1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file ForceManager.cpp |
44 |
* @author tlin |
45 |
* @date 11/09/2004 |
46 |
* @time 10:39am |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
|
51 |
#include "brains/ForceManager.hpp" |
52 |
#include "primitives/Molecule.hpp" |
53 |
#define __OPENMD_C |
54 |
#include "utils/simError.h" |
55 |
#include "primitives/Bond.hpp" |
56 |
#include "primitives/Bend.hpp" |
57 |
#include "primitives/Torsion.hpp" |
58 |
#include "primitives/Inversion.hpp" |
59 |
#include "nonbonded/NonBondedInteraction.hpp" |
60 |
#include "parallel/ForceMatrixDecomposition.hpp" |
61 |
|
62 |
#include <cstdio> |
63 |
#include <iostream> |
64 |
#include <iomanip> |
65 |
|
66 |
using namespace std; |
67 |
namespace OpenMD { |
68 |
|
69 |
ForceManager::ForceManager(SimInfo * info) : info_(info) { |
70 |
forceField_ = info_->getForceField(); |
71 |
interactionMan_ = new InteractionManager(); |
72 |
fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_); |
73 |
} |
74 |
|
75 |
/** |
76 |
* setupCutoffs |
77 |
* |
78 |
* Sets the values of cutoffRadius, switchingRadius, cutoffMethod, |
79 |
* and cutoffPolicy |
80 |
* |
81 |
* cutoffRadius : realType |
82 |
* If the cutoffRadius was explicitly set, use that value. |
83 |
* If the cutoffRadius was not explicitly set: |
84 |
* Are there electrostatic atoms? Use 12.0 Angstroms. |
85 |
* No electrostatic atoms? Poll the atom types present in the |
86 |
* simulation for suggested cutoff values (e.g. 2.5 * sigma). |
87 |
* Use the maximum suggested value that was found. |
88 |
* |
89 |
* cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, |
90 |
* or SHIFTED_POTENTIAL) |
91 |
* If cutoffMethod was explicitly set, use that choice. |
92 |
* If cutoffMethod was not explicitly set, use SHIFTED_FORCE |
93 |
* |
94 |
* cutoffPolicy : (one of MIX, MAX, TRADITIONAL) |
95 |
* If cutoffPolicy was explicitly set, use that choice. |
96 |
* If cutoffPolicy was not explicitly set, use TRADITIONAL |
97 |
* |
98 |
* switchingRadius : realType |
99 |
* If the cutoffMethod was set to SWITCHED: |
100 |
* If the switchingRadius was explicitly set, use that value |
101 |
* (but do a sanity check first). |
102 |
* If the switchingRadius was not explicitly set: use 0.85 * |
103 |
* cutoffRadius_ |
104 |
* If the cutoffMethod was not set to SWITCHED: |
105 |
* Set switchingRadius equal to cutoffRadius for safety. |
106 |
*/ |
107 |
void ForceManager::setupCutoffs() { |
108 |
|
109 |
Globals* simParams_ = info_->getSimParams(); |
110 |
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
111 |
int mdFileVersion; |
112 |
|
113 |
if (simParams_->haveMDfileVersion()) |
114 |
mdFileVersion = simParams_->getMDfileVersion(); |
115 |
else |
116 |
mdFileVersion = 0; |
117 |
|
118 |
|
119 |
if (simParams_->haveCutoffRadius()) { |
120 |
rCut_ = simParams_->getCutoffRadius(); |
121 |
} else { |
122 |
if (info_->usesElectrostaticAtoms()) { |
123 |
sprintf(painCave.errMsg, |
124 |
"ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" |
125 |
"\tOpenMD will use a default value of 12.0 angstroms" |
126 |
"\tfor the cutoffRadius.\n"); |
127 |
painCave.isFatal = 0; |
128 |
painCave.severity = OPENMD_INFO; |
129 |
simError(); |
130 |
rCut_ = 12.0; |
131 |
} else { |
132 |
RealType thisCut; |
133 |
set<AtomType*>::iterator i; |
134 |
set<AtomType*> atomTypes; |
135 |
atomTypes = info_->getSimulatedAtomTypes(); |
136 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
137 |
thisCut = interactionMan_->getSuggestedCutoffRadius((*i)); |
138 |
rCut_ = max(thisCut, rCut_); |
139 |
} |
140 |
sprintf(painCave.errMsg, |
141 |
"ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" |
142 |
"\tOpenMD will use %lf angstroms.\n", |
143 |
rCut_); |
144 |
painCave.isFatal = 0; |
145 |
painCave.severity = OPENMD_INFO; |
146 |
simError(); |
147 |
} |
148 |
} |
149 |
|
150 |
fDecomp_->setUserCutoff(rCut_); |
151 |
interactionMan_->setCutoffRadius(rCut_); |
152 |
|
153 |
map<string, CutoffMethod> stringToCutoffMethod; |
154 |
stringToCutoffMethod["HARD"] = HARD; |
155 |
stringToCutoffMethod["SWITCHED"] = SWITCHED; |
156 |
stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL; |
157 |
stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE; |
158 |
|
159 |
if (simParams_->haveCutoffMethod()) { |
160 |
string cutMeth = toUpperCopy(simParams_->getCutoffMethod()); |
161 |
map<string, CutoffMethod>::iterator i; |
162 |
i = stringToCutoffMethod.find(cutMeth); |
163 |
if (i == stringToCutoffMethod.end()) { |
164 |
sprintf(painCave.errMsg, |
165 |
"ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n" |
166 |
"\tShould be one of: " |
167 |
"HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n", |
168 |
cutMeth.c_str()); |
169 |
painCave.isFatal = 1; |
170 |
painCave.severity = OPENMD_ERROR; |
171 |
simError(); |
172 |
} else { |
173 |
cutoffMethod_ = i->second; |
174 |
} |
175 |
} else { |
176 |
sprintf(painCave.errMsg, |
177 |
"ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n" |
178 |
"\tOpenMD will use SHIFTED_FORCE.\n"); |
179 |
painCave.isFatal = 0; |
180 |
painCave.severity = OPENMD_INFO; |
181 |
simError(); |
182 |
cutoffMethod_ = SHIFTED_FORCE; |
183 |
} |
184 |
|
185 |
map<string, CutoffPolicy> stringToCutoffPolicy; |
186 |
stringToCutoffPolicy["MIX"] = MIX; |
187 |
stringToCutoffPolicy["MAX"] = MAX; |
188 |
stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL; |
189 |
|
190 |
std::string cutPolicy; |
191 |
if (forceFieldOptions_.haveCutoffPolicy()){ |
192 |
cutPolicy = forceFieldOptions_.getCutoffPolicy(); |
193 |
}else if (simParams_->haveCutoffPolicy()) { |
194 |
cutPolicy = simParams_->getCutoffPolicy(); |
195 |
} |
196 |
|
197 |
if (!cutPolicy.empty()){ |
198 |
toUpper(cutPolicy); |
199 |
map<string, CutoffPolicy>::iterator i; |
200 |
i = stringToCutoffPolicy.find(cutPolicy); |
201 |
|
202 |
if (i == stringToCutoffPolicy.end()) { |
203 |
sprintf(painCave.errMsg, |
204 |
"ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n" |
205 |
"\tShould be one of: " |
206 |
"MIX, MAX, or TRADITIONAL\n", |
207 |
cutPolicy.c_str()); |
208 |
painCave.isFatal = 1; |
209 |
painCave.severity = OPENMD_ERROR; |
210 |
simError(); |
211 |
} else { |
212 |
cutoffPolicy_ = i->second; |
213 |
} |
214 |
} else { |
215 |
sprintf(painCave.errMsg, |
216 |
"ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n" |
217 |
"\tOpenMD will use TRADITIONAL.\n"); |
218 |
painCave.isFatal = 0; |
219 |
painCave.severity = OPENMD_INFO; |
220 |
simError(); |
221 |
cutoffPolicy_ = TRADITIONAL; |
222 |
} |
223 |
|
224 |
fDecomp_->setCutoffPolicy(cutoffPolicy_); |
225 |
|
226 |
// create the switching function object: |
227 |
|
228 |
switcher_ = new SwitchingFunction(); |
229 |
|
230 |
if (cutoffMethod_ == SWITCHED) { |
231 |
if (simParams_->haveSwitchingRadius()) { |
232 |
rSwitch_ = simParams_->getSwitchingRadius(); |
233 |
if (rSwitch_ > rCut_) { |
234 |
sprintf(painCave.errMsg, |
235 |
"ForceManager::setupCutoffs: switchingRadius (%f) is larger " |
236 |
"than the cutoffRadius(%f)\n", rSwitch_, rCut_); |
237 |
painCave.isFatal = 1; |
238 |
painCave.severity = OPENMD_ERROR; |
239 |
simError(); |
240 |
} |
241 |
} else { |
242 |
rSwitch_ = 0.85 * rCut_; |
243 |
sprintf(painCave.errMsg, |
244 |
"ForceManager::setupCutoffs: No value was set for the switchingRadius.\n" |
245 |
"\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
246 |
"\tswitchingRadius = %f. for this simulation\n", rSwitch_); |
247 |
painCave.isFatal = 0; |
248 |
painCave.severity = OPENMD_WARNING; |
249 |
simError(); |
250 |
} |
251 |
} else { |
252 |
if (simParams_->haveSwitchingRadius()) { |
253 |
map<string, CutoffMethod>::const_iterator it; |
254 |
string theMeth; |
255 |
for (it = stringToCutoffMethod.begin(); |
256 |
it != stringToCutoffMethod.end(); ++it) { |
257 |
if (it->second == cutoffMethod_) { |
258 |
theMeth = it->first; |
259 |
break; |
260 |
} |
261 |
} |
262 |
sprintf(painCave.errMsg, |
263 |
"ForceManager::setupCutoffs: the cutoffMethod (%s)\n" |
264 |
"\tis not set to SWITCHED, so switchingRadius value\n" |
265 |
"\twill be ignored for this simulation\n", theMeth.c_str()); |
266 |
painCave.isFatal = 0; |
267 |
painCave.severity = OPENMD_WARNING; |
268 |
simError(); |
269 |
} |
270 |
|
271 |
rSwitch_ = rCut_; |
272 |
} |
273 |
|
274 |
// Default to cubic switching function. |
275 |
sft_ = cubic; |
276 |
if (simParams_->haveSwitchingFunctionType()) { |
277 |
string funcType = simParams_->getSwitchingFunctionType(); |
278 |
toUpper(funcType); |
279 |
if (funcType == "CUBIC") { |
280 |
sft_ = cubic; |
281 |
} else { |
282 |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
283 |
sft_ = fifth_order_poly; |
284 |
} else { |
285 |
// throw error |
286 |
sprintf( painCave.errMsg, |
287 |
"ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n" |
288 |
"\tswitchingFunctionType must be one of: " |
289 |
"\"cubic\" or \"fifth_order_polynomial\".", |
290 |
funcType.c_str() ); |
291 |
painCave.isFatal = 1; |
292 |
painCave.severity = OPENMD_ERROR; |
293 |
simError(); |
294 |
} |
295 |
} |
296 |
} |
297 |
switcher_->setSwitchType(sft_); |
298 |
switcher_->setSwitch(rSwitch_, rCut_); |
299 |
interactionMan_->setSwitchingRadius(rSwitch_); |
300 |
} |
301 |
|
302 |
void ForceManager::initialize() { |
303 |
|
304 |
if (!info_->isTopologyDone()) { |
305 |
|
306 |
info_->update(); |
307 |
interactionMan_->setSimInfo(info_); |
308 |
interactionMan_->initialize(); |
309 |
|
310 |
// We want to delay the cutoffs until after the interaction |
311 |
// manager has set up the atom-atom interactions so that we can |
312 |
// query them for suggested cutoff values |
313 |
setupCutoffs(); |
314 |
|
315 |
info_->prepareTopology(); |
316 |
} |
317 |
|
318 |
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
319 |
|
320 |
// Force fields can set options on how to scale van der Waals and |
321 |
// electrostatic interactions for atoms connected via bonds, bends |
322 |
// and torsions in this case the topological distance between |
323 |
// atoms is: |
324 |
// 0 = topologically unconnected |
325 |
// 1 = bonded together |
326 |
// 2 = connected via a bend |
327 |
// 3 = connected via a torsion |
328 |
|
329 |
vdwScale_.reserve(4); |
330 |
fill(vdwScale_.begin(), vdwScale_.end(), 0.0); |
331 |
|
332 |
electrostaticScale_.reserve(4); |
333 |
fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0); |
334 |
|
335 |
vdwScale_[0] = 1.0; |
336 |
vdwScale_[1] = fopts.getvdw12scale(); |
337 |
vdwScale_[2] = fopts.getvdw13scale(); |
338 |
vdwScale_[3] = fopts.getvdw14scale(); |
339 |
|
340 |
electrostaticScale_[0] = 1.0; |
341 |
electrostaticScale_[1] = fopts.getelectrostatic12scale(); |
342 |
electrostaticScale_[2] = fopts.getelectrostatic13scale(); |
343 |
electrostaticScale_[3] = fopts.getelectrostatic14scale(); |
344 |
|
345 |
fDecomp_->distributeInitialData(); |
346 |
|
347 |
initialized_ = true; |
348 |
|
349 |
} |
350 |
|
351 |
void ForceManager::calcForces() { |
352 |
|
353 |
if (!initialized_) initialize(); |
354 |
|
355 |
preCalculation(); |
356 |
shortRangeInteractions(); |
357 |
longRangeInteractions(); |
358 |
postCalculation(); |
359 |
} |
360 |
|
361 |
void ForceManager::preCalculation() { |
362 |
SimInfo::MoleculeIterator mi; |
363 |
Molecule* mol; |
364 |
Molecule::AtomIterator ai; |
365 |
Atom* atom; |
366 |
Molecule::RigidBodyIterator rbIter; |
367 |
RigidBody* rb; |
368 |
Molecule::CutoffGroupIterator ci; |
369 |
CutoffGroup* cg; |
370 |
|
371 |
// forces are zeroed here, before any are accumulated. |
372 |
|
373 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
374 |
mol = info_->nextMolecule(mi)) { |
375 |
for(atom = mol->beginAtom(ai); atom != NULL; |
376 |
atom = mol->nextAtom(ai)) { |
377 |
atom->zeroForcesAndTorques(); |
378 |
} |
379 |
|
380 |
//change the positions of atoms which belong to the rigidbodies |
381 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
382 |
rb = mol->nextRigidBody(rbIter)) { |
383 |
rb->zeroForcesAndTorques(); |
384 |
} |
385 |
|
386 |
if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ |
387 |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
388 |
cg = mol->nextCutoffGroup(ci)) { |
389 |
//calculate the center of mass of cutoff group |
390 |
cg->updateCOM(); |
391 |
} |
392 |
} |
393 |
} |
394 |
|
395 |
// Zero out the stress tensor |
396 |
tau *= 0.0; |
397 |
|
398 |
} |
399 |
|
400 |
void ForceManager::shortRangeInteractions() { |
401 |
Molecule* mol; |
402 |
RigidBody* rb; |
403 |
Bond* bond; |
404 |
Bend* bend; |
405 |
Torsion* torsion; |
406 |
Inversion* inversion; |
407 |
SimInfo::MoleculeIterator mi; |
408 |
Molecule::RigidBodyIterator rbIter; |
409 |
Molecule::BondIterator bondIter;; |
410 |
Molecule::BendIterator bendIter; |
411 |
Molecule::TorsionIterator torsionIter; |
412 |
Molecule::InversionIterator inversionIter; |
413 |
RealType bondPotential = 0.0; |
414 |
RealType bendPotential = 0.0; |
415 |
RealType torsionPotential = 0.0; |
416 |
RealType inversionPotential = 0.0; |
417 |
|
418 |
//calculate short range interactions |
419 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
420 |
mol = info_->nextMolecule(mi)) { |
421 |
|
422 |
//change the positions of atoms which belong to the rigidbodies |
423 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
424 |
rb = mol->nextRigidBody(rbIter)) { |
425 |
rb->updateAtoms(); |
426 |
} |
427 |
|
428 |
for (bond = mol->beginBond(bondIter); bond != NULL; |
429 |
bond = mol->nextBond(bondIter)) { |
430 |
bond->calcForce(); |
431 |
bondPotential += bond->getPotential(); |
432 |
} |
433 |
|
434 |
for (bend = mol->beginBend(bendIter); bend != NULL; |
435 |
bend = mol->nextBend(bendIter)) { |
436 |
|
437 |
RealType angle; |
438 |
bend->calcForce(angle); |
439 |
RealType currBendPot = bend->getPotential(); |
440 |
|
441 |
bendPotential += bend->getPotential(); |
442 |
map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
443 |
if (i == bendDataSets.end()) { |
444 |
BendDataSet dataSet; |
445 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
446 |
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
447 |
dataSet.deltaV = 0.0; |
448 |
bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, |
449 |
dataSet)); |
450 |
}else { |
451 |
i->second.prev.angle = i->second.curr.angle; |
452 |
i->second.prev.potential = i->second.curr.potential; |
453 |
i->second.curr.angle = angle; |
454 |
i->second.curr.potential = currBendPot; |
455 |
i->second.deltaV = fabs(i->second.curr.potential - |
456 |
i->second.prev.potential); |
457 |
} |
458 |
} |
459 |
|
460 |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; |
461 |
torsion = mol->nextTorsion(torsionIter)) { |
462 |
RealType angle; |
463 |
torsion->calcForce(angle); |
464 |
RealType currTorsionPot = torsion->getPotential(); |
465 |
torsionPotential += torsion->getPotential(); |
466 |
map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
467 |
if (i == torsionDataSets.end()) { |
468 |
TorsionDataSet dataSet; |
469 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
470 |
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
471 |
dataSet.deltaV = 0.0; |
472 |
torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
473 |
}else { |
474 |
i->second.prev.angle = i->second.curr.angle; |
475 |
i->second.prev.potential = i->second.curr.potential; |
476 |
i->second.curr.angle = angle; |
477 |
i->second.curr.potential = currTorsionPot; |
478 |
i->second.deltaV = fabs(i->second.curr.potential - |
479 |
i->second.prev.potential); |
480 |
} |
481 |
} |
482 |
|
483 |
for (inversion = mol->beginInversion(inversionIter); |
484 |
inversion != NULL; |
485 |
inversion = mol->nextInversion(inversionIter)) { |
486 |
RealType angle; |
487 |
inversion->calcForce(angle); |
488 |
RealType currInversionPot = inversion->getPotential(); |
489 |
inversionPotential += inversion->getPotential(); |
490 |
map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
491 |
if (i == inversionDataSets.end()) { |
492 |
InversionDataSet dataSet; |
493 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
494 |
dataSet.prev.potential = dataSet.curr.potential = currInversionPot; |
495 |
dataSet.deltaV = 0.0; |
496 |
inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet)); |
497 |
}else { |
498 |
i->second.prev.angle = i->second.curr.angle; |
499 |
i->second.prev.potential = i->second.curr.potential; |
500 |
i->second.curr.angle = angle; |
501 |
i->second.curr.potential = currInversionPot; |
502 |
i->second.deltaV = fabs(i->second.curr.potential - |
503 |
i->second.prev.potential); |
504 |
} |
505 |
} |
506 |
} |
507 |
|
508 |
RealType shortRangePotential = bondPotential + bendPotential + |
509 |
torsionPotential + inversionPotential; |
510 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
511 |
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
512 |
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
513 |
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
514 |
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
515 |
curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential; |
516 |
} |
517 |
|
518 |
void ForceManager::longRangeInteractions() { |
519 |
|
520 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
521 |
DataStorage* config = &(curSnapshot->atomData); |
522 |
DataStorage* cgConfig = &(curSnapshot->cgData); |
523 |
|
524 |
//calculate the center of mass of cutoff group |
525 |
|
526 |
SimInfo::MoleculeIterator mi; |
527 |
Molecule* mol; |
528 |
Molecule::CutoffGroupIterator ci; |
529 |
CutoffGroup* cg; |
530 |
|
531 |
if(info_->getNCutoffGroups() > 0){ |
532 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
533 |
mol = info_->nextMolecule(mi)) { |
534 |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
535 |
cg = mol->nextCutoffGroup(ci)) { |
536 |
cg->updateCOM(); |
537 |
} |
538 |
} |
539 |
} else { |
540 |
// center of mass of the group is the same as position of the atom |
541 |
// if cutoff group does not exist |
542 |
cgConfig->position = config->position; |
543 |
} |
544 |
|
545 |
fDecomp_->zeroWorkArrays(); |
546 |
fDecomp_->distributeData(); |
547 |
|
548 |
int cg1, cg2, atom1, atom2, topoDist; |
549 |
Vector3d d_grp, dag, d; |
550 |
RealType rgrpsq, rgrp, r2, r; |
551 |
RealType electroMult, vdwMult; |
552 |
RealType vij; |
553 |
Vector3d fij, fg, f1; |
554 |
tuple3<RealType, RealType, RealType> cuts; |
555 |
RealType rCutSq; |
556 |
bool in_switching_region; |
557 |
RealType sw, dswdr, swderiv; |
558 |
vector<int> atomListColumn, atomListRow, atomListLocal; |
559 |
InteractionData idat; |
560 |
SelfData sdat; |
561 |
RealType mf; |
562 |
RealType lrPot; |
563 |
RealType vpair; |
564 |
potVec longRangePotential(0.0); |
565 |
potVec workPot(0.0); |
566 |
|
567 |
int loopStart, loopEnd; |
568 |
|
569 |
idat.vdwMult = &vdwMult; |
570 |
idat.electroMult = &electroMult; |
571 |
idat.pot = &workPot; |
572 |
sdat.pot = fDecomp_->getEmbeddingPotential(); |
573 |
idat.vpair = &vpair; |
574 |
idat.f1 = &f1; |
575 |
idat.sw = &sw; |
576 |
idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false; |
577 |
idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false; |
578 |
|
579 |
loopEnd = PAIR_LOOP; |
580 |
if (info_->requiresPrepair() ) { |
581 |
loopStart = PREPAIR_LOOP; |
582 |
} else { |
583 |
loopStart = PAIR_LOOP; |
584 |
} |
585 |
|
586 |
for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) { |
587 |
|
588 |
if (iLoop == loopStart) { |
589 |
bool update_nlist = fDecomp_->checkNeighborList(); |
590 |
if (update_nlist) |
591 |
neighborList = fDecomp_->buildNeighborList(); |
592 |
} |
593 |
|
594 |
for (vector<pair<int, int> >::iterator it = neighborList.begin(); |
595 |
it != neighborList.end(); ++it) { |
596 |
|
597 |
cg1 = (*it).first; |
598 |
cg2 = (*it).second; |
599 |
|
600 |
cuts = fDecomp_->getGroupCutoffs(cg1, cg2); |
601 |
|
602 |
d_grp = fDecomp_->getIntergroupVector(cg1, cg2); |
603 |
|
604 |
curSnapshot->wrapVector(d_grp); |
605 |
rgrpsq = d_grp.lengthSquare(); |
606 |
rCutSq = cuts.second; |
607 |
|
608 |
if (rgrpsq < rCutSq) { |
609 |
idat.rcut = &cuts.first; |
610 |
if (iLoop == PAIR_LOOP) { |
611 |
vij = 0.0; |
612 |
fij = V3Zero; |
613 |
} |
614 |
|
615 |
in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr, |
616 |
rgrp); |
617 |
|
618 |
atomListRow = fDecomp_->getAtomsInGroupRow(cg1); |
619 |
atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2); |
620 |
|
621 |
|
622 |
for (vector<int>::iterator ia = atomListRow.begin(); |
623 |
ia != atomListRow.end(); ++ia) { |
624 |
atom1 = (*ia); |
625 |
|
626 |
for (vector<int>::iterator jb = atomListColumn.begin(); |
627 |
jb != atomListColumn.end(); ++jb) { |
628 |
atom2 = (*jb); |
629 |
|
630 |
if (!fDecomp_->skipAtomPair(atom1, atom2)) { |
631 |
vpair = 0.0; |
632 |
workPot = 0.0; |
633 |
f1 = V3Zero; |
634 |
|
635 |
fDecomp_->fillInteractionData(idat, atom1, atom2); |
636 |
|
637 |
topoDist = fDecomp_->getTopologicalDistance(atom1, atom2); |
638 |
vdwMult = vdwScale_[topoDist]; |
639 |
electroMult = electrostaticScale_[topoDist]; |
640 |
|
641 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
642 |
idat.d = &d_grp; |
643 |
idat.r2 = &rgrpsq; |
644 |
} else { |
645 |
d = fDecomp_->getInteratomicVector(atom1, atom2); |
646 |
curSnapshot->wrapVector( d ); |
647 |
r2 = d.lengthSquare(); |
648 |
idat.d = &d; |
649 |
idat.r2 = &r2; |
650 |
} |
651 |
|
652 |
r = sqrt( *(idat.r2) ); |
653 |
idat.rij = &r; |
654 |
|
655 |
if (iLoop == PREPAIR_LOOP) { |
656 |
interactionMan_->doPrePair(idat); |
657 |
} else { |
658 |
interactionMan_->doPair(idat); |
659 |
fDecomp_->unpackInteractionData(idat, atom1, atom2); |
660 |
|
661 |
vij += vpair; |
662 |
fij += f1; |
663 |
tau -= outProduct( *(idat.d), f1); |
664 |
} |
665 |
} |
666 |
} |
667 |
} |
668 |
|
669 |
if (iLoop == PAIR_LOOP) { |
670 |
if (in_switching_region) { |
671 |
swderiv = vij * dswdr / rgrp; |
672 |
fg = swderiv * d_grp; |
673 |
fij += fg; |
674 |
|
675 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
676 |
tau -= outProduct( *(idat.d), fg); |
677 |
} |
678 |
|
679 |
for (vector<int>::iterator ia = atomListRow.begin(); |
680 |
ia != atomListRow.end(); ++ia) { |
681 |
atom1 = (*ia); |
682 |
mf = fDecomp_->getMassFactorRow(atom1); |
683 |
// fg is the force on atom ia due to cutoff group's |
684 |
// presence in switching region |
685 |
fg = swderiv * d_grp * mf; |
686 |
fDecomp_->addForceToAtomRow(atom1, fg); |
687 |
|
688 |
if (atomListRow.size() > 1) { |
689 |
if (info_->usesAtomicVirial()) { |
690 |
// find the distance between the atom |
691 |
// and the center of the cutoff group: |
692 |
dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1); |
693 |
tau -= outProduct(dag, fg); |
694 |
} |
695 |
} |
696 |
} |
697 |
for (vector<int>::iterator jb = atomListColumn.begin(); |
698 |
jb != atomListColumn.end(); ++jb) { |
699 |
atom2 = (*jb); |
700 |
mf = fDecomp_->getMassFactorColumn(atom2); |
701 |
// fg is the force on atom jb due to cutoff group's |
702 |
// presence in switching region |
703 |
fg = -swderiv * d_grp * mf; |
704 |
fDecomp_->addForceToAtomColumn(atom2, fg); |
705 |
|
706 |
if (atomListColumn.size() > 1) { |
707 |
if (info_->usesAtomicVirial()) { |
708 |
// find the distance between the atom |
709 |
// and the center of the cutoff group: |
710 |
dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2); |
711 |
tau -= outProduct(dag, fg); |
712 |
} |
713 |
} |
714 |
} |
715 |
} |
716 |
//if (!info_->usesAtomicVirial()) { |
717 |
// tau -= outProduct(d_grp, fij); |
718 |
//} |
719 |
} |
720 |
} |
721 |
} |
722 |
|
723 |
if (iLoop == PREPAIR_LOOP) { |
724 |
if (info_->requiresPrepair()) { |
725 |
|
726 |
fDecomp_->collectIntermediateData(); |
727 |
|
728 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
729 |
fDecomp_->fillSelfData(sdat, atom1); |
730 |
interactionMan_->doPreForce(sdat); |
731 |
} |
732 |
|
733 |
fDecomp_->distributeIntermediateData(); |
734 |
|
735 |
} |
736 |
} |
737 |
} |
738 |
|
739 |
fDecomp_->collectData(); |
740 |
|
741 |
if (info_->requiresSelfCorrection()) { |
742 |
|
743 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
744 |
fDecomp_->fillSelfData(sdat, atom1); |
745 |
interactionMan_->doSelfCorrection(sdat); |
746 |
} |
747 |
|
748 |
} |
749 |
|
750 |
longRangePotential = *(fDecomp_->getEmbeddingPotential()) + |
751 |
*(fDecomp_->getPairwisePotential()); |
752 |
|
753 |
lrPot = longRangePotential.sum(); |
754 |
|
755 |
//store the tau and long range potential |
756 |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
757 |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY]; |
758 |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY]; |
759 |
} |
760 |
|
761 |
|
762 |
void ForceManager::postCalculation() { |
763 |
SimInfo::MoleculeIterator mi; |
764 |
Molecule* mol; |
765 |
Molecule::RigidBodyIterator rbIter; |
766 |
RigidBody* rb; |
767 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
768 |
|
769 |
// collect the atomic forces onto rigid bodies |
770 |
|
771 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
772 |
mol = info_->nextMolecule(mi)) { |
773 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
774 |
rb = mol->nextRigidBody(rbIter)) { |
775 |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
776 |
tau += rbTau; |
777 |
} |
778 |
} |
779 |
|
780 |
#ifdef IS_MPI |
781 |
Mat3x3d tmpTau(tau); |
782 |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
783 |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
784 |
#endif |
785 |
curSnapshot->statData.setTau(tau); |
786 |
} |
787 |
|
788 |
} //end namespace OpenMD |