ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
Revision: 1287
Committed: Wed Sep 10 18:11:32 2008 UTC (16 years, 7 months ago) by gezelter
Original Path: trunk/src/brains/SimInfo.cpp
File size: 52334 byte(s)
Log Message:
more changes for 1-2, 1-3, 1-4 interactions plus some initialization-ordering
fixes to make gcc -Wall happier.

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42     /**
43     * @file SimInfo.cpp
44     * @author tlin
45     * @date 11/02/2004
46     * @version 1.0
47     */
48 gezelter 2
49 gezelter 246 #include <algorithm>
50     #include <set>
51 tim 749 #include <map>
52 gezelter 2
53 tim 3 #include "brains/SimInfo.hpp"
54 gezelter 246 #include "math/Vector3.hpp"
55     #include "primitives/Molecule.hpp"
56 tim 1024 #include "primitives/StuntDouble.hpp"
57 gezelter 586 #include "UseTheForce/fCutoffPolicy.h"
58 chrisfen 606 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 chrisfen 716 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 chrisfen 726 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 gezelter 246 #include "UseTheForce/doForces_interface.h"
62 chuckv 1095 #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 chrisfen 610 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 chrisfen 726 #include "UseTheForce/DarkSide/switcheroo_interface.h"
65 gezelter 246 #include "utils/MemoryUtils.hpp"
66 tim 3 #include "utils/simError.h"
67 tim 316 #include "selection/SelectionManager.hpp"
68 chuckv 834 #include "io/ForceFieldOptions.hpp"
69     #include "UseTheForce/ForceField.hpp"
70 gezelter 2
71 chuckv 1095
72 gezelter 246 #ifdef IS_MPI
73     #include "UseTheForce/mpiComponentPlan.h"
74     #include "UseTheForce/DarkSide/simParallel_interface.h"
75     #endif
76 gezelter 2
77 gezelter 246 namespace oopse {
78 tim 749 std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79     std::map<int, std::set<int> >::iterator i = container.find(index);
80     std::set<int> result;
81     if (i != container.end()) {
82     result = i->second;
83     }
84 gezelter 2
85 tim 749 return result;
86     }
87    
88 tim 770 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
89     forceField_(ff), simParams_(simParams),
90 gezelter 945 ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91 gezelter 507 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92     nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93 gezelter 1277 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0),
94     nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
95     nConstraints_(0), sman_(NULL), fortranInitialized_(false),
96     calcBoxDipole_(false), useAtomicVirial_(true) {
97 gezelter 2
98 gezelter 1277
99 gezelter 507 MoleculeStamp* molStamp;
100     int nMolWithSameStamp;
101     int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
102 chrisfen 645 int nGroups = 0; //total cutoff groups defined in meta-data file
103 gezelter 507 CutoffGroupStamp* cgStamp;
104     RigidBodyStamp* rbStamp;
105     int nRigidAtoms = 0;
106 gezelter 1277
107 tim 770 std::vector<Component*> components = simParams->getComponents();
108    
109     for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
110     molStamp = (*i)->getMoleculeStamp();
111     nMolWithSameStamp = (*i)->getNMol();
112 gezelter 246
113     addMoleculeStamp(molStamp, nMolWithSameStamp);
114 gezelter 2
115 gezelter 246 //calculate atoms in molecules
116     nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
117 gezelter 2
118 gezelter 246 //calculate atoms in cutoff groups
119     int nAtomsInGroups = 0;
120     int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
121    
122     for (int j=0; j < nCutoffGroupsInStamp; j++) {
123 tim 770 cgStamp = molStamp->getCutoffGroupStamp(j);
124 gezelter 507 nAtomsInGroups += cgStamp->getNMembers();
125 gezelter 246 }
126 gezelter 2
127 gezelter 246 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
128 chrisfen 645
129 gezelter 246 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
130 gezelter 2
131 gezelter 246 //calculate atoms in rigid bodies
132     int nAtomsInRigidBodies = 0;
133 tim 274 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
134 gezelter 246
135     for (int j=0; j < nRigidBodiesInStamp; j++) {
136 tim 770 rbStamp = molStamp->getRigidBodyStamp(j);
137 gezelter 507 nAtomsInRigidBodies += rbStamp->getNMembers();
138 gezelter 246 }
139 gezelter 2
140 gezelter 246 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
141     nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
142    
143 gezelter 507 }
144 chrisfen 143
145 chrisfen 645 //every free atom (atom does not belong to cutoff groups) is a cutoff
146     //group therefore the total number of cutoff groups in the system is
147     //equal to the total number of atoms minus number of atoms belong to
148     //cutoff group defined in meta-data file plus the number of cutoff
149     //groups defined in meta-data file
150 gezelter 507 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
151 gezelter 2
152 chrisfen 645 //every free atom (atom does not belong to rigid bodies) is an
153     //integrable object therefore the total number of integrable objects
154     //in the system is equal to the total number of atoms minus number of
155     //atoms belong to rigid body defined in meta-data file plus the number
156     //of rigid bodies defined in meta-data file
157     nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
158     + nGlobalRigidBodies_;
159    
160 gezelter 507 nGlobalMols_ = molStampIds_.size();
161     molToProcMap_.resize(nGlobalMols_);
162     }
163 gezelter 2
164 gezelter 507 SimInfo::~SimInfo() {
165 tim 398 std::map<int, Molecule*>::iterator i;
166     for (i = molecules_.begin(); i != molecules_.end(); ++i) {
167 gezelter 507 delete i->second;
168 tim 398 }
169     molecules_.clear();
170 tim 490
171 gezelter 246 delete sman_;
172     delete simParams_;
173     delete forceField_;
174 gezelter 507 }
175 gezelter 2
176 gezelter 507 int SimInfo::getNGlobalConstraints() {
177 gezelter 246 int nGlobalConstraints;
178     #ifdef IS_MPI
179     MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
180     MPI_COMM_WORLD);
181     #else
182     nGlobalConstraints = nConstraints_;
183     #endif
184     return nGlobalConstraints;
185 gezelter 507 }
186 gezelter 2
187 gezelter 507 bool SimInfo::addMolecule(Molecule* mol) {
188 gezelter 246 MoleculeIterator i;
189 gezelter 2
190 gezelter 246 i = molecules_.find(mol->getGlobalIndex());
191     if (i == molecules_.end() ) {
192 gezelter 2
193 gezelter 507 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
194 gezelter 246
195 gezelter 507 nAtoms_ += mol->getNAtoms();
196     nBonds_ += mol->getNBonds();
197     nBends_ += mol->getNBends();
198     nTorsions_ += mol->getNTorsions();
199 gezelter 1277 nInversions_ += mol->getNInversions();
200 gezelter 507 nRigidBodies_ += mol->getNRigidBodies();
201     nIntegrableObjects_ += mol->getNIntegrableObjects();
202     nCutoffGroups_ += mol->getNCutoffGroups();
203     nConstraints_ += mol->getNConstraintPairs();
204 gezelter 2
205 gezelter 1287 addInteractionPairs(mol);
206    
207 gezelter 507 return true;
208 gezelter 246 } else {
209 gezelter 507 return false;
210 gezelter 246 }
211 gezelter 507 }
212 gezelter 2
213 gezelter 507 bool SimInfo::removeMolecule(Molecule* mol) {
214 gezelter 246 MoleculeIterator i;
215     i = molecules_.find(mol->getGlobalIndex());
216 gezelter 2
217 gezelter 246 if (i != molecules_.end() ) {
218 gezelter 2
219 gezelter 507 assert(mol == i->second);
220 gezelter 246
221 gezelter 507 nAtoms_ -= mol->getNAtoms();
222     nBonds_ -= mol->getNBonds();
223     nBends_ -= mol->getNBends();
224     nTorsions_ -= mol->getNTorsions();
225 gezelter 1277 nInversions_ -= mol->getNInversions();
226 gezelter 507 nRigidBodies_ -= mol->getNRigidBodies();
227     nIntegrableObjects_ -= mol->getNIntegrableObjects();
228     nCutoffGroups_ -= mol->getNCutoffGroups();
229     nConstraints_ -= mol->getNConstraintPairs();
230 gezelter 2
231 gezelter 1287 removeInteractionPairs(mol);
232 gezelter 507 molecules_.erase(mol->getGlobalIndex());
233 gezelter 2
234 gezelter 507 delete mol;
235 gezelter 246
236 gezelter 507 return true;
237 gezelter 246 } else {
238 gezelter 507 return false;
239 gezelter 246 }
240    
241    
242 gezelter 507 }
243 gezelter 246
244    
245 gezelter 507 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
246 gezelter 246 i = molecules_.begin();
247     return i == molecules_.end() ? NULL : i->second;
248 gezelter 507 }
249 gezelter 246
250 gezelter 507 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
251 gezelter 246 ++i;
252     return i == molecules_.end() ? NULL : i->second;
253 gezelter 507 }
254 gezelter 2
255    
256 gezelter 507 void SimInfo::calcNdf() {
257 gezelter 246 int ndf_local;
258     MoleculeIterator i;
259     std::vector<StuntDouble*>::iterator j;
260     Molecule* mol;
261     StuntDouble* integrableObject;
262 gezelter 2
263 gezelter 246 ndf_local = 0;
264    
265     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
266 gezelter 507 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
267     integrableObject = mol->nextIntegrableObject(j)) {
268 gezelter 2
269 gezelter 507 ndf_local += 3;
270 gezelter 2
271 gezelter 507 if (integrableObject->isDirectional()) {
272     if (integrableObject->isLinear()) {
273     ndf_local += 2;
274     } else {
275     ndf_local += 3;
276     }
277     }
278 gezelter 246
279 tim 770 }
280     }
281 gezelter 246
282     // n_constraints is local, so subtract them on each processor
283     ndf_local -= nConstraints_;
284    
285     #ifdef IS_MPI
286     MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
287     #else
288     ndf_ = ndf_local;
289     #endif
290    
291     // nZconstraints_ is global, as are the 3 COM translations for the
292     // entire system:
293     ndf_ = ndf_ - 3 - nZconstraint_;
294    
295 gezelter 507 }
296 gezelter 2
297 gezelter 945 int SimInfo::getFdf() {
298     #ifdef IS_MPI
299     MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
300     #else
301     fdf_ = fdf_local;
302     #endif
303     return fdf_;
304     }
305    
306 gezelter 507 void SimInfo::calcNdfRaw() {
307 gezelter 246 int ndfRaw_local;
308 gezelter 2
309 gezelter 246 MoleculeIterator i;
310     std::vector<StuntDouble*>::iterator j;
311     Molecule* mol;
312     StuntDouble* integrableObject;
313    
314     // Raw degrees of freedom that we have to set
315     ndfRaw_local = 0;
316    
317     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
318 gezelter 507 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
319     integrableObject = mol->nextIntegrableObject(j)) {
320 gezelter 246
321 gezelter 507 ndfRaw_local += 3;
322 gezelter 246
323 gezelter 507 if (integrableObject->isDirectional()) {
324     if (integrableObject->isLinear()) {
325     ndfRaw_local += 2;
326     } else {
327     ndfRaw_local += 3;
328     }
329     }
330 gezelter 246
331 gezelter 507 }
332 gezelter 246 }
333    
334     #ifdef IS_MPI
335     MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
336     #else
337     ndfRaw_ = ndfRaw_local;
338     #endif
339 gezelter 507 }
340 gezelter 2
341 gezelter 507 void SimInfo::calcNdfTrans() {
342 gezelter 246 int ndfTrans_local;
343 gezelter 2
344 gezelter 246 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
345 gezelter 2
346    
347 gezelter 246 #ifdef IS_MPI
348     MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
349     #else
350     ndfTrans_ = ndfTrans_local;
351     #endif
352 gezelter 2
353 gezelter 246 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
354    
355 gezelter 507 }
356 gezelter 2
357 gezelter 1287 void SimInfo::addInteractionPairs(Molecule* mol) {
358     ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
359 gezelter 246 std::vector<Bond*>::iterator bondIter;
360     std::vector<Bend*>::iterator bendIter;
361     std::vector<Torsion*>::iterator torsionIter;
362 gezelter 1277 std::vector<Inversion*>::iterator inversionIter;
363 gezelter 246 Bond* bond;
364     Bend* bend;
365     Torsion* torsion;
366 gezelter 1277 Inversion* inversion;
367 gezelter 246 int a;
368     int b;
369     int c;
370     int d;
371 tim 749
372 gezelter 1287 // atomGroups can be used to add special interaction maps between
373     // groups of atoms that are in two separate rigid bodies.
374     // However, most site-site interactions between two rigid bodies
375     // are probably not special, just the ones between the physically
376     // bonded atoms. Interactions *within* a single rigid body should
377     // always be excluded. These are done at the bottom of this
378     // function.
379    
380 tim 749 std::map<int, std::set<int> > atomGroups;
381     Molecule::RigidBodyIterator rbIter;
382     RigidBody* rb;
383     Molecule::IntegrableObjectIterator ii;
384     StuntDouble* integrableObject;
385 gezelter 246
386 gezelter 1287 for (integrableObject = mol->beginIntegrableObject(ii);
387     integrableObject != NULL;
388     integrableObject = mol->nextIntegrableObject(ii)) {
389    
390 tim 749 if (integrableObject->isRigidBody()) {
391 gezelter 1287 rb = static_cast<RigidBody*>(integrableObject);
392     std::vector<Atom*> atoms = rb->getAtoms();
393     std::set<int> rigidAtoms;
394     for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
395     rigidAtoms.insert(atoms[i]->getGlobalIndex());
396     }
397     for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
398     atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
399     }
400 tim 749 } else {
401     std::set<int> oneAtomSet;
402     oneAtomSet.insert(integrableObject->getGlobalIndex());
403     atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
404     }
405     }
406 gezelter 1287
407     for (bond= mol->beginBond(bondIter); bond != NULL;
408     bond = mol->nextBond(bondIter)) {
409 tim 749
410 gezelter 1287 a = bond->getAtomA()->getGlobalIndex();
411     b = bond->getAtomB()->getGlobalIndex();
412 tim 749
413 gezelter 1287 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
414     oneTwoInteractions_.addPair(a, b);
415     } else {
416     excludedInteractions_.addPair(a, b);
417     }
418 gezelter 246 }
419 gezelter 2
420 gezelter 1287 for (bend= mol->beginBend(bendIter); bend != NULL;
421     bend = mol->nextBend(bendIter)) {
422    
423 gezelter 507 a = bend->getAtomA()->getGlobalIndex();
424     b = bend->getAtomB()->getGlobalIndex();
425     c = bend->getAtomC()->getGlobalIndex();
426 gezelter 1287
427     if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
428     oneTwoInteractions_.addPair(a, b);
429     oneTwoInteractions_.addPair(b, c);
430     } else {
431     excludedInteractions_.addPair(a, b);
432     excludedInteractions_.addPair(b, c);
433     }
434 gezelter 2
435 gezelter 1287 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
436     oneThreeInteractions_.addPair(a, c);
437     } else {
438     excludedInteractions_.addPair(a, c);
439     }
440 gezelter 246 }
441 gezelter 2
442 gezelter 1287 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
443     torsion = mol->nextTorsion(torsionIter)) {
444    
445 gezelter 507 a = torsion->getAtomA()->getGlobalIndex();
446     b = torsion->getAtomB()->getGlobalIndex();
447     c = torsion->getAtomC()->getGlobalIndex();
448 gezelter 1287 d = torsion->getAtomD()->getGlobalIndex();
449    
450     if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
451     oneTwoInteractions_.addPair(a, b);
452     oneTwoInteractions_.addPair(b, c);
453     oneTwoInteractions_.addPair(c, d);
454     } else {
455     excludedInteractions_.addPair(a, b);
456     excludedInteractions_.addPair(b, c);
457     excludedInteractions_.addPair(c, d);
458     }
459 gezelter 2
460 gezelter 1287 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
461     oneThreeInteractions_.addPair(a, c);
462     oneThreeInteractions_.addPair(b, d);
463     } else {
464     excludedInteractions_.addPair(a, c);
465     excludedInteractions_.addPair(b, d);
466     }
467 tim 749
468 gezelter 1287 if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
469     oneFourInteractions_.addPair(a, d);
470     } else {
471     excludedInteractions_.addPair(a, d);
472     }
473 gezelter 2 }
474    
475 gezelter 1277 for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
476     inversion = mol->nextInversion(inversionIter)) {
477 gezelter 1287
478 gezelter 1277 a = inversion->getAtomA()->getGlobalIndex();
479     b = inversion->getAtomB()->getGlobalIndex();
480     c = inversion->getAtomC()->getGlobalIndex();
481     d = inversion->getAtomD()->getGlobalIndex();
482    
483 gezelter 1287 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
484     oneTwoInteractions_.addPair(a, b);
485     oneTwoInteractions_.addPair(a, c);
486     oneTwoInteractions_.addPair(a, d);
487     } else {
488     excludedInteractions_.addPair(a, b);
489     excludedInteractions_.addPair(a, c);
490     excludedInteractions_.addPair(a, d);
491     }
492 gezelter 1277
493 gezelter 1287 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
494     oneThreeInteractions_.addPair(b, c);
495     oneThreeInteractions_.addPair(b, d);
496     oneThreeInteractions_.addPair(c, d);
497     } else {
498     excludedInteractions_.addPair(b, c);
499     excludedInteractions_.addPair(b, d);
500     excludedInteractions_.addPair(c, d);
501     }
502 gezelter 1277 }
503    
504 gezelter 1287 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
505     rb = mol->nextRigidBody(rbIter)) {
506 gezelter 507 std::vector<Atom*> atoms = rb->getAtoms();
507 gezelter 1287 for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
508     for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
509 gezelter 507 a = atoms[i]->getGlobalIndex();
510     b = atoms[j]->getGlobalIndex();
511 gezelter 1287 excludedInteractions_.addPair(a, b);
512 gezelter 507 }
513     }
514 tim 430 }
515    
516 gezelter 507 }
517 gezelter 246
518 gezelter 1287 void SimInfo::removeInteractionPairs(Molecule* mol) {
519     ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
520 gezelter 246 std::vector<Bond*>::iterator bondIter;
521     std::vector<Bend*>::iterator bendIter;
522     std::vector<Torsion*>::iterator torsionIter;
523 gezelter 1277 std::vector<Inversion*>::iterator inversionIter;
524 gezelter 246 Bond* bond;
525     Bend* bend;
526     Torsion* torsion;
527 gezelter 1277 Inversion* inversion;
528 gezelter 246 int a;
529     int b;
530     int c;
531     int d;
532 tim 749
533     std::map<int, std::set<int> > atomGroups;
534     Molecule::RigidBodyIterator rbIter;
535     RigidBody* rb;
536     Molecule::IntegrableObjectIterator ii;
537     StuntDouble* integrableObject;
538 gezelter 246
539 gezelter 1287 for (integrableObject = mol->beginIntegrableObject(ii);
540     integrableObject != NULL;
541     integrableObject = mol->nextIntegrableObject(ii)) {
542    
543 tim 749 if (integrableObject->isRigidBody()) {
544 gezelter 1287 rb = static_cast<RigidBody*>(integrableObject);
545     std::vector<Atom*> atoms = rb->getAtoms();
546     std::set<int> rigidAtoms;
547     for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
548     rigidAtoms.insert(atoms[i]->getGlobalIndex());
549     }
550     for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
551     atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
552     }
553 tim 749 } else {
554     std::set<int> oneAtomSet;
555     oneAtomSet.insert(integrableObject->getGlobalIndex());
556     atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
557     }
558     }
559    
560 gezelter 1287 for (bond= mol->beginBond(bondIter); bond != NULL;
561     bond = mol->nextBond(bondIter)) {
562    
563     a = bond->getAtomA()->getGlobalIndex();
564     b = bond->getAtomB()->getGlobalIndex();
565 tim 749
566 gezelter 1287 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
567     oneTwoInteractions_.removePair(a, b);
568     } else {
569     excludedInteractions_.removePair(a, b);
570     }
571 gezelter 2 }
572 gezelter 246
573 gezelter 1287 for (bend= mol->beginBend(bendIter); bend != NULL;
574     bend = mol->nextBend(bendIter)) {
575    
576 gezelter 507 a = bend->getAtomA()->getGlobalIndex();
577     b = bend->getAtomB()->getGlobalIndex();
578     c = bend->getAtomC()->getGlobalIndex();
579 gezelter 1287
580     if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
581     oneTwoInteractions_.removePair(a, b);
582     oneTwoInteractions_.removePair(b, c);
583     } else {
584     excludedInteractions_.removePair(a, b);
585     excludedInteractions_.removePair(b, c);
586     }
587 gezelter 246
588 gezelter 1287 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
589     oneThreeInteractions_.removePair(a, c);
590     } else {
591     excludedInteractions_.removePair(a, c);
592     }
593 gezelter 2 }
594 gezelter 246
595 gezelter 1287 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
596     torsion = mol->nextTorsion(torsionIter)) {
597    
598 gezelter 507 a = torsion->getAtomA()->getGlobalIndex();
599     b = torsion->getAtomB()->getGlobalIndex();
600     c = torsion->getAtomC()->getGlobalIndex();
601 gezelter 1287 d = torsion->getAtomD()->getGlobalIndex();
602    
603     if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
604     oneTwoInteractions_.removePair(a, b);
605     oneTwoInteractions_.removePair(b, c);
606     oneTwoInteractions_.removePair(c, d);
607     } else {
608     excludedInteractions_.removePair(a, b);
609     excludedInteractions_.removePair(b, c);
610     excludedInteractions_.removePair(c, d);
611     }
612 gezelter 246
613 gezelter 1287 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
614     oneThreeInteractions_.removePair(a, c);
615     oneThreeInteractions_.removePair(b, d);
616     } else {
617     excludedInteractions_.removePair(a, c);
618     excludedInteractions_.removePair(b, d);
619     }
620 tim 749
621 gezelter 1287 if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
622     oneFourInteractions_.removePair(a, d);
623     } else {
624     excludedInteractions_.removePair(a, d);
625     }
626     }
627 tim 749
628 gezelter 1287 for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
629     inversion = mol->nextInversion(inversionIter)) {
630 tim 749
631 gezelter 1277 a = inversion->getAtomA()->getGlobalIndex();
632     b = inversion->getAtomB()->getGlobalIndex();
633     c = inversion->getAtomC()->getGlobalIndex();
634     d = inversion->getAtomD()->getGlobalIndex();
635    
636 gezelter 1287 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
637     oneTwoInteractions_.removePair(a, b);
638     oneTwoInteractions_.removePair(a, c);
639     oneTwoInteractions_.removePair(a, d);
640     } else {
641     excludedInteractions_.removePair(a, b);
642     excludedInteractions_.removePair(a, c);
643     excludedInteractions_.removePair(a, d);
644     }
645 gezelter 1277
646 gezelter 1287 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
647     oneThreeInteractions_.removePair(b, c);
648     oneThreeInteractions_.removePair(b, d);
649     oneThreeInteractions_.removePair(c, d);
650     } else {
651     excludedInteractions_.removePair(b, c);
652     excludedInteractions_.removePair(b, d);
653     excludedInteractions_.removePair(c, d);
654     }
655 gezelter 1277 }
656    
657 gezelter 1287 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
658     rb = mol->nextRigidBody(rbIter)) {
659 gezelter 507 std::vector<Atom*> atoms = rb->getAtoms();
660 gezelter 1287 for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
661     for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
662 gezelter 507 a = atoms[i]->getGlobalIndex();
663     b = atoms[j]->getGlobalIndex();
664 gezelter 1287 excludedInteractions_.removePair(a, b);
665 gezelter 507 }
666     }
667 tim 430 }
668 gezelter 1287
669 gezelter 507 }
670 gezelter 1287
671    
672 gezelter 507 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
673 gezelter 246 int curStampId;
674 gezelter 1287
675 gezelter 246 //index from 0
676     curStampId = moleculeStamps_.size();
677 gezelter 2
678 gezelter 246 moleculeStamps_.push_back(molStamp);
679     molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
680 gezelter 507 }
681 gezelter 2
682 gezelter 507 void SimInfo::update() {
683 gezelter 2
684 gezelter 246 setupSimType();
685 gezelter 2
686 gezelter 246 #ifdef IS_MPI
687     setupFortranParallel();
688     #endif
689 gezelter 2
690 gezelter 246 setupFortranSim();
691 gezelter 2
692 gezelter 246 //setup fortran force field
693     /** @deprecate */
694     int isError = 0;
695 chrisfen 598
696 chrisfen 1045 setupCutoff();
697    
698 chrisfen 603 setupElectrostaticSummationMethod( isError );
699 chrisfen 726 setupSwitchingFunction();
700 chrisfen 998 setupAccumulateBoxDipole();
701 chrisfen 598
702 gezelter 246 if(isError){
703 gezelter 507 sprintf( painCave.errMsg,
704     "ForceField error: There was an error initializing the forceField in fortran.\n" );
705     painCave.isFatal = 1;
706     simError();
707 gezelter 246 }
708 gezelter 2
709 gezelter 246 calcNdf();
710     calcNdfRaw();
711     calcNdfTrans();
712    
713     fortranInitialized_ = true;
714 gezelter 507 }
715 gezelter 2
716 gezelter 507 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
717 gezelter 246 SimInfo::MoleculeIterator mi;
718     Molecule* mol;
719     Molecule::AtomIterator ai;
720     Atom* atom;
721     std::set<AtomType*> atomTypes;
722 gezelter 2
723 gezelter 246 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
724 gezelter 2
725 gezelter 507 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
726     atomTypes.insert(atom->getAtomType());
727     }
728 gezelter 246
729     }
730 gezelter 2
731 gezelter 246 return atomTypes;
732 gezelter 507 }
733 gezelter 2
734 gezelter 507 void SimInfo::setupSimType() {
735 gezelter 246 std::set<AtomType*>::iterator i;
736     std::set<AtomType*> atomTypes;
737     atomTypes = getUniqueAtomTypes();
738 gezelter 2
739 gezelter 246 int useLennardJones = 0;
740     int useElectrostatic = 0;
741     int useEAM = 0;
742 chuckv 734 int useSC = 0;
743 gezelter 246 int useCharge = 0;
744     int useDirectional = 0;
745     int useDipole = 0;
746     int useGayBerne = 0;
747     int useSticky = 0;
748 chrisfen 523 int useStickyPower = 0;
749 gezelter 246 int useShape = 0;
750     int useFLARB = 0; //it is not in AtomType yet
751     int useDirectionalAtom = 0;
752     int useElectrostatics = 0;
753     //usePBC and useRF are from simParams
754 tim 665 int usePBC = simParams_->getUsePeriodicBoundaryConditions();
755 chrisfen 611 int useRF;
756 chrisfen 720 int useSF;
757 chrisfen 998 int useSP;
758     int useBoxDipole;
759 gezelter 1126
760 tim 665 std::string myMethod;
761 gezelter 2
762 chrisfen 611 // set the useRF logical
763 tim 665 useRF = 0;
764 chrisfen 720 useSF = 0;
765 gezelter 1078 useSP = 0;
766 chrisfen 691
767    
768 tim 665 if (simParams_->haveElectrostaticSummationMethod()) {
769 chrisfen 691 std::string myMethod = simParams_->getElectrostaticSummationMethod();
770     toUpper(myMethod);
771 chrisfen 998 if (myMethod == "REACTION_FIELD"){
772 gezelter 1078 useRF = 1;
773 chrisfen 998 } else if (myMethod == "SHIFTED_FORCE"){
774     useSF = 1;
775     } else if (myMethod == "SHIFTED_POTENTIAL"){
776     useSP = 1;
777 chrisfen 691 }
778 tim 665 }
779 chrisfen 998
780     if (simParams_->haveAccumulateBoxDipole())
781     if (simParams_->getAccumulateBoxDipole())
782     useBoxDipole = 1;
783 chrisfen 611
784 gezelter 1126 useAtomicVirial_ = simParams_->getUseAtomicVirial();
785    
786 gezelter 246 //loop over all of the atom types
787     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
788 gezelter 507 useLennardJones |= (*i)->isLennardJones();
789     useElectrostatic |= (*i)->isElectrostatic();
790     useEAM |= (*i)->isEAM();
791 chuckv 734 useSC |= (*i)->isSC();
792 gezelter 507 useCharge |= (*i)->isCharge();
793     useDirectional |= (*i)->isDirectional();
794     useDipole |= (*i)->isDipole();
795     useGayBerne |= (*i)->isGayBerne();
796     useSticky |= (*i)->isSticky();
797 chrisfen 523 useStickyPower |= (*i)->isStickyPower();
798 gezelter 507 useShape |= (*i)->isShape();
799 gezelter 246 }
800 gezelter 2
801 chrisfen 523 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
802 gezelter 507 useDirectionalAtom = 1;
803 gezelter 246 }
804 gezelter 2
805 gezelter 246 if (useCharge || useDipole) {
806 gezelter 507 useElectrostatics = 1;
807 gezelter 246 }
808 gezelter 2
809 gezelter 246 #ifdef IS_MPI
810     int temp;
811 gezelter 2
812 gezelter 246 temp = usePBC;
813     MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
814 gezelter 2
815 gezelter 246 temp = useDirectionalAtom;
816     MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
817 gezelter 2
818 gezelter 246 temp = useLennardJones;
819     MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
820 gezelter 2
821 gezelter 246 temp = useElectrostatics;
822     MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
823 gezelter 2
824 gezelter 246 temp = useCharge;
825     MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
826 gezelter 2
827 gezelter 246 temp = useDipole;
828     MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
829 gezelter 2
830 gezelter 246 temp = useSticky;
831     MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
832 gezelter 2
833 chrisfen 523 temp = useStickyPower;
834     MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
835    
836 gezelter 246 temp = useGayBerne;
837     MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
838 gezelter 2
839 gezelter 246 temp = useEAM;
840     MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
841 gezelter 2
842 chuckv 734 temp = useSC;
843     MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
844    
845 gezelter 246 temp = useShape;
846     MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
847    
848     temp = useFLARB;
849     MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
850    
851 chrisfen 611 temp = useRF;
852     MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
853    
854 chrisfen 720 temp = useSF;
855 chrisfen 998 MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
856 chrisfen 705
857 chrisfen 998 temp = useSP;
858     MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
859    
860     temp = useBoxDipole;
861     MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
862    
863 gezelter 1126 temp = useAtomicVirial_;
864     MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
865    
866 gezelter 2 #endif
867    
868 gezelter 246 fInfo_.SIM_uses_PBC = usePBC;
869     fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
870     fInfo_.SIM_uses_LennardJones = useLennardJones;
871     fInfo_.SIM_uses_Electrostatics = useElectrostatics;
872     fInfo_.SIM_uses_Charges = useCharge;
873     fInfo_.SIM_uses_Dipoles = useDipole;
874     fInfo_.SIM_uses_Sticky = useSticky;
875 chrisfen 523 fInfo_.SIM_uses_StickyPower = useStickyPower;
876 gezelter 246 fInfo_.SIM_uses_GayBerne = useGayBerne;
877     fInfo_.SIM_uses_EAM = useEAM;
878 chuckv 734 fInfo_.SIM_uses_SC = useSC;
879 gezelter 246 fInfo_.SIM_uses_Shapes = useShape;
880     fInfo_.SIM_uses_FLARB = useFLARB;
881 chrisfen 611 fInfo_.SIM_uses_RF = useRF;
882 chrisfen 720 fInfo_.SIM_uses_SF = useSF;
883 chrisfen 998 fInfo_.SIM_uses_SP = useSP;
884     fInfo_.SIM_uses_BoxDipole = useBoxDipole;
885 gezelter 1126 fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
886 gezelter 507 }
887 gezelter 2
888 gezelter 507 void SimInfo::setupFortranSim() {
889 gezelter 246 int isError;
890 gezelter 1287 int nExclude, nOneTwo, nOneThree, nOneFour;
891 gezelter 246 std::vector<int> fortranGlobalGroupMembership;
892    
893     isError = 0;
894 gezelter 2
895 gezelter 246 //globalGroupMembership_ is filled by SimCreator
896     for (int i = 0; i < nGlobalAtoms_; i++) {
897 gezelter 507 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
898 gezelter 246 }
899 gezelter 2
900 gezelter 246 //calculate mass ratio of cutoff group
901 tim 963 std::vector<RealType> mfact;
902 gezelter 246 SimInfo::MoleculeIterator mi;
903     Molecule* mol;
904     Molecule::CutoffGroupIterator ci;
905     CutoffGroup* cg;
906     Molecule::AtomIterator ai;
907     Atom* atom;
908 tim 963 RealType totalMass;
909 gezelter 246
910     //to avoid memory reallocation, reserve enough space for mfact
911     mfact.reserve(getNCutoffGroups());
912 gezelter 2
913 gezelter 246 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
914 gezelter 507 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
915 gezelter 2
916 gezelter 507 totalMass = cg->getMass();
917     for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
918 chrisfen 645 // Check for massless groups - set mfact to 1 if true
919     if (totalMass != 0)
920     mfact.push_back(atom->getMass()/totalMass);
921     else
922     mfact.push_back( 1.0 );
923 gezelter 507 }
924     }
925 gezelter 246 }
926 gezelter 2
927 gezelter 246 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
928     std::vector<int> identArray;
929 gezelter 2
930 gezelter 246 //to avoid memory reallocation, reserve enough space identArray
931     identArray.reserve(getNAtoms());
932    
933     for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
934 gezelter 507 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
935     identArray.push_back(atom->getIdent());
936     }
937 gezelter 246 }
938 gezelter 2
939 gezelter 246 //fill molMembershipArray
940     //molMembershipArray is filled by SimCreator
941     std::vector<int> molMembershipArray(nGlobalAtoms_);
942     for (int i = 0; i < nGlobalAtoms_; i++) {
943 gezelter 507 molMembershipArray[i] = globalMolMembership_[i] + 1;
944 gezelter 246 }
945    
946     //setup fortran simulation
947 gezelter 1287
948     nExclude = excludedInteractions_.getSize();
949     nOneTwo = oneTwoInteractions_.getSize();
950     nOneThree = oneThreeInteractions_.getSize();
951     nOneFour = oneFourInteractions_.getSize();
952    
953     std::cerr << "exculdes:\n";
954     std::cerr << excludedInteractions_;
955     std::cerr << "\noneTwo:\n";
956     std::cerr << oneTwoInteractions_;
957     std::cerr << "\noneThree:\n";
958     std::cerr << oneThreeInteractions_;
959     std::cerr << "\noneFour:\n";
960     std::cerr << oneFourInteractions_;
961    
962     int* excludeList = excludedInteractions_.getPairList();
963     int* oneTwoList = oneTwoInteractions_.getPairList();
964     int* oneThreeList = oneThreeInteractions_.getPairList();
965     int* oneFourList = oneFourInteractions_.getPairList();
966    
967 gezelter 1241 setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
968 gezelter 1287 &nExclude, excludeList,
969     &nOneTwo, oneTwoList,
970     &nOneThree, oneThreeList,
971     &nOneFour, oneFourList,
972 gezelter 1241 &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
973     &fortranGlobalGroupMembership[0], &isError);
974    
975 gezelter 246 if( isError ){
976 gezelter 1241
977 gezelter 507 sprintf( painCave.errMsg,
978     "There was an error setting the simulation information in fortran.\n" );
979     painCave.isFatal = 1;
980     painCave.severity = OOPSE_ERROR;
981     simError();
982 gezelter 246 }
983 gezelter 1241
984    
985 gezelter 246 sprintf( checkPointMsg,
986 gezelter 507 "succesfully sent the simulation information to fortran.\n");
987 gezelter 1241
988     errorCheckPoint();
989    
990 chuckv 1095 // Setup number of neighbors in neighbor list if present
991     if (simParams_->haveNeighborListNeighbors()) {
992 chuckv 1121 int nlistNeighbors = simParams_->getNeighborListNeighbors();
993     setNeighbors(&nlistNeighbors);
994 chuckv 1095 }
995    
996    
997 gezelter 507 }
998 gezelter 2
999    
1000 gezelter 507 void SimInfo::setupFortranParallel() {
1001 gezelter 1241 #ifdef IS_MPI
1002 gezelter 246 //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
1003     std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
1004     std::vector<int> localToGlobalCutoffGroupIndex;
1005     SimInfo::MoleculeIterator mi;
1006     Molecule::AtomIterator ai;
1007     Molecule::CutoffGroupIterator ci;
1008     Molecule* mol;
1009     Atom* atom;
1010     CutoffGroup* cg;
1011     mpiSimData parallelData;
1012     int isError;
1013 gezelter 2
1014 gezelter 246 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1015 gezelter 2
1016 gezelter 507 //local index(index in DataStorge) of atom is important
1017     for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1018     localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1019     }
1020 gezelter 2
1021 gezelter 507 //local index of cutoff group is trivial, it only depends on the order of travesing
1022     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1023     localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1024     }
1025 gezelter 246
1026     }
1027 gezelter 2
1028 gezelter 246 //fill up mpiSimData struct
1029     parallelData.nMolGlobal = getNGlobalMolecules();
1030     parallelData.nMolLocal = getNMolecules();
1031     parallelData.nAtomsGlobal = getNGlobalAtoms();
1032     parallelData.nAtomsLocal = getNAtoms();
1033     parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
1034     parallelData.nGroupsLocal = getNCutoffGroups();
1035     parallelData.myNode = worldRank;
1036     MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
1037 gezelter 2
1038 gezelter 246 //pass mpiSimData struct and index arrays to fortran
1039     setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
1040     &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
1041     &localToGlobalCutoffGroupIndex[0], &isError);
1042 gezelter 2
1043 gezelter 246 if (isError) {
1044 gezelter 507 sprintf(painCave.errMsg,
1045     "mpiRefresh errror: fortran didn't like something we gave it.\n");
1046     painCave.isFatal = 1;
1047     simError();
1048 gezelter 246 }
1049 gezelter 2
1050 gezelter 246 sprintf(checkPointMsg, " mpiRefresh successful.\n");
1051 gezelter 1241 errorCheckPoint();
1052 gezelter 2
1053 gezelter 1241 #endif
1054 gezelter 507 }
1055 chrisfen 143
1056 gezelter 764 void SimInfo::setupCutoff() {
1057 gezelter 2
1058 chuckv 834 ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
1059    
1060 gezelter 764 // Check the cutoff policy
1061 chuckv 834 int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1062    
1063 chrisfen 1129 // Set LJ shifting bools to false
1064     ljsp_ = false;
1065     ljsf_ = false;
1066    
1067 chuckv 834 std::string myPolicy;
1068     if (forceFieldOptions_.haveCutoffPolicy()){
1069     myPolicy = forceFieldOptions_.getCutoffPolicy();
1070     }else if (simParams_->haveCutoffPolicy()) {
1071     myPolicy = simParams_->getCutoffPolicy();
1072     }
1073    
1074     if (!myPolicy.empty()){
1075 tim 665 toUpper(myPolicy);
1076 gezelter 586 if (myPolicy == "MIX") {
1077     cp = MIX_CUTOFF_POLICY;
1078     } else {
1079     if (myPolicy == "MAX") {
1080     cp = MAX_CUTOFF_POLICY;
1081     } else {
1082     if (myPolicy == "TRADITIONAL") {
1083     cp = TRADITIONAL_CUTOFF_POLICY;
1084     } else {
1085     // throw error
1086     sprintf( painCave.errMsg,
1087     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1088     painCave.isFatal = 1;
1089     simError();
1090     }
1091     }
1092     }
1093 gezelter 764 }
1094     notifyFortranCutoffPolicy(&cp);
1095 chuckv 629
1096 gezelter 764 // Check the Skin Thickness for neighborlists
1097 tim 963 RealType skin;
1098 gezelter 764 if (simParams_->haveSkinThickness()) {
1099     skin = simParams_->getSkinThickness();
1100     notifyFortranSkinThickness(&skin);
1101     }
1102    
1103     // Check if the cutoff was set explicitly:
1104     if (simParams_->haveCutoffRadius()) {
1105     rcut_ = simParams_->getCutoffRadius();
1106     if (simParams_->haveSwitchingRadius()) {
1107     rsw_ = simParams_->getSwitchingRadius();
1108     } else {
1109 chrisfen 878 if (fInfo_.SIM_uses_Charges |
1110     fInfo_.SIM_uses_Dipoles |
1111     fInfo_.SIM_uses_RF) {
1112    
1113     rsw_ = 0.85 * rcut_;
1114     sprintf(painCave.errMsg,
1115     "SimCreator Warning: No value was set for the switchingRadius.\n"
1116 chrisfen 879 "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1117 chrisfen 878 "\tswitchingRadius = %f. for this simulation\n", rsw_);
1118     painCave.isFatal = 0;
1119     simError();
1120     } else {
1121     rsw_ = rcut_;
1122     sprintf(painCave.errMsg,
1123     "SimCreator Warning: No value was set for the switchingRadius.\n"
1124     "\tOOPSE will use the same value as the cutoffRadius.\n"
1125     "\tswitchingRadius = %f. for this simulation\n", rsw_);
1126     painCave.isFatal = 0;
1127     simError();
1128     }
1129 chrisfen 879 }
1130 chrisfen 1129
1131     if (simParams_->haveElectrostaticSummationMethod()) {
1132     std::string myMethod = simParams_->getElectrostaticSummationMethod();
1133     toUpper(myMethod);
1134    
1135     if (myMethod == "SHIFTED_POTENTIAL") {
1136     ljsp_ = true;
1137     } else if (myMethod == "SHIFTED_FORCE") {
1138     ljsf_ = true;
1139     }
1140     }
1141     notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1142 chrisfen 879
1143 gezelter 764 } else {
1144    
1145     // For electrostatic atoms, we'll assume a large safe value:
1146     if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1147     sprintf(painCave.errMsg,
1148     "SimCreator Warning: No value was set for the cutoffRadius.\n"
1149     "\tOOPSE will use a default value of 15.0 angstroms"
1150     "\tfor the cutoffRadius.\n");
1151     painCave.isFatal = 0;
1152     simError();
1153     rcut_ = 15.0;
1154    
1155     if (simParams_->haveElectrostaticSummationMethod()) {
1156     std::string myMethod = simParams_->getElectrostaticSummationMethod();
1157     toUpper(myMethod);
1158 chrisfen 1129
1159     // For the time being, we're tethering the LJ shifted behavior to the
1160     // electrostaticSummationMethod keyword options
1161     if (myMethod == "SHIFTED_POTENTIAL") {
1162     ljsp_ = true;
1163     } else if (myMethod == "SHIFTED_FORCE") {
1164     ljsf_ = true;
1165     }
1166     if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1167 gezelter 764 if (simParams_->haveSwitchingRadius()){
1168     sprintf(painCave.errMsg,
1169     "SimInfo Warning: A value was set for the switchingRadius\n"
1170     "\teven though the electrostaticSummationMethod was\n"
1171     "\tset to %s\n", myMethod.c_str());
1172     painCave.isFatal = 1;
1173     simError();
1174     }
1175     }
1176     }
1177    
1178     if (simParams_->haveSwitchingRadius()){
1179     rsw_ = simParams_->getSwitchingRadius();
1180     } else {
1181     sprintf(painCave.errMsg,
1182     "SimCreator Warning: No value was set for switchingRadius.\n"
1183     "\tOOPSE will use a default value of\n"
1184     "\t0.85 * cutoffRadius for the switchingRadius\n");
1185     painCave.isFatal = 0;
1186     simError();
1187     rsw_ = 0.85 * rcut_;
1188     }
1189 chrisfen 1129
1190     notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1191    
1192 gezelter 764 } else {
1193     // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1194     // We'll punt and let fortran figure out the cutoffs later.
1195    
1196     notifyFortranYouAreOnYourOwn();
1197 chuckv 629
1198 gezelter 764 }
1199 chuckv 629 }
1200 gezelter 507 }
1201 gezelter 2
1202 chrisfen 603 void SimInfo::setupElectrostaticSummationMethod( int isError ) {
1203 chrisfen 598
1204     int errorOut;
1205 chrisfen 603 int esm = NONE;
1206 chrisfen 709 int sm = UNDAMPED;
1207 tim 963 RealType alphaVal;
1208     RealType dielectric;
1209 chrisfen 1045
1210 chrisfen 598 errorOut = isError;
1211    
1212 chrisfen 603 if (simParams_->haveElectrostaticSummationMethod()) {
1213 chrisfen 604 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1214 tim 665 toUpper(myMethod);
1215 chrisfen 603 if (myMethod == "NONE") {
1216     esm = NONE;
1217 chrisfen 598 } else {
1218 chrisfen 709 if (myMethod == "SWITCHING_FUNCTION") {
1219     esm = SWITCHING_FUNCTION;
1220 chrisfen 598 } else {
1221 chrisfen 709 if (myMethod == "SHIFTED_POTENTIAL") {
1222     esm = SHIFTED_POTENTIAL;
1223     } else {
1224     if (myMethod == "SHIFTED_FORCE") {
1225     esm = SHIFTED_FORCE;
1226 chrisfen 598 } else {
1227 chrisfen 1050 if (myMethod == "REACTION_FIELD") {
1228 chrisfen 709 esm = REACTION_FIELD;
1229 chrisfen 1050 dielectric = simParams_->getDielectric();
1230     if (!simParams_->haveDielectric()) {
1231     // throw warning
1232     sprintf( painCave.errMsg,
1233     "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1234     "\tA default value of %f will be used for the dielectric.\n", dielectric);
1235     painCave.isFatal = 0;
1236     simError();
1237     }
1238 chrisfen 709 } else {
1239     // throw error
1240     sprintf( painCave.errMsg,
1241 gezelter 764 "SimInfo error: Unknown electrostaticSummationMethod.\n"
1242     "\t(Input file specified %s .)\n"
1243     "\telectrostaticSummationMethod must be one of: \"none\",\n"
1244     "\t\"shifted_potential\", \"shifted_force\", or \n"
1245     "\t\"reaction_field\".\n", myMethod.c_str() );
1246 chrisfen 709 painCave.isFatal = 1;
1247     simError();
1248     }
1249     }
1250     }
1251 chrisfen 598 }
1252     }
1253     }
1254 chrisfen 709
1255 chrisfen 716 if (simParams_->haveElectrostaticScreeningMethod()) {
1256     std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1257 chrisfen 709 toUpper(myScreen);
1258     if (myScreen == "UNDAMPED") {
1259     sm = UNDAMPED;
1260     } else {
1261     if (myScreen == "DAMPED") {
1262     sm = DAMPED;
1263     if (!simParams_->haveDampingAlpha()) {
1264 chrisfen 1045 // first set a cutoff dependent alpha value
1265     // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1266     alphaVal = 0.5125 - rcut_* 0.025;
1267     // for values rcut > 20.5, alpha is zero
1268     if (alphaVal < 0) alphaVal = 0;
1269    
1270     // throw warning
1271 chrisfen 709 sprintf( painCave.errMsg,
1272 gezelter 764 "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1273 chrisfen 1045 "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1274 chrisfen 709 painCave.isFatal = 0;
1275     simError();
1276 chrisfen 1089 } else {
1277     alphaVal = simParams_->getDampingAlpha();
1278 chrisfen 709 }
1279 chrisfen 1089
1280 chrisfen 716 } else {
1281     // throw error
1282     sprintf( painCave.errMsg,
1283 gezelter 764 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1284     "\t(Input file specified %s .)\n"
1285     "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1286     "or \"damped\".\n", myScreen.c_str() );
1287 chrisfen 716 painCave.isFatal = 1;
1288     simError();
1289 chrisfen 709 }
1290     }
1291     }
1292 chrisfen 716
1293 chrisfen 610 // let's pass some summation method variables to fortran
1294 chrisfen 853 setElectrostaticSummationMethod( &esm );
1295 gezelter 809 setFortranElectrostaticMethod( &esm );
1296 chrisfen 709 setScreeningMethod( &sm );
1297     setDampingAlpha( &alphaVal );
1298 chrisfen 610 setReactionFieldDielectric( &dielectric );
1299 gezelter 764 initFortranFF( &errorOut );
1300 chrisfen 598 }
1301    
1302 chrisfen 726 void SimInfo::setupSwitchingFunction() {
1303     int ft = CUBIC;
1304    
1305     if (simParams_->haveSwitchingFunctionType()) {
1306     std::string funcType = simParams_->getSwitchingFunctionType();
1307     toUpper(funcType);
1308     if (funcType == "CUBIC") {
1309     ft = CUBIC;
1310     } else {
1311     if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1312     ft = FIFTH_ORDER_POLY;
1313     } else {
1314     // throw error
1315     sprintf( painCave.errMsg,
1316     "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1317     painCave.isFatal = 1;
1318     simError();
1319     }
1320     }
1321     }
1322    
1323     // send switching function notification to switcheroo
1324     setFunctionType(&ft);
1325    
1326     }
1327    
1328 chrisfen 998 void SimInfo::setupAccumulateBoxDipole() {
1329    
1330     // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1331     if ( simParams_->haveAccumulateBoxDipole() )
1332     if ( simParams_->getAccumulateBoxDipole() ) {
1333     setAccumulateBoxDipole();
1334     calcBoxDipole_ = true;
1335     }
1336    
1337     }
1338    
1339 gezelter 507 void SimInfo::addProperty(GenericData* genData) {
1340 gezelter 246 properties_.addProperty(genData);
1341 gezelter 507 }
1342 gezelter 2
1343 gezelter 507 void SimInfo::removeProperty(const std::string& propName) {
1344 gezelter 246 properties_.removeProperty(propName);
1345 gezelter 507 }
1346 gezelter 2
1347 gezelter 507 void SimInfo::clearProperties() {
1348 gezelter 246 properties_.clearProperties();
1349 gezelter 507 }
1350 gezelter 2
1351 gezelter 507 std::vector<std::string> SimInfo::getPropertyNames() {
1352 gezelter 246 return properties_.getPropertyNames();
1353 gezelter 507 }
1354 gezelter 246
1355 gezelter 507 std::vector<GenericData*> SimInfo::getProperties() {
1356 gezelter 246 return properties_.getProperties();
1357 gezelter 507 }
1358 gezelter 2
1359 gezelter 507 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1360 gezelter 246 return properties_.getPropertyByName(propName);
1361 gezelter 507 }
1362 gezelter 2
1363 gezelter 507 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1364 tim 432 if (sman_ == sman) {
1365 gezelter 507 return;
1366 tim 432 }
1367     delete sman_;
1368 gezelter 246 sman_ = sman;
1369 gezelter 2
1370 gezelter 246 Molecule* mol;
1371     RigidBody* rb;
1372     Atom* atom;
1373     SimInfo::MoleculeIterator mi;
1374     Molecule::RigidBodyIterator rbIter;
1375     Molecule::AtomIterator atomIter;;
1376    
1377     for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1378    
1379 gezelter 507 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1380     atom->setSnapshotManager(sman_);
1381     }
1382 gezelter 246
1383 gezelter 507 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1384     rb->setSnapshotManager(sman_);
1385     }
1386 gezelter 246 }
1387 gezelter 2
1388 gezelter 507 }
1389 gezelter 2
1390 gezelter 507 Vector3d SimInfo::getComVel(){
1391 gezelter 246 SimInfo::MoleculeIterator i;
1392     Molecule* mol;
1393 gezelter 2
1394 gezelter 246 Vector3d comVel(0.0);
1395 tim 963 RealType totalMass = 0.0;
1396 gezelter 2
1397 gezelter 246
1398     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1399 tim 963 RealType mass = mol->getMass();
1400 gezelter 507 totalMass += mass;
1401     comVel += mass * mol->getComVel();
1402 gezelter 246 }
1403 gezelter 2
1404 gezelter 246 #ifdef IS_MPI
1405 tim 963 RealType tmpMass = totalMass;
1406 gezelter 246 Vector3d tmpComVel(comVel);
1407 tim 963 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1408     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1409 gezelter 246 #endif
1410    
1411     comVel /= totalMass;
1412    
1413     return comVel;
1414 gezelter 507 }
1415 gezelter 2
1416 gezelter 507 Vector3d SimInfo::getCom(){
1417 gezelter 246 SimInfo::MoleculeIterator i;
1418     Molecule* mol;
1419 gezelter 2
1420 gezelter 246 Vector3d com(0.0);
1421 tim 963 RealType totalMass = 0.0;
1422 gezelter 246
1423     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1424 tim 963 RealType mass = mol->getMass();
1425 gezelter 507 totalMass += mass;
1426     com += mass * mol->getCom();
1427 gezelter 246 }
1428 gezelter 2
1429     #ifdef IS_MPI
1430 tim 963 RealType tmpMass = totalMass;
1431 gezelter 246 Vector3d tmpCom(com);
1432 tim 963 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1433     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1434 gezelter 2 #endif
1435    
1436 gezelter 246 com /= totalMass;
1437 gezelter 2
1438 gezelter 246 return com;
1439 gezelter 2
1440 gezelter 507 }
1441 gezelter 246
1442 gezelter 507 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1443 gezelter 246
1444     return o;
1445 gezelter 507 }
1446 chuckv 555
1447    
1448     /*
1449     Returns center of mass and center of mass velocity in one function call.
1450     */
1451    
1452     void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1453     SimInfo::MoleculeIterator i;
1454     Molecule* mol;
1455    
1456    
1457 tim 963 RealType totalMass = 0.0;
1458 chuckv 555
1459 gezelter 246
1460 chuckv 555 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1461 tim 963 RealType mass = mol->getMass();
1462 chuckv 555 totalMass += mass;
1463     com += mass * mol->getCom();
1464     comVel += mass * mol->getComVel();
1465     }
1466    
1467     #ifdef IS_MPI
1468 tim 963 RealType tmpMass = totalMass;
1469 chuckv 555 Vector3d tmpCom(com);
1470     Vector3d tmpComVel(comVel);
1471 tim 963 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1472     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1473     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1474 chuckv 555 #endif
1475    
1476     com /= totalMass;
1477     comVel /= totalMass;
1478     }
1479    
1480     /*
1481     Return intertia tensor for entire system and angular momentum Vector.
1482 chuckv 557
1483    
1484     [ Ixx -Ixy -Ixz ]
1485     J =| -Iyx Iyy -Iyz |
1486     [ -Izx -Iyz Izz ]
1487 chuckv 555 */
1488    
1489     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1490    
1491    
1492 tim 963 RealType xx = 0.0;
1493     RealType yy = 0.0;
1494     RealType zz = 0.0;
1495     RealType xy = 0.0;
1496     RealType xz = 0.0;
1497     RealType yz = 0.0;
1498 chuckv 555 Vector3d com(0.0);
1499     Vector3d comVel(0.0);
1500    
1501     getComAll(com, comVel);
1502    
1503     SimInfo::MoleculeIterator i;
1504     Molecule* mol;
1505    
1506     Vector3d thisq(0.0);
1507     Vector3d thisv(0.0);
1508    
1509 tim 963 RealType thisMass = 0.0;
1510 chuckv 555
1511    
1512    
1513    
1514     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1515    
1516     thisq = mol->getCom()-com;
1517     thisv = mol->getComVel()-comVel;
1518     thisMass = mol->getMass();
1519     // Compute moment of intertia coefficients.
1520     xx += thisq[0]*thisq[0]*thisMass;
1521     yy += thisq[1]*thisq[1]*thisMass;
1522     zz += thisq[2]*thisq[2]*thisMass;
1523    
1524     // compute products of intertia
1525     xy += thisq[0]*thisq[1]*thisMass;
1526     xz += thisq[0]*thisq[2]*thisMass;
1527     yz += thisq[1]*thisq[2]*thisMass;
1528    
1529     angularMomentum += cross( thisq, thisv ) * thisMass;
1530    
1531     }
1532    
1533    
1534     inertiaTensor(0,0) = yy + zz;
1535     inertiaTensor(0,1) = -xy;
1536     inertiaTensor(0,2) = -xz;
1537     inertiaTensor(1,0) = -xy;
1538 chuckv 557 inertiaTensor(1,1) = xx + zz;
1539 chuckv 555 inertiaTensor(1,2) = -yz;
1540     inertiaTensor(2,0) = -xz;
1541     inertiaTensor(2,1) = -yz;
1542     inertiaTensor(2,2) = xx + yy;
1543    
1544     #ifdef IS_MPI
1545     Mat3x3d tmpI(inertiaTensor);
1546     Vector3d tmpAngMom;
1547 tim 963 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1548     MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1549 chuckv 555 #endif
1550    
1551     return;
1552     }
1553    
1554     //Returns the angular momentum of the system
1555     Vector3d SimInfo::getAngularMomentum(){
1556    
1557     Vector3d com(0.0);
1558     Vector3d comVel(0.0);
1559     Vector3d angularMomentum(0.0);
1560    
1561     getComAll(com,comVel);
1562    
1563     SimInfo::MoleculeIterator i;
1564     Molecule* mol;
1565    
1566 chuckv 557 Vector3d thisr(0.0);
1567     Vector3d thisp(0.0);
1568 chuckv 555
1569 tim 963 RealType thisMass;
1570 chuckv 555
1571     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1572 chuckv 557 thisMass = mol->getMass();
1573     thisr = mol->getCom()-com;
1574     thisp = (mol->getComVel()-comVel)*thisMass;
1575 chuckv 555
1576 chuckv 557 angularMomentum += cross( thisr, thisp );
1577    
1578 chuckv 555 }
1579    
1580     #ifdef IS_MPI
1581     Vector3d tmpAngMom;
1582 tim 963 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1583 chuckv 555 #endif
1584    
1585     return angularMomentum;
1586     }
1587    
1588 tim 1024 StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1589     return IOIndexToIntegrableObject.at(index);
1590     }
1591    
1592     void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1593     IOIndexToIntegrableObject= v;
1594     }
1595    
1596 chuckv 1103 /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1597     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1598     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1599     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1600     */
1601     void SimInfo::getGyrationalVolume(RealType &volume){
1602     Mat3x3d intTensor;
1603     RealType det;
1604     Vector3d dummyAngMom;
1605     RealType sysconstants;
1606     RealType geomCnst;
1607    
1608     geomCnst = 3.0/2.0;
1609     /* Get the inertial tensor and angular momentum for free*/
1610     getInertiaTensor(intTensor,dummyAngMom);
1611    
1612     det = intTensor.determinant();
1613     sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1614     volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1615     return;
1616     }
1617    
1618     void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1619     Mat3x3d intTensor;
1620     Vector3d dummyAngMom;
1621     RealType sysconstants;
1622     RealType geomCnst;
1623    
1624     geomCnst = 3.0/2.0;
1625     /* Get the inertial tensor and angular momentum for free*/
1626     getInertiaTensor(intTensor,dummyAngMom);
1627    
1628     detI = intTensor.determinant();
1629     sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1630     volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1631     return;
1632     }
1633 tim 1024 /*
1634     void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1635     assert( v.size() == nAtoms_ + nRigidBodies_);
1636     sdByGlobalIndex_ = v;
1637     }
1638    
1639     StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1640     //assert(index < nAtoms_ + nRigidBodies_);
1641     return sdByGlobalIndex_.at(index);
1642     }
1643     */
1644 gezelter 246 }//end namespace oopse
1645