
815 <        
816 <      if (simParams_->haveRcut()) {
817 <        rcut = simParams_->getRcut();
818 <      } else {
819 <        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
820 <        rcut = calcMaxCutoffRadius();
821 <      }
822 <
823 <      if (simParams_->haveRsw()) {
824 <        rsw  = simParams_->getRsw();
825 <      } else {
826 <        rsw = rcut;
827 <      }
828 <    
829 <    }
830 <  }
831 <
832 <  void SimInfo::setupCutoff() {    
833 <    getCutoff(rcut_, rsw_);    
834 <    double rnblist = rcut_ + 1; // skin of neighbor list
835 <
836 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
837 <    
838 <    int cp =  TRADITIONAL_CUTOFF_POLICY;
839 <    if (simParams_->haveCutoffPolicy()) {
840 <      std::string myPolicy = simParams_->getCutoffPolicy();
961 >    if (!myPolicy.empty()){
962 >      toUpper(myPolicy);
963        if (myPolicy == "MIX") {
964          cp = MIX_CUTOFF_POLICY;
965        } else {
# Line 855 | Line 977 | namespace oopse {
977            }    
978          }          
979        }
980 +    }          
981 +    notifyFortranCutoffPolicy(&cp);
982 +
983 +    // Check the Skin Thickness for neighborlists
984 +    RealType skin;
985 +    if (simParams_->haveSkinThickness()) {
986 +      skin = simParams_->getSkinThickness();
987 +      notifyFortranSkinThickness(&skin);
988 +    }            
989 +        
990 +    // Check if the cutoff was set explicitly:
991 +    if (simParams_->haveCutoffRadius()) {
992 +      rcut_ = simParams_->getCutoffRadius();
993 +      if (simParams_->haveSwitchingRadius()) {
994 +        rsw_  = simParams_->getSwitchingRadius();
995 +      } else {
996 +        if (fInfo_.SIM_uses_Charges |
997 +            fInfo_.SIM_uses_Dipoles |
998 +            fInfo_.SIM_uses_RF) {
999 +          
1000 +          rsw_ = 0.85 * rcut_;
1001 +          sprintf(painCave.errMsg,
1002 +                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1003 +                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1004 +                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1005 +        painCave.isFatal = 0;
1006 +        simError();
1007 +        } else {
1008 +          rsw_ = rcut_;
1009 +          sprintf(painCave.errMsg,
1010 +                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1011 +                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1012 +                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1013 +          painCave.isFatal = 0;
1014 +          simError();
1015 +        }
1016 +      }
1017 +      
1018 +      notifyFortranCutoffs(&rcut_, &rsw_);
1019 +      
1020 +    } else {
1021 +      
1022 +      // For electrostatic atoms, we'll assume a large safe value:
1023 +      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1024 +        sprintf(painCave.errMsg,
1025 +                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1026 +                "\tOOPSE will use a default value of 15.0 angstroms"
1027 +                "\tfor the cutoffRadius.\n");
1028 +        painCave.isFatal = 0;
1029 +        simError();
1030 +        rcut_ = 15.0;
1031 +      
1032 +        if (simParams_->haveElectrostaticSummationMethod()) {
1033 +          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1034 +          toUpper(myMethod);
1035 +          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1036 +            if (simParams_->haveSwitchingRadius()){
1037 +              sprintf(painCave.errMsg,
1038 +                      "SimInfo Warning: A value was set for the switchingRadius\n"
1039 +                      "\teven though the electrostaticSummationMethod was\n"
1040 +                      "\tset to %s\n", myMethod.c_str());
1041 +              painCave.isFatal = 1;
1042 +              simError();            
1043 +            }
1044 +          }
1045 +        }
1046 +      
1047 +        if (simParams_->haveSwitchingRadius()){
1048 +          rsw_ = simParams_->getSwitchingRadius();
1049 +        } else {        
1050 +          sprintf(painCave.errMsg,
1051 +                  "SimCreator Warning: No value was set for switchingRadius.\n"
1052 +                  "\tOOPSE will use a default value of\n"
1053 +                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1054 +          painCave.isFatal = 0;
1055 +          simError();
1056 +          rsw_ = 0.85 * rcut_;
1057 +        }
1058 +        notifyFortranCutoffs(&rcut_, &rsw_);
1059 +      } else {
1060 +        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1061 +        // We'll punt and let fortran figure out the cutoffs later.
1062 +        
1063 +        notifyFortranYouAreOnYourOwn();
1064 +
1065 +      }
1066      }
859    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
1067    }
1068  
1069    void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1070      
1071      int errorOut;
1072      int esm =  NONE;
1073 <    double alphaVal;
1074 <
1073 >    int sm = UNDAMPED;
1074 >    RealType alphaVal;
1075 >    RealType dielectric;
1076 >    
1077      errorOut = isError;
1078 +    dielectric = simParams_->getDielectric();
1079  
1080      if (simParams_->haveElectrostaticSummationMethod()) {
1081        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1082 +      toUpper(myMethod);
1083        if (myMethod == "NONE") {
1084          esm = NONE;
1085        } else {
1086 <        if (myMethod == "UNDAMPED_WOLF") {
1087 <          esm = UNDAMPED_WOLF;
1086 >        if (myMethod == "SWITCHING_FUNCTION") {
1087 >          esm = SWITCHING_FUNCTION;
1088          } else {
1089 <          if (myMethod == "DAMPED_WOLF") {            
1090 <            esm = DAMPED_WOLF;
1091 <            if (!simParams_->haveDampingAlpha()) {
1092 <              //throw error
1093 <              sprintf( painCave.errMsg,
883 <                       "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", simParams_->getDampingAlpha());
884 <              painCave.isFatal = 0;
885 <              simError();
886 <            }
887 <            alphaVal = simParams_->getDampingAlpha();
888 <          } else {
889 <            if (myMethod == "REACTION_FIELD") {
890 <              esm = REACTION_FIELD;
1089 >          if (myMethod == "SHIFTED_POTENTIAL") {
1090 >            esm = SHIFTED_POTENTIAL;
1091 >          } else {
1092 >            if (myMethod == "SHIFTED_FORCE") {            
1093 >              esm = SHIFTED_FORCE;
1094              } else {
1095 <              // throw error        
1096 <              sprintf( painCave.errMsg,
1097 <                       "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() );
1098 <              painCave.isFatal = 1;
1099 <              simError();
1100 <            }    
1101 <          }          
1095 >              if (myMethod == "REACTION_FIELD") {            
1096 >                esm = REACTION_FIELD;
1097 >              } else {
1098 >                // throw error        
1099 >                sprintf( painCave.errMsg,
1100 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1101 >                         "\t(Input file specified %s .)\n"
1102 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1103 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1104 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1105 >                painCave.isFatal = 1;
1106 >                simError();
1107 >              }    
1108 >            }          
1109 >          }
1110          }
1111        }
1112      }
1113 <    initFortranFF( &esm, &alphaVal, &errorOut );
1113 >    
1114 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1115 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1116 >      toUpper(myScreen);
1117 >      if (myScreen == "UNDAMPED") {
1118 >        sm = UNDAMPED;
1119 >      } else {
1120 >        if (myScreen == "DAMPED") {
1121 >          sm = DAMPED;
1122 >          if (!simParams_->haveDampingAlpha()) {
1123 >            // first set a cutoff dependent alpha value
1124 >            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1125 >            alphaVal = 0.5125 - rcut_* 0.025;
1126 >            // for values rcut > 20.5, alpha is zero
1127 >            if (alphaVal < 0) alphaVal = 0;
1128 >
1129 >            // throw warning
1130 >            sprintf( painCave.errMsg,
1131 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1132 >                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1133 >            painCave.isFatal = 0;
1134 >            simError();
1135 >          }
1136 >        } else {
1137 >          // throw error        
1138 >          sprintf( painCave.errMsg,
1139 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1140 >                   "\t(Input file specified %s .)\n"
1141 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1142 >                   "or \"damped\".\n", myScreen.c_str() );
1143 >          painCave.isFatal = 1;
1144 >          simError();
1145 >        }
1146 >      }
1147 >    }
1148 >    
1149 >    // let's pass some summation method variables to fortran
1150 >    setElectrostaticSummationMethod( &esm );
1151 >    setFortranElectrostaticMethod( &esm );
1152 >    setScreeningMethod( &sm );
1153 >    setDampingAlpha( &alphaVal );
1154 >    setReactionFieldDielectric( &dielectric );
1155 >    initFortranFF( &errorOut );
1156 >  }
1157 >
1158 >  void SimInfo::setupSwitchingFunction() {    
1159 >    int ft = CUBIC;
1160 >
1161 >    if (simParams_->haveSwitchingFunctionType()) {
1162 >      std::string funcType = simParams_->getSwitchingFunctionType();
1163 >      toUpper(funcType);
1164 >      if (funcType == "CUBIC") {
1165 >        ft = CUBIC;
1166 >      } else {
1167 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1168 >          ft = FIFTH_ORDER_POLY;
1169 >        } else {
1170 >          // throw error        
1171 >          sprintf( painCave.errMsg,
1172 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1173 >          painCave.isFatal = 1;
1174 >          simError();
1175 >        }          
1176 >      }
1177 >    }
1178 >
1179 >    // send switching function notification to switcheroo
1180 >    setFunctionType(&ft);
1181 >
1182 >  }
1183 >
1184 >  void SimInfo::setupAccumulateBoxDipole() {    
1185 >
1186 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1187 >    if ( simParams_->haveAccumulateBoxDipole() )
1188 >      if ( simParams_->getAccumulateBoxDipole() ) {
1189 >        setAccumulateBoxDipole();
1190 >        calcBoxDipole_ = true;
1191 >      }
1192 >
1193    }
1194  
1195    void SimInfo::addProperty(GenericData* genData) {
# Line 958 | Line 1248 | namespace oopse {
1248      Molecule* mol;
1249  
1250      Vector3d comVel(0.0);
1251 <    double totalMass = 0.0;
1251 >    RealType totalMass = 0.0;
1252      
1253  
1254      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1255 <      double mass = mol->getMass();
1255 >      RealType mass = mol->getMass();
1256        totalMass += mass;
1257        comVel += mass * mol->getComVel();
1258      }  
1259  
1260   #ifdef IS_MPI
1261 <    double tmpMass = totalMass;
1261 >    RealType tmpMass = totalMass;
1262      Vector3d tmpComVel(comVel);    
1263 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1264 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1263 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1264 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1265   #endif
1266  
1267      comVel /= totalMass;
# Line 984 | Line 1274 | namespace oopse {
1274      Molecule* mol;
1275  
1276      Vector3d com(0.0);
1277 <    double totalMass = 0.0;
1277 >    RealType totalMass = 0.0;
1278      
1279      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1280 <      double mass = mol->getMass();
1280 >      RealType mass = mol->getMass();
1281        totalMass += mass;
1282        com += mass * mol->getCom();
1283      }  
1284  
1285   #ifdef IS_MPI
1286 <    double tmpMass = totalMass;
1286 >    RealType tmpMass = totalMass;
1287      Vector3d tmpCom(com);    
1288 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1289 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1288 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1289 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1290   #endif
1291  
1292      com /= totalMass;
# Line 1020 | Line 1310 | namespace oopse {
1310        Molecule* mol;
1311        
1312      
1313 <      double totalMass = 0.0;
1313 >      RealType totalMass = 0.0;
1314      
1315  
1316        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1317 <         double mass = mol->getMass();
1317 >         RealType mass = mol->getMass();
1318           totalMass += mass;
1319           com += mass * mol->getCom();
1320           comVel += mass * mol->getComVel();          
1321        }  
1322        
1323   #ifdef IS_MPI
1324 <      double tmpMass = totalMass;
1324 >      RealType tmpMass = totalMass;
1325        Vector3d tmpCom(com);  
1326        Vector3d tmpComVel(comVel);
1327 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1328 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1329 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1327 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1328 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1329 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1330   #endif
1331        
1332        com /= totalMass;
# Line 1055 | Line 1345 | namespace oopse {
1345     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1346        
1347  
1348 <      double xx = 0.0;
1349 <      double yy = 0.0;
1350 <      double zz = 0.0;
1351 <      double xy = 0.0;
1352 <      double xz = 0.0;
1353 <      double yz = 0.0;
1348 >      RealType xx = 0.0;
1349 >      RealType yy = 0.0;
1350 >      RealType zz = 0.0;
1351 >      RealType xy = 0.0;
1352 >      RealType xz = 0.0;
1353 >      RealType yz = 0.0;
1354        Vector3d com(0.0);
1355        Vector3d comVel(0.0);
1356        
# Line 1072 | Line 1362 | namespace oopse {
1362        Vector3d thisq(0.0);
1363        Vector3d thisv(0.0);
1364  
1365 <      double thisMass = 0.0;
1365 >      RealType thisMass = 0.0;
1366      
1367        
1368        
# Line 1110 | Line 1400 | namespace oopse {
1400   #ifdef IS_MPI
1401        Mat3x3d tmpI(inertiaTensor);
1402        Vector3d tmpAngMom;
1403 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1404 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1403 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1404 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1405   #endif
1406                
1407        return;
# Line 1132 | Line 1422 | namespace oopse {
1422        Vector3d thisr(0.0);
1423        Vector3d thisp(0.0);
1424        
1425 <      double thisMass;
1425 >      RealType thisMass;
1426        
1427        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1428          thisMass = mol->getMass();
# Line 1145 | Line 1435 | namespace oopse {
1435        
1436   #ifdef IS_MPI
1437        Vector3d tmpAngMom;
1438 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1438 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1439   #endif
1440        
1441        return angularMomentum;
1442     }
1443    
1444 <  
1444 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1445 >    return IOIndexToIntegrableObject.at(index);
1446 >  }
1447 >  
1448 >  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1449 >    IOIndexToIntegrableObject= v;
1450 >  }
1451 >
1452 > /*
1453 >   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1454 >      assert( v.size() == nAtoms_ + nRigidBodies_);
1455 >      sdByGlobalIndex_ = v;
1456 >    }
1457 >
1458 >    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1459 >      //assert(index < nAtoms_ + nRigidBodies_);
1460 >      return sdByGlobalIndex_.at(index);
1461 >    }  
1462 > */  
1463   }//end namespace oopse
1464  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines