ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
Revision: 629
Committed: Mon Sep 26 15:58:17 2005 UTC (19 years, 7 months ago) by chuckv
Original Path: trunk/src/brains/SimInfo.cpp
File size: 35368 byte(s)
Log Message:
Added support for skinThickness keyword to Globals.

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42     /**
43     * @file SimInfo.cpp
44     * @author tlin
45     * @date 11/02/2004
46     * @version 1.0
47     */
48 gezelter 2
49 gezelter 246 #include <algorithm>
50     #include <set>
51 gezelter 2
52 tim 3 #include "brains/SimInfo.hpp"
53 gezelter 246 #include "math/Vector3.hpp"
54     #include "primitives/Molecule.hpp"
55 gezelter 586 #include "UseTheForce/fCutoffPolicy.h"
56 chrisfen 606 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 gezelter 246 #include "UseTheForce/doForces_interface.h"
58 chrisfen 610 #include "UseTheForce/DarkSide/electrostatic_interface.h"
59 gezelter 246 #include "UseTheForce/notifyCutoffs_interface.h"
60     #include "utils/MemoryUtils.hpp"
61 tim 3 #include "utils/simError.h"
62 tim 316 #include "selection/SelectionManager.hpp"
63 gezelter 2
64 gezelter 246 #ifdef IS_MPI
65     #include "UseTheForce/mpiComponentPlan.h"
66     #include "UseTheForce/DarkSide/simParallel_interface.h"
67     #endif
68 gezelter 2
69 gezelter 246 namespace oopse {
70 gezelter 2
71 gezelter 507 SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
72     ForceField* ff, Globals* simParams) :
73     stamps_(stamps), forceField_(ff), simParams_(simParams),
74     ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
75     nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
76     nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
77     nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
78     nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
79     sman_(NULL), fortranInitialized_(false) {
80 gezelter 2
81 gezelter 246
82 gezelter 507 std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
83     MoleculeStamp* molStamp;
84     int nMolWithSameStamp;
85     int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86     int nGroups = 0; //total cutoff groups defined in meta-data file
87     CutoffGroupStamp* cgStamp;
88     RigidBodyStamp* rbStamp;
89     int nRigidAtoms = 0;
90 gezelter 246
91 gezelter 507 for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
92 gezelter 246 molStamp = i->first;
93     nMolWithSameStamp = i->second;
94    
95     addMoleculeStamp(molStamp, nMolWithSameStamp);
96 gezelter 2
97 gezelter 246 //calculate atoms in molecules
98     nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
99 gezelter 2
100    
101 gezelter 246 //calculate atoms in cutoff groups
102     int nAtomsInGroups = 0;
103     int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
104    
105     for (int j=0; j < nCutoffGroupsInStamp; j++) {
106 gezelter 507 cgStamp = molStamp->getCutoffGroup(j);
107     nAtomsInGroups += cgStamp->getNMembers();
108 gezelter 246 }
109 gezelter 2
110 gezelter 246 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
111     nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
112 gezelter 2
113 gezelter 246 //calculate atoms in rigid bodies
114     int nAtomsInRigidBodies = 0;
115 tim 274 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116 gezelter 246
117     for (int j=0; j < nRigidBodiesInStamp; j++) {
118 gezelter 507 rbStamp = molStamp->getRigidBody(j);
119     nAtomsInRigidBodies += rbStamp->getNMembers();
120 gezelter 246 }
121 gezelter 2
122 gezelter 246 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123     nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
124    
125 gezelter 507 }
126 chrisfen 143
127 gezelter 507 //every free atom (atom does not belong to cutoff groups) is a cutoff group
128     //therefore the total number of cutoff groups in the system is equal to
129     //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
130     //file plus the number of cutoff groups defined in meta-data file
131     nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
132 gezelter 2
133 gezelter 507 //every free atom (atom does not belong to rigid bodies) is an integrable object
134     //therefore the total number of integrable objects in the system is equal to
135     //the total number of atoms minus number of atoms belong to rigid body defined in meta-data
136     //file plus the number of rigid bodies defined in meta-data file
137     nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
138 gezelter 2
139 gezelter 507 nGlobalMols_ = molStampIds_.size();
140 gezelter 2
141 gezelter 246 #ifdef IS_MPI
142 gezelter 507 molToProcMap_.resize(nGlobalMols_);
143 gezelter 246 #endif
144 tim 292
145 gezelter 507 }
146 gezelter 2
147 gezelter 507 SimInfo::~SimInfo() {
148 tim 398 std::map<int, Molecule*>::iterator i;
149     for (i = molecules_.begin(); i != molecules_.end(); ++i) {
150 gezelter 507 delete i->second;
151 tim 398 }
152     molecules_.clear();
153 tim 490
154     delete stamps_;
155 gezelter 246 delete sman_;
156     delete simParams_;
157     delete forceField_;
158 gezelter 507 }
159 gezelter 2
160 gezelter 507 int SimInfo::getNGlobalConstraints() {
161 gezelter 246 int nGlobalConstraints;
162     #ifdef IS_MPI
163     MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
164     MPI_COMM_WORLD);
165     #else
166     nGlobalConstraints = nConstraints_;
167     #endif
168     return nGlobalConstraints;
169 gezelter 507 }
170 gezelter 2
171 gezelter 507 bool SimInfo::addMolecule(Molecule* mol) {
172 gezelter 246 MoleculeIterator i;
173 gezelter 2
174 gezelter 246 i = molecules_.find(mol->getGlobalIndex());
175     if (i == molecules_.end() ) {
176 gezelter 2
177 gezelter 507 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
178 gezelter 246
179 gezelter 507 nAtoms_ += mol->getNAtoms();
180     nBonds_ += mol->getNBonds();
181     nBends_ += mol->getNBends();
182     nTorsions_ += mol->getNTorsions();
183     nRigidBodies_ += mol->getNRigidBodies();
184     nIntegrableObjects_ += mol->getNIntegrableObjects();
185     nCutoffGroups_ += mol->getNCutoffGroups();
186     nConstraints_ += mol->getNConstraintPairs();
187 gezelter 2
188 gezelter 507 addExcludePairs(mol);
189 gezelter 246
190 gezelter 507 return true;
191 gezelter 246 } else {
192 gezelter 507 return false;
193 gezelter 246 }
194 gezelter 507 }
195 gezelter 2
196 gezelter 507 bool SimInfo::removeMolecule(Molecule* mol) {
197 gezelter 246 MoleculeIterator i;
198     i = molecules_.find(mol->getGlobalIndex());
199 gezelter 2
200 gezelter 246 if (i != molecules_.end() ) {
201 gezelter 2
202 gezelter 507 assert(mol == i->second);
203 gezelter 246
204 gezelter 507 nAtoms_ -= mol->getNAtoms();
205     nBonds_ -= mol->getNBonds();
206     nBends_ -= mol->getNBends();
207     nTorsions_ -= mol->getNTorsions();
208     nRigidBodies_ -= mol->getNRigidBodies();
209     nIntegrableObjects_ -= mol->getNIntegrableObjects();
210     nCutoffGroups_ -= mol->getNCutoffGroups();
211     nConstraints_ -= mol->getNConstraintPairs();
212 gezelter 2
213 gezelter 507 removeExcludePairs(mol);
214     molecules_.erase(mol->getGlobalIndex());
215 gezelter 2
216 gezelter 507 delete mol;
217 gezelter 246
218 gezelter 507 return true;
219 gezelter 246 } else {
220 gezelter 507 return false;
221 gezelter 246 }
222    
223    
224 gezelter 507 }
225 gezelter 246
226    
227 gezelter 507 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
228 gezelter 246 i = molecules_.begin();
229     return i == molecules_.end() ? NULL : i->second;
230 gezelter 507 }
231 gezelter 246
232 gezelter 507 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
233 gezelter 246 ++i;
234     return i == molecules_.end() ? NULL : i->second;
235 gezelter 507 }
236 gezelter 2
237    
238 gezelter 507 void SimInfo::calcNdf() {
239 gezelter 246 int ndf_local;
240     MoleculeIterator i;
241     std::vector<StuntDouble*>::iterator j;
242     Molecule* mol;
243     StuntDouble* integrableObject;
244 gezelter 2
245 gezelter 246 ndf_local = 0;
246    
247     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
248 gezelter 507 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
249     integrableObject = mol->nextIntegrableObject(j)) {
250 gezelter 2
251 gezelter 507 ndf_local += 3;
252 gezelter 2
253 gezelter 507 if (integrableObject->isDirectional()) {
254     if (integrableObject->isLinear()) {
255     ndf_local += 2;
256     } else {
257     ndf_local += 3;
258     }
259     }
260 gezelter 246
261 gezelter 507 }//end for (integrableObject)
262 gezelter 246 }// end for (mol)
263    
264     // n_constraints is local, so subtract them on each processor
265     ndf_local -= nConstraints_;
266    
267     #ifdef IS_MPI
268     MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
269     #else
270     ndf_ = ndf_local;
271     #endif
272    
273     // nZconstraints_ is global, as are the 3 COM translations for the
274     // entire system:
275     ndf_ = ndf_ - 3 - nZconstraint_;
276    
277 gezelter 507 }
278 gezelter 2
279 gezelter 507 void SimInfo::calcNdfRaw() {
280 gezelter 246 int ndfRaw_local;
281 gezelter 2
282 gezelter 246 MoleculeIterator i;
283     std::vector<StuntDouble*>::iterator j;
284     Molecule* mol;
285     StuntDouble* integrableObject;
286    
287     // Raw degrees of freedom that we have to set
288     ndfRaw_local = 0;
289    
290     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
291 gezelter 507 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
292     integrableObject = mol->nextIntegrableObject(j)) {
293 gezelter 246
294 gezelter 507 ndfRaw_local += 3;
295 gezelter 246
296 gezelter 507 if (integrableObject->isDirectional()) {
297     if (integrableObject->isLinear()) {
298     ndfRaw_local += 2;
299     } else {
300     ndfRaw_local += 3;
301     }
302     }
303 gezelter 246
304 gezelter 507 }
305 gezelter 246 }
306    
307     #ifdef IS_MPI
308     MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
309     #else
310     ndfRaw_ = ndfRaw_local;
311     #endif
312 gezelter 507 }
313 gezelter 2
314 gezelter 507 void SimInfo::calcNdfTrans() {
315 gezelter 246 int ndfTrans_local;
316 gezelter 2
317 gezelter 246 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
318 gezelter 2
319    
320 gezelter 246 #ifdef IS_MPI
321     MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
322     #else
323     ndfTrans_ = ndfTrans_local;
324     #endif
325 gezelter 2
326 gezelter 246 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
327    
328 gezelter 507 }
329 gezelter 2
330 gezelter 507 void SimInfo::addExcludePairs(Molecule* mol) {
331 gezelter 246 std::vector<Bond*>::iterator bondIter;
332     std::vector<Bend*>::iterator bendIter;
333     std::vector<Torsion*>::iterator torsionIter;
334     Bond* bond;
335     Bend* bend;
336     Torsion* torsion;
337     int a;
338     int b;
339     int c;
340     int d;
341    
342     for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
343 gezelter 507 a = bond->getAtomA()->getGlobalIndex();
344     b = bond->getAtomB()->getGlobalIndex();
345     exclude_.addPair(a, b);
346 gezelter 246 }
347 gezelter 2
348 gezelter 246 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
349 gezelter 507 a = bend->getAtomA()->getGlobalIndex();
350     b = bend->getAtomB()->getGlobalIndex();
351     c = bend->getAtomC()->getGlobalIndex();
352 gezelter 2
353 gezelter 507 exclude_.addPair(a, b);
354     exclude_.addPair(a, c);
355     exclude_.addPair(b, c);
356 gezelter 246 }
357 gezelter 2
358 gezelter 246 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
359 gezelter 507 a = torsion->getAtomA()->getGlobalIndex();
360     b = torsion->getAtomB()->getGlobalIndex();
361     c = torsion->getAtomC()->getGlobalIndex();
362     d = torsion->getAtomD()->getGlobalIndex();
363 gezelter 2
364 gezelter 507 exclude_.addPair(a, b);
365     exclude_.addPair(a, c);
366     exclude_.addPair(a, d);
367     exclude_.addPair(b, c);
368     exclude_.addPair(b, d);
369     exclude_.addPair(c, d);
370 gezelter 2 }
371    
372 tim 430 Molecule::RigidBodyIterator rbIter;
373     RigidBody* rb;
374     for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
375 gezelter 507 std::vector<Atom*> atoms = rb->getAtoms();
376     for (int i = 0; i < atoms.size() -1 ; ++i) {
377     for (int j = i + 1; j < atoms.size(); ++j) {
378     a = atoms[i]->getGlobalIndex();
379     b = atoms[j]->getGlobalIndex();
380     exclude_.addPair(a, b);
381     }
382     }
383 tim 430 }
384    
385 gezelter 507 }
386 gezelter 246
387 gezelter 507 void SimInfo::removeExcludePairs(Molecule* mol) {
388 gezelter 246 std::vector<Bond*>::iterator bondIter;
389     std::vector<Bend*>::iterator bendIter;
390     std::vector<Torsion*>::iterator torsionIter;
391     Bond* bond;
392     Bend* bend;
393     Torsion* torsion;
394     int a;
395     int b;
396     int c;
397     int d;
398    
399     for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
400 gezelter 507 a = bond->getAtomA()->getGlobalIndex();
401     b = bond->getAtomB()->getGlobalIndex();
402     exclude_.removePair(a, b);
403 gezelter 2 }
404 gezelter 246
405     for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
406 gezelter 507 a = bend->getAtomA()->getGlobalIndex();
407     b = bend->getAtomB()->getGlobalIndex();
408     c = bend->getAtomC()->getGlobalIndex();
409 gezelter 246
410 gezelter 507 exclude_.removePair(a, b);
411     exclude_.removePair(a, c);
412     exclude_.removePair(b, c);
413 gezelter 2 }
414 gezelter 246
415     for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
416 gezelter 507 a = torsion->getAtomA()->getGlobalIndex();
417     b = torsion->getAtomB()->getGlobalIndex();
418     c = torsion->getAtomC()->getGlobalIndex();
419     d = torsion->getAtomD()->getGlobalIndex();
420 gezelter 246
421 gezelter 507 exclude_.removePair(a, b);
422     exclude_.removePair(a, c);
423     exclude_.removePair(a, d);
424     exclude_.removePair(b, c);
425     exclude_.removePair(b, d);
426     exclude_.removePair(c, d);
427 gezelter 246 }
428    
429 tim 430 Molecule::RigidBodyIterator rbIter;
430     RigidBody* rb;
431     for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
432 gezelter 507 std::vector<Atom*> atoms = rb->getAtoms();
433     for (int i = 0; i < atoms.size() -1 ; ++i) {
434     for (int j = i + 1; j < atoms.size(); ++j) {
435     a = atoms[i]->getGlobalIndex();
436     b = atoms[j]->getGlobalIndex();
437     exclude_.removePair(a, b);
438     }
439     }
440 tim 430 }
441    
442 gezelter 507 }
443 gezelter 2
444    
445 gezelter 507 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
446 gezelter 246 int curStampId;
447 gezelter 2
448 gezelter 246 //index from 0
449     curStampId = moleculeStamps_.size();
450 gezelter 2
451 gezelter 246 moleculeStamps_.push_back(molStamp);
452     molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
453 gezelter 507 }
454 gezelter 2
455 gezelter 507 void SimInfo::update() {
456 gezelter 2
457 gezelter 246 setupSimType();
458 gezelter 2
459 gezelter 246 #ifdef IS_MPI
460     setupFortranParallel();
461     #endif
462 gezelter 2
463 gezelter 246 setupFortranSim();
464 gezelter 2
465 gezelter 246 //setup fortran force field
466     /** @deprecate */
467     int isError = 0;
468 chrisfen 598
469 chrisfen 603 setupElectrostaticSummationMethod( isError );
470 chrisfen 598
471 gezelter 246 if(isError){
472 gezelter 507 sprintf( painCave.errMsg,
473     "ForceField error: There was an error initializing the forceField in fortran.\n" );
474     painCave.isFatal = 1;
475     simError();
476 gezelter 246 }
477 gezelter 2
478 gezelter 246
479     setupCutoff();
480 gezelter 2
481 gezelter 246 calcNdf();
482     calcNdfRaw();
483     calcNdfTrans();
484    
485     fortranInitialized_ = true;
486 gezelter 507 }
487 gezelter 2
488 gezelter 507 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
489 gezelter 246 SimInfo::MoleculeIterator mi;
490     Molecule* mol;
491     Molecule::AtomIterator ai;
492     Atom* atom;
493     std::set<AtomType*> atomTypes;
494 gezelter 2
495 gezelter 246 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
496 gezelter 2
497 gezelter 507 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
498     atomTypes.insert(atom->getAtomType());
499     }
500 gezelter 246
501     }
502 gezelter 2
503 gezelter 246 return atomTypes;
504 gezelter 507 }
505 gezelter 2
506 gezelter 507 void SimInfo::setupSimType() {
507 gezelter 246 std::set<AtomType*>::iterator i;
508     std::set<AtomType*> atomTypes;
509     atomTypes = getUniqueAtomTypes();
510 gezelter 2
511 gezelter 246 int useLennardJones = 0;
512     int useElectrostatic = 0;
513     int useEAM = 0;
514     int useCharge = 0;
515     int useDirectional = 0;
516     int useDipole = 0;
517     int useGayBerne = 0;
518     int useSticky = 0;
519 chrisfen 523 int useStickyPower = 0;
520 gezelter 246 int useShape = 0;
521     int useFLARB = 0; //it is not in AtomType yet
522     int useDirectionalAtom = 0;
523     int useElectrostatics = 0;
524     //usePBC and useRF are from simParams
525     int usePBC = simParams_->getPBC();
526 chrisfen 611 int useRF;
527 gezelter 2
528 chrisfen 611 // set the useRF logical
529     std::string myMethod = simParams_->getElectrostaticSummationMethod();
530     if (myMethod == "REACTION_FIELD")
531     useRF = 1;
532     else
533     useRF = 0;
534    
535 gezelter 246 //loop over all of the atom types
536     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
537 gezelter 507 useLennardJones |= (*i)->isLennardJones();
538     useElectrostatic |= (*i)->isElectrostatic();
539     useEAM |= (*i)->isEAM();
540     useCharge |= (*i)->isCharge();
541     useDirectional |= (*i)->isDirectional();
542     useDipole |= (*i)->isDipole();
543     useGayBerne |= (*i)->isGayBerne();
544     useSticky |= (*i)->isSticky();
545 chrisfen 523 useStickyPower |= (*i)->isStickyPower();
546 gezelter 507 useShape |= (*i)->isShape();
547 gezelter 246 }
548 gezelter 2
549 chrisfen 523 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
550 gezelter 507 useDirectionalAtom = 1;
551 gezelter 246 }
552 gezelter 2
553 gezelter 246 if (useCharge || useDipole) {
554 gezelter 507 useElectrostatics = 1;
555 gezelter 246 }
556 gezelter 2
557 gezelter 246 #ifdef IS_MPI
558     int temp;
559 gezelter 2
560 gezelter 246 temp = usePBC;
561     MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
562 gezelter 2
563 gezelter 246 temp = useDirectionalAtom;
564     MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
565 gezelter 2
566 gezelter 246 temp = useLennardJones;
567     MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
568 gezelter 2
569 gezelter 246 temp = useElectrostatics;
570     MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
571 gezelter 2
572 gezelter 246 temp = useCharge;
573     MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
574 gezelter 2
575 gezelter 246 temp = useDipole;
576     MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
577 gezelter 2
578 gezelter 246 temp = useSticky;
579     MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
580 gezelter 2
581 chrisfen 523 temp = useStickyPower;
582     MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
583    
584 gezelter 246 temp = useGayBerne;
585     MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
586 gezelter 2
587 gezelter 246 temp = useEAM;
588     MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
589 gezelter 2
590 gezelter 246 temp = useShape;
591     MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
592    
593     temp = useFLARB;
594     MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
595    
596 chrisfen 611 temp = useRF;
597     MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
598    
599 gezelter 2 #endif
600    
601 gezelter 246 fInfo_.SIM_uses_PBC = usePBC;
602     fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
603     fInfo_.SIM_uses_LennardJones = useLennardJones;
604     fInfo_.SIM_uses_Electrostatics = useElectrostatics;
605     fInfo_.SIM_uses_Charges = useCharge;
606     fInfo_.SIM_uses_Dipoles = useDipole;
607     fInfo_.SIM_uses_Sticky = useSticky;
608 chrisfen 523 fInfo_.SIM_uses_StickyPower = useStickyPower;
609 gezelter 246 fInfo_.SIM_uses_GayBerne = useGayBerne;
610     fInfo_.SIM_uses_EAM = useEAM;
611     fInfo_.SIM_uses_Shapes = useShape;
612     fInfo_.SIM_uses_FLARB = useFLARB;
613 chrisfen 611 fInfo_.SIM_uses_RF = useRF;
614 gezelter 2
615 chrisfen 611 if( fInfo_.SIM_uses_Dipoles && myMethod == "REACTION_FIELD") {
616 gezelter 2
617 gezelter 507 if (simParams_->haveDielectric()) {
618     fInfo_.dielect = simParams_->getDielectric();
619     } else {
620     sprintf(painCave.errMsg,
621     "SimSetup Error: No Dielectric constant was set.\n"
622     "\tYou are trying to use Reaction Field without"
623     "\tsetting a dielectric constant!\n");
624     painCave.isFatal = 1;
625     simError();
626     }
627 gezelter 246
628     } else {
629 gezelter 507 fInfo_.dielect = 0.0;
630 gezelter 246 }
631    
632 gezelter 507 }
633 gezelter 2
634 gezelter 507 void SimInfo::setupFortranSim() {
635 gezelter 246 int isError;
636     int nExclude;
637     std::vector<int> fortranGlobalGroupMembership;
638    
639     nExclude = exclude_.getSize();
640     isError = 0;
641 gezelter 2
642 gezelter 246 //globalGroupMembership_ is filled by SimCreator
643     for (int i = 0; i < nGlobalAtoms_; i++) {
644 gezelter 507 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
645 gezelter 246 }
646 gezelter 2
647 gezelter 246 //calculate mass ratio of cutoff group
648     std::vector<double> mfact;
649     SimInfo::MoleculeIterator mi;
650     Molecule* mol;
651     Molecule::CutoffGroupIterator ci;
652     CutoffGroup* cg;
653     Molecule::AtomIterator ai;
654     Atom* atom;
655     double totalMass;
656    
657     //to avoid memory reallocation, reserve enough space for mfact
658     mfact.reserve(getNCutoffGroups());
659 gezelter 2
660 gezelter 246 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
661 gezelter 507 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
662 gezelter 2
663 gezelter 507 totalMass = cg->getMass();
664     for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
665     mfact.push_back(atom->getMass()/totalMass);
666     }
667 gezelter 2
668 gezelter 507 }
669 gezelter 246 }
670 gezelter 2
671 gezelter 246 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
672     std::vector<int> identArray;
673 gezelter 2
674 gezelter 246 //to avoid memory reallocation, reserve enough space identArray
675     identArray.reserve(getNAtoms());
676    
677     for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
678 gezelter 507 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
679     identArray.push_back(atom->getIdent());
680     }
681 gezelter 246 }
682 gezelter 2
683 gezelter 246 //fill molMembershipArray
684     //molMembershipArray is filled by SimCreator
685     std::vector<int> molMembershipArray(nGlobalAtoms_);
686     for (int i = 0; i < nGlobalAtoms_; i++) {
687 gezelter 507 molMembershipArray[i] = globalMolMembership_[i] + 1;
688 gezelter 246 }
689    
690     //setup fortran simulation
691     int nGlobalExcludes = 0;
692     int* globalExcludes = NULL;
693     int* excludeList = exclude_.getExcludeList();
694     setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
695 gezelter 507 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
696     &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
697 gezelter 2
698 gezelter 246 if( isError ){
699 gezelter 2
700 gezelter 507 sprintf( painCave.errMsg,
701     "There was an error setting the simulation information in fortran.\n" );
702     painCave.isFatal = 1;
703     painCave.severity = OOPSE_ERROR;
704     simError();
705 gezelter 246 }
706    
707     #ifdef IS_MPI
708     sprintf( checkPointMsg,
709 gezelter 507 "succesfully sent the simulation information to fortran.\n");
710 gezelter 246 MPIcheckPoint();
711     #endif // is_mpi
712 gezelter 507 }
713 gezelter 2
714    
715 gezelter 246 #ifdef IS_MPI
716 gezelter 507 void SimInfo::setupFortranParallel() {
717 gezelter 246
718     //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
719     std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
720     std::vector<int> localToGlobalCutoffGroupIndex;
721     SimInfo::MoleculeIterator mi;
722     Molecule::AtomIterator ai;
723     Molecule::CutoffGroupIterator ci;
724     Molecule* mol;
725     Atom* atom;
726     CutoffGroup* cg;
727     mpiSimData parallelData;
728     int isError;
729 gezelter 2
730 gezelter 246 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
731 gezelter 2
732 gezelter 507 //local index(index in DataStorge) of atom is important
733     for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
734     localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
735     }
736 gezelter 2
737 gezelter 507 //local index of cutoff group is trivial, it only depends on the order of travesing
738     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
739     localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
740     }
741 gezelter 246
742     }
743 gezelter 2
744 gezelter 246 //fill up mpiSimData struct
745     parallelData.nMolGlobal = getNGlobalMolecules();
746     parallelData.nMolLocal = getNMolecules();
747     parallelData.nAtomsGlobal = getNGlobalAtoms();
748     parallelData.nAtomsLocal = getNAtoms();
749     parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
750     parallelData.nGroupsLocal = getNCutoffGroups();
751     parallelData.myNode = worldRank;
752     MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
753 gezelter 2
754 gezelter 246 //pass mpiSimData struct and index arrays to fortran
755     setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
756     &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
757     &localToGlobalCutoffGroupIndex[0], &isError);
758 gezelter 2
759 gezelter 246 if (isError) {
760 gezelter 507 sprintf(painCave.errMsg,
761     "mpiRefresh errror: fortran didn't like something we gave it.\n");
762     painCave.isFatal = 1;
763     simError();
764 gezelter 246 }
765 gezelter 2
766 gezelter 246 sprintf(checkPointMsg, " mpiRefresh successful.\n");
767     MPIcheckPoint();
768 gezelter 2
769    
770 gezelter 507 }
771 chrisfen 143
772 gezelter 246 #endif
773 chrisfen 143
774 gezelter 507 double SimInfo::calcMaxCutoffRadius() {
775 chrisfen 143
776    
777 gezelter 246 std::set<AtomType*> atomTypes;
778     std::set<AtomType*>::iterator i;
779     std::vector<double> cutoffRadius;
780 gezelter 2
781 gezelter 246 //get the unique atom types
782     atomTypes = getUniqueAtomTypes();
783    
784     //query the max cutoff radius among these atom types
785     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
786 gezelter 507 cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
787 gezelter 246 }
788    
789     double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
790 gezelter 2 #ifdef IS_MPI
791 gezelter 246 //pick the max cutoff radius among the processors
792 gezelter 2 #endif
793    
794 gezelter 246 return maxCutoffRadius;
795 gezelter 507 }
796 gezelter 246
797 gezelter 507 void SimInfo::getCutoff(double& rcut, double& rsw) {
798 gezelter 2
799 gezelter 246 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
800    
801 gezelter 507 if (!simParams_->haveRcut()){
802     sprintf(painCave.errMsg,
803 gezelter 246 "SimCreator Warning: No value was set for the cutoffRadius.\n"
804     "\tOOPSE will use a default value of 15.0 angstroms"
805     "\tfor the cutoffRadius.\n");
806 gezelter 507 painCave.isFatal = 0;
807     simError();
808     rcut = 15.0;
809     } else{
810     rcut = simParams_->getRcut();
811     }
812 gezelter 246
813 gezelter 507 if (!simParams_->haveRsw()){
814     sprintf(painCave.errMsg,
815 gezelter 246 "SimCreator Warning: No value was set for switchingRadius.\n"
816     "\tOOPSE will use a default value of\n"
817     "\t0.95 * cutoffRadius for the switchingRadius\n");
818 gezelter 507 painCave.isFatal = 0;
819     simError();
820     rsw = 0.95 * rcut;
821     } else{
822     rsw = simParams_->getRsw();
823     }
824 gezelter 246
825     } else {
826 gezelter 507 // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
827     //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
828 gezelter 246
829 gezelter 507 if (simParams_->haveRcut()) {
830     rcut = simParams_->getRcut();
831     } else {
832     //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
833     rcut = calcMaxCutoffRadius();
834     }
835 gezelter 246
836 gezelter 507 if (simParams_->haveRsw()) {
837     rsw = simParams_->getRsw();
838     } else {
839     rsw = rcut;
840     }
841 gezelter 246
842     }
843 gezelter 507 }
844 tim 326
845 gezelter 586 void SimInfo::setupCutoff() {
846 tim 326 getCutoff(rcut_, rsw_);
847 gezelter 246 double rnblist = rcut_ + 1; // skin of neighbor list
848    
849     //Pass these cutoff radius etc. to fortran. This function should be called once and only once
850 gezelter 586
851     int cp = TRADITIONAL_CUTOFF_POLICY;
852     if (simParams_->haveCutoffPolicy()) {
853     std::string myPolicy = simParams_->getCutoffPolicy();
854     if (myPolicy == "MIX") {
855     cp = MIX_CUTOFF_POLICY;
856     } else {
857     if (myPolicy == "MAX") {
858     cp = MAX_CUTOFF_POLICY;
859     } else {
860     if (myPolicy == "TRADITIONAL") {
861     cp = TRADITIONAL_CUTOFF_POLICY;
862     } else {
863     // throw error
864     sprintf( painCave.errMsg,
865     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
866     painCave.isFatal = 1;
867     simError();
868     }
869     }
870     }
871     }
872 chuckv 629
873    
874     if (simParams_->haveSkinThickness()) {
875     double skinThickness = simParams_->getSkinThickness();
876     }
877    
878 gezelter 586 notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
879 chrisfen 610 // also send cutoff notification to electrostatics
880     setElectrostaticCutoffRadius(&rcut_);
881 gezelter 507 }
882 gezelter 2
883 chrisfen 603 void SimInfo::setupElectrostaticSummationMethod( int isError ) {
884 chrisfen 598
885     int errorOut;
886 chrisfen 603 int esm = NONE;
887 chrisfen 598 double alphaVal;
888 chrisfen 610 double dielectric;
889 chrisfen 598
890     errorOut = isError;
891 chrisfen 610 alphaVal = simParams_->getDampingAlpha();
892     dielectric = simParams_->getDielectric();
893 chrisfen 598
894 chrisfen 603 if (simParams_->haveElectrostaticSummationMethod()) {
895 chrisfen 604 std::string myMethod = simParams_->getElectrostaticSummationMethod();
896 chrisfen 603 if (myMethod == "NONE") {
897     esm = NONE;
898 chrisfen 598 } else {
899 chrisfen 603 if (myMethod == "UNDAMPED_WOLF") {
900     esm = UNDAMPED_WOLF;
901 chrisfen 598 } else {
902 chrisfen 603 if (myMethod == "DAMPED_WOLF") {
903 chrisfen 604 esm = DAMPED_WOLF;
904 chrisfen 598 if (!simParams_->haveDampingAlpha()) {
905     //throw error
906     sprintf( painCave.errMsg,
907 chrisfen 610 "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", alphaVal);
908 chrisfen 598 painCave.isFatal = 0;
909     simError();
910     }
911     } else {
912 chrisfen 603 if (myMethod == "REACTION_FIELD") {
913     esm = REACTION_FIELD;
914 chrisfen 598 } else {
915     // throw error
916     sprintf( painCave.errMsg,
917 chrisfen 603 "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() );
918 chrisfen 598 painCave.isFatal = 1;
919     simError();
920     }
921     }
922     }
923     }
924     }
925 chrisfen 610 // let's pass some summation method variables to fortran
926     setElectrostaticSummationMethod( &esm );
927     setDampedWolfAlpha( &alphaVal );
928     setReactionFieldDielectric( &dielectric );
929     initFortranFF( &esm, &errorOut );
930 chrisfen 598 }
931    
932 gezelter 507 void SimInfo::addProperty(GenericData* genData) {
933 gezelter 246 properties_.addProperty(genData);
934 gezelter 507 }
935 gezelter 2
936 gezelter 507 void SimInfo::removeProperty(const std::string& propName) {
937 gezelter 246 properties_.removeProperty(propName);
938 gezelter 507 }
939 gezelter 2
940 gezelter 507 void SimInfo::clearProperties() {
941 gezelter 246 properties_.clearProperties();
942 gezelter 507 }
943 gezelter 2
944 gezelter 507 std::vector<std::string> SimInfo::getPropertyNames() {
945 gezelter 246 return properties_.getPropertyNames();
946 gezelter 507 }
947 gezelter 246
948 gezelter 507 std::vector<GenericData*> SimInfo::getProperties() {
949 gezelter 246 return properties_.getProperties();
950 gezelter 507 }
951 gezelter 2
952 gezelter 507 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
953 gezelter 246 return properties_.getPropertyByName(propName);
954 gezelter 507 }
955 gezelter 2
956 gezelter 507 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
957 tim 432 if (sman_ == sman) {
958 gezelter 507 return;
959 tim 432 }
960     delete sman_;
961 gezelter 246 sman_ = sman;
962 gezelter 2
963 gezelter 246 Molecule* mol;
964     RigidBody* rb;
965     Atom* atom;
966     SimInfo::MoleculeIterator mi;
967     Molecule::RigidBodyIterator rbIter;
968     Molecule::AtomIterator atomIter;;
969    
970     for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
971    
972 gezelter 507 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
973     atom->setSnapshotManager(sman_);
974     }
975 gezelter 246
976 gezelter 507 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
977     rb->setSnapshotManager(sman_);
978     }
979 gezelter 246 }
980 gezelter 2
981 gezelter 507 }
982 gezelter 2
983 gezelter 507 Vector3d SimInfo::getComVel(){
984 gezelter 246 SimInfo::MoleculeIterator i;
985     Molecule* mol;
986 gezelter 2
987 gezelter 246 Vector3d comVel(0.0);
988     double totalMass = 0.0;
989 gezelter 2
990 gezelter 246
991     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
992 gezelter 507 double mass = mol->getMass();
993     totalMass += mass;
994     comVel += mass * mol->getComVel();
995 gezelter 246 }
996 gezelter 2
997 gezelter 246 #ifdef IS_MPI
998     double tmpMass = totalMass;
999     Vector3d tmpComVel(comVel);
1000     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1001     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1002     #endif
1003    
1004     comVel /= totalMass;
1005    
1006     return comVel;
1007 gezelter 507 }
1008 gezelter 2
1009 gezelter 507 Vector3d SimInfo::getCom(){
1010 gezelter 246 SimInfo::MoleculeIterator i;
1011     Molecule* mol;
1012 gezelter 2
1013 gezelter 246 Vector3d com(0.0);
1014     double totalMass = 0.0;
1015    
1016     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1017 gezelter 507 double mass = mol->getMass();
1018     totalMass += mass;
1019     com += mass * mol->getCom();
1020 gezelter 246 }
1021 gezelter 2
1022     #ifdef IS_MPI
1023 gezelter 246 double tmpMass = totalMass;
1024     Vector3d tmpCom(com);
1025     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1026     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1027 gezelter 2 #endif
1028    
1029 gezelter 246 com /= totalMass;
1030 gezelter 2
1031 gezelter 246 return com;
1032 gezelter 2
1033 gezelter 507 }
1034 gezelter 246
1035 gezelter 507 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1036 gezelter 246
1037     return o;
1038 gezelter 507 }
1039 chuckv 555
1040    
1041     /*
1042     Returns center of mass and center of mass velocity in one function call.
1043     */
1044    
1045     void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1046     SimInfo::MoleculeIterator i;
1047     Molecule* mol;
1048    
1049    
1050     double totalMass = 0.0;
1051    
1052 gezelter 246
1053 chuckv 555 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1054     double mass = mol->getMass();
1055     totalMass += mass;
1056     com += mass * mol->getCom();
1057     comVel += mass * mol->getComVel();
1058     }
1059    
1060     #ifdef IS_MPI
1061     double tmpMass = totalMass;
1062     Vector3d tmpCom(com);
1063     Vector3d tmpComVel(comVel);
1064     MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1065     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1066     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1067     #endif
1068    
1069     com /= totalMass;
1070     comVel /= totalMass;
1071     }
1072    
1073     /*
1074     Return intertia tensor for entire system and angular momentum Vector.
1075 chuckv 557
1076    
1077     [ Ixx -Ixy -Ixz ]
1078     J =| -Iyx Iyy -Iyz |
1079     [ -Izx -Iyz Izz ]
1080 chuckv 555 */
1081    
1082     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1083    
1084    
1085     double xx = 0.0;
1086     double yy = 0.0;
1087     double zz = 0.0;
1088     double xy = 0.0;
1089     double xz = 0.0;
1090     double yz = 0.0;
1091     Vector3d com(0.0);
1092     Vector3d comVel(0.0);
1093    
1094     getComAll(com, comVel);
1095    
1096     SimInfo::MoleculeIterator i;
1097     Molecule* mol;
1098    
1099     Vector3d thisq(0.0);
1100     Vector3d thisv(0.0);
1101    
1102     double thisMass = 0.0;
1103    
1104    
1105    
1106    
1107     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1108    
1109     thisq = mol->getCom()-com;
1110     thisv = mol->getComVel()-comVel;
1111     thisMass = mol->getMass();
1112     // Compute moment of intertia coefficients.
1113     xx += thisq[0]*thisq[0]*thisMass;
1114     yy += thisq[1]*thisq[1]*thisMass;
1115     zz += thisq[2]*thisq[2]*thisMass;
1116    
1117     // compute products of intertia
1118     xy += thisq[0]*thisq[1]*thisMass;
1119     xz += thisq[0]*thisq[2]*thisMass;
1120     yz += thisq[1]*thisq[2]*thisMass;
1121    
1122     angularMomentum += cross( thisq, thisv ) * thisMass;
1123    
1124     }
1125    
1126    
1127     inertiaTensor(0,0) = yy + zz;
1128     inertiaTensor(0,1) = -xy;
1129     inertiaTensor(0,2) = -xz;
1130     inertiaTensor(1,0) = -xy;
1131 chuckv 557 inertiaTensor(1,1) = xx + zz;
1132 chuckv 555 inertiaTensor(1,2) = -yz;
1133     inertiaTensor(2,0) = -xz;
1134     inertiaTensor(2,1) = -yz;
1135     inertiaTensor(2,2) = xx + yy;
1136    
1137     #ifdef IS_MPI
1138     Mat3x3d tmpI(inertiaTensor);
1139     Vector3d tmpAngMom;
1140     MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1141     MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1142     #endif
1143    
1144     return;
1145     }
1146    
1147     //Returns the angular momentum of the system
1148     Vector3d SimInfo::getAngularMomentum(){
1149    
1150     Vector3d com(0.0);
1151     Vector3d comVel(0.0);
1152     Vector3d angularMomentum(0.0);
1153    
1154     getComAll(com,comVel);
1155    
1156     SimInfo::MoleculeIterator i;
1157     Molecule* mol;
1158    
1159 chuckv 557 Vector3d thisr(0.0);
1160     Vector3d thisp(0.0);
1161 chuckv 555
1162 chuckv 557 double thisMass;
1163 chuckv 555
1164     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1165 chuckv 557 thisMass = mol->getMass();
1166     thisr = mol->getCom()-com;
1167     thisp = (mol->getComVel()-comVel)*thisMass;
1168 chuckv 555
1169 chuckv 557 angularMomentum += cross( thisr, thisp );
1170    
1171 chuckv 555 }
1172    
1173     #ifdef IS_MPI
1174     Vector3d tmpAngMom;
1175     MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1176     #endif
1177    
1178     return angularMomentum;
1179     }
1180    
1181    
1182 gezelter 246 }//end namespace oopse
1183