ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
Revision: 1613
Committed: Thu Aug 18 20:18:19 2011 UTC (13 years, 8 months ago) by gezelter
File size: 28102 byte(s)
Log Message:
Fixed a parallel bug in computing exclude lists.
Added file versioning information in MD files.
Still tracking down cutoff group bugs.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 /**
43 * @file ForceManager.cpp
44 * @author tlin
45 * @date 11/09/2004
46 * @time 10:39am
47 * @version 1.0
48 */
49
50
51 #include "brains/ForceManager.hpp"
52 #include "primitives/Molecule.hpp"
53 #define __OPENMD_C
54 #include "utils/simError.h"
55 #include "primitives/Bond.hpp"
56 #include "primitives/Bend.hpp"
57 #include "primitives/Torsion.hpp"
58 #include "primitives/Inversion.hpp"
59 #include "nonbonded/NonBondedInteraction.hpp"
60 #include "parallel/ForceMatrixDecomposition.hpp"
61
62 #include <cstdio>
63 #include <iostream>
64 #include <iomanip>
65
66 using namespace std;
67 namespace OpenMD {
68
69 ForceManager::ForceManager(SimInfo * info) : info_(info) {
70 forceField_ = info_->getForceField();
71 interactionMan_ = new InteractionManager();
72 fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_);
73 }
74
75 /**
76 * setupCutoffs
77 *
78 * Sets the values of cutoffRadius, switchingRadius, cutoffMethod,
79 * and cutoffPolicy
80 *
81 * cutoffRadius : realType
82 * If the cutoffRadius was explicitly set, use that value.
83 * If the cutoffRadius was not explicitly set:
84 * Are there electrostatic atoms? Use 12.0 Angstroms.
85 * No electrostatic atoms? Poll the atom types present in the
86 * simulation for suggested cutoff values (e.g. 2.5 * sigma).
87 * Use the maximum suggested value that was found.
88 *
89 * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE,
90 * or SHIFTED_POTENTIAL)
91 * If cutoffMethod was explicitly set, use that choice.
92 * If cutoffMethod was not explicitly set, use SHIFTED_FORCE
93 *
94 * cutoffPolicy : (one of MIX, MAX, TRADITIONAL)
95 * If cutoffPolicy was explicitly set, use that choice.
96 * If cutoffPolicy was not explicitly set, use TRADITIONAL
97 *
98 * switchingRadius : realType
99 * If the cutoffMethod was set to SWITCHED:
100 * If the switchingRadius was explicitly set, use that value
101 * (but do a sanity check first).
102 * If the switchingRadius was not explicitly set: use 0.85 *
103 * cutoffRadius_
104 * If the cutoffMethod was not set to SWITCHED:
105 * Set switchingRadius equal to cutoffRadius for safety.
106 */
107 void ForceManager::setupCutoffs() {
108
109 Globals* simParams_ = info_->getSimParams();
110 ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
111 int mdFileVersion;
112
113 if (simParams_->haveMDfileVersion())
114 mdFileVersion = simParams_->getMDfileVersion();
115 else
116 mdFileVersion = 0;
117
118
119 if (simParams_->haveCutoffRadius()) {
120 rCut_ = simParams_->getCutoffRadius();
121 } else {
122 if (info_->usesElectrostaticAtoms()) {
123 sprintf(painCave.errMsg,
124 "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
125 "\tOpenMD will use a default value of 12.0 angstroms"
126 "\tfor the cutoffRadius.\n");
127 painCave.isFatal = 0;
128 painCave.severity = OPENMD_INFO;
129 simError();
130 rCut_ = 12.0;
131 } else {
132 RealType thisCut;
133 set<AtomType*>::iterator i;
134 set<AtomType*> atomTypes;
135 atomTypes = info_->getSimulatedAtomTypes();
136 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
137 thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
138 rCut_ = max(thisCut, rCut_);
139 }
140 sprintf(painCave.errMsg,
141 "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
142 "\tOpenMD will use %lf angstroms.\n",
143 rCut_);
144 painCave.isFatal = 0;
145 painCave.severity = OPENMD_INFO;
146 simError();
147 }
148 }
149
150 fDecomp_->setUserCutoff(rCut_);
151 interactionMan_->setCutoffRadius(rCut_);
152
153 map<string, CutoffMethod> stringToCutoffMethod;
154 stringToCutoffMethod["HARD"] = HARD;
155 stringToCutoffMethod["SWITCHED"] = SWITCHED;
156 stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;
157 stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
158
159 if (simParams_->haveCutoffMethod()) {
160 string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
161 map<string, CutoffMethod>::iterator i;
162 i = stringToCutoffMethod.find(cutMeth);
163 if (i == stringToCutoffMethod.end()) {
164 sprintf(painCave.errMsg,
165 "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
166 "\tShould be one of: "
167 "HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
168 cutMeth.c_str());
169 painCave.isFatal = 1;
170 painCave.severity = OPENMD_ERROR;
171 simError();
172 } else {
173 cutoffMethod_ = i->second;
174 }
175 } else {
176 sprintf(painCave.errMsg,
177 "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
178 "\tOpenMD will use SHIFTED_FORCE.\n");
179 painCave.isFatal = 0;
180 painCave.severity = OPENMD_INFO;
181 simError();
182 cutoffMethod_ = SHIFTED_FORCE;
183 }
184
185 map<string, CutoffPolicy> stringToCutoffPolicy;
186 stringToCutoffPolicy["MIX"] = MIX;
187 stringToCutoffPolicy["MAX"] = MAX;
188 stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL;
189
190 std::string cutPolicy;
191 if (forceFieldOptions_.haveCutoffPolicy()){
192 cutPolicy = forceFieldOptions_.getCutoffPolicy();
193 }else if (simParams_->haveCutoffPolicy()) {
194 cutPolicy = simParams_->getCutoffPolicy();
195 }
196
197 if (!cutPolicy.empty()){
198 toUpper(cutPolicy);
199 map<string, CutoffPolicy>::iterator i;
200 i = stringToCutoffPolicy.find(cutPolicy);
201
202 if (i == stringToCutoffPolicy.end()) {
203 sprintf(painCave.errMsg,
204 "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n"
205 "\tShould be one of: "
206 "MIX, MAX, or TRADITIONAL\n",
207 cutPolicy.c_str());
208 painCave.isFatal = 1;
209 painCave.severity = OPENMD_ERROR;
210 simError();
211 } else {
212 cutoffPolicy_ = i->second;
213 }
214 } else {
215 sprintf(painCave.errMsg,
216 "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n"
217 "\tOpenMD will use TRADITIONAL.\n");
218 painCave.isFatal = 0;
219 painCave.severity = OPENMD_INFO;
220 simError();
221 cutoffPolicy_ = TRADITIONAL;
222 }
223
224 fDecomp_->setCutoffPolicy(cutoffPolicy_);
225
226 // create the switching function object:
227
228 switcher_ = new SwitchingFunction();
229
230 if (cutoffMethod_ == SWITCHED) {
231 if (simParams_->haveSwitchingRadius()) {
232 rSwitch_ = simParams_->getSwitchingRadius();
233 if (rSwitch_ > rCut_) {
234 sprintf(painCave.errMsg,
235 "ForceManager::setupCutoffs: switchingRadius (%f) is larger "
236 "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
237 painCave.isFatal = 1;
238 painCave.severity = OPENMD_ERROR;
239 simError();
240 }
241 } else {
242 rSwitch_ = 0.85 * rCut_;
243 sprintf(painCave.errMsg,
244 "ForceManager::setupCutoffs: No value was set for the switchingRadius.\n"
245 "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
246 "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
247 painCave.isFatal = 0;
248 painCave.severity = OPENMD_WARNING;
249 simError();
250 }
251 } else {
252 if (simParams_->haveSwitchingRadius()) {
253 map<string, CutoffMethod>::const_iterator it;
254 string theMeth;
255 for (it = stringToCutoffMethod.begin();
256 it != stringToCutoffMethod.end(); ++it) {
257 if (it->second == cutoffMethod_) {
258 theMeth = it->first;
259 break;
260 }
261 }
262 sprintf(painCave.errMsg,
263 "ForceManager::setupCutoffs: the cutoffMethod (%s)\n"
264 "\tis not set to SWITCHED, so switchingRadius value\n"
265 "\twill be ignored for this simulation\n", theMeth.c_str());
266 painCave.isFatal = 0;
267 painCave.severity = OPENMD_WARNING;
268 simError();
269 }
270
271 rSwitch_ = rCut_;
272 }
273
274 // Default to cubic switching function.
275 sft_ = cubic;
276 if (simParams_->haveSwitchingFunctionType()) {
277 string funcType = simParams_->getSwitchingFunctionType();
278 toUpper(funcType);
279 if (funcType == "CUBIC") {
280 sft_ = cubic;
281 } else {
282 if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
283 sft_ = fifth_order_poly;
284 } else {
285 // throw error
286 sprintf( painCave.errMsg,
287 "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
288 "\tswitchingFunctionType must be one of: "
289 "\"cubic\" or \"fifth_order_polynomial\".",
290 funcType.c_str() );
291 painCave.isFatal = 1;
292 painCave.severity = OPENMD_ERROR;
293 simError();
294 }
295 }
296 }
297 switcher_->setSwitchType(sft_);
298 switcher_->setSwitch(rSwitch_, rCut_);
299 interactionMan_->setSwitchingRadius(rSwitch_);
300 }
301
302 void ForceManager::initialize() {
303
304 if (!info_->isTopologyDone()) {
305
306 info_->update();
307 interactionMan_->setSimInfo(info_);
308 interactionMan_->initialize();
309
310 // We want to delay the cutoffs until after the interaction
311 // manager has set up the atom-atom interactions so that we can
312 // query them for suggested cutoff values
313 setupCutoffs();
314
315 info_->prepareTopology();
316 }
317
318 ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
319
320 // Force fields can set options on how to scale van der Waals and
321 // electrostatic interactions for atoms connected via bonds, bends
322 // and torsions in this case the topological distance between
323 // atoms is:
324 // 0 = topologically unconnected
325 // 1 = bonded together
326 // 2 = connected via a bend
327 // 3 = connected via a torsion
328
329 vdwScale_.reserve(4);
330 fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
331
332 electrostaticScale_.reserve(4);
333 fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
334
335 vdwScale_[0] = 1.0;
336 vdwScale_[1] = fopts.getvdw12scale();
337 vdwScale_[2] = fopts.getvdw13scale();
338 vdwScale_[3] = fopts.getvdw14scale();
339
340 electrostaticScale_[0] = 1.0;
341 electrostaticScale_[1] = fopts.getelectrostatic12scale();
342 electrostaticScale_[2] = fopts.getelectrostatic13scale();
343 electrostaticScale_[3] = fopts.getelectrostatic14scale();
344
345 fDecomp_->distributeInitialData();
346
347 initialized_ = true;
348
349 }
350
351 void ForceManager::calcForces() {
352
353 if (!initialized_) initialize();
354
355 preCalculation();
356 shortRangeInteractions();
357 longRangeInteractions();
358 postCalculation();
359 }
360
361 void ForceManager::preCalculation() {
362 SimInfo::MoleculeIterator mi;
363 Molecule* mol;
364 Molecule::AtomIterator ai;
365 Atom* atom;
366 Molecule::RigidBodyIterator rbIter;
367 RigidBody* rb;
368 Molecule::CutoffGroupIterator ci;
369 CutoffGroup* cg;
370
371 // forces are zeroed here, before any are accumulated.
372
373 for (mol = info_->beginMolecule(mi); mol != NULL;
374 mol = info_->nextMolecule(mi)) {
375 for(atom = mol->beginAtom(ai); atom != NULL;
376 atom = mol->nextAtom(ai)) {
377 atom->zeroForcesAndTorques();
378 }
379
380 //change the positions of atoms which belong to the rigidbodies
381 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
382 rb = mol->nextRigidBody(rbIter)) {
383 rb->zeroForcesAndTorques();
384 }
385
386 if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
387 for(cg = mol->beginCutoffGroup(ci); cg != NULL;
388 cg = mol->nextCutoffGroup(ci)) {
389 //calculate the center of mass of cutoff group
390 cg->updateCOM();
391 }
392 }
393 }
394
395 // Zero out the stress tensor
396 tau *= 0.0;
397
398 }
399
400 void ForceManager::shortRangeInteractions() {
401 Molecule* mol;
402 RigidBody* rb;
403 Bond* bond;
404 Bend* bend;
405 Torsion* torsion;
406 Inversion* inversion;
407 SimInfo::MoleculeIterator mi;
408 Molecule::RigidBodyIterator rbIter;
409 Molecule::BondIterator bondIter;;
410 Molecule::BendIterator bendIter;
411 Molecule::TorsionIterator torsionIter;
412 Molecule::InversionIterator inversionIter;
413 RealType bondPotential = 0.0;
414 RealType bendPotential = 0.0;
415 RealType torsionPotential = 0.0;
416 RealType inversionPotential = 0.0;
417
418 //calculate short range interactions
419 for (mol = info_->beginMolecule(mi); mol != NULL;
420 mol = info_->nextMolecule(mi)) {
421
422 //change the positions of atoms which belong to the rigidbodies
423 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
424 rb = mol->nextRigidBody(rbIter)) {
425 rb->updateAtoms();
426 }
427
428 for (bond = mol->beginBond(bondIter); bond != NULL;
429 bond = mol->nextBond(bondIter)) {
430 bond->calcForce();
431 bondPotential += bond->getPotential();
432 }
433
434 for (bend = mol->beginBend(bendIter); bend != NULL;
435 bend = mol->nextBend(bendIter)) {
436
437 RealType angle;
438 bend->calcForce(angle);
439 RealType currBendPot = bend->getPotential();
440
441 bendPotential += bend->getPotential();
442 map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
443 if (i == bendDataSets.end()) {
444 BendDataSet dataSet;
445 dataSet.prev.angle = dataSet.curr.angle = angle;
446 dataSet.prev.potential = dataSet.curr.potential = currBendPot;
447 dataSet.deltaV = 0.0;
448 bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend,
449 dataSet));
450 }else {
451 i->second.prev.angle = i->second.curr.angle;
452 i->second.prev.potential = i->second.curr.potential;
453 i->second.curr.angle = angle;
454 i->second.curr.potential = currBendPot;
455 i->second.deltaV = fabs(i->second.curr.potential -
456 i->second.prev.potential);
457 }
458 }
459
460 for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
461 torsion = mol->nextTorsion(torsionIter)) {
462 RealType angle;
463 torsion->calcForce(angle);
464 RealType currTorsionPot = torsion->getPotential();
465 torsionPotential += torsion->getPotential();
466 map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
467 if (i == torsionDataSets.end()) {
468 TorsionDataSet dataSet;
469 dataSet.prev.angle = dataSet.curr.angle = angle;
470 dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
471 dataSet.deltaV = 0.0;
472 torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
473 }else {
474 i->second.prev.angle = i->second.curr.angle;
475 i->second.prev.potential = i->second.curr.potential;
476 i->second.curr.angle = angle;
477 i->second.curr.potential = currTorsionPot;
478 i->second.deltaV = fabs(i->second.curr.potential -
479 i->second.prev.potential);
480 }
481 }
482
483 for (inversion = mol->beginInversion(inversionIter);
484 inversion != NULL;
485 inversion = mol->nextInversion(inversionIter)) {
486 RealType angle;
487 inversion->calcForce(angle);
488 RealType currInversionPot = inversion->getPotential();
489 inversionPotential += inversion->getPotential();
490 map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
491 if (i == inversionDataSets.end()) {
492 InversionDataSet dataSet;
493 dataSet.prev.angle = dataSet.curr.angle = angle;
494 dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
495 dataSet.deltaV = 0.0;
496 inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
497 }else {
498 i->second.prev.angle = i->second.curr.angle;
499 i->second.prev.potential = i->second.curr.potential;
500 i->second.curr.angle = angle;
501 i->second.curr.potential = currInversionPot;
502 i->second.deltaV = fabs(i->second.curr.potential -
503 i->second.prev.potential);
504 }
505 }
506 }
507
508 RealType shortRangePotential = bondPotential + bendPotential +
509 torsionPotential + inversionPotential;
510 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
511 curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
512 curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
513 curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
514 curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
515 curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;
516 }
517
518 void ForceManager::longRangeInteractions() {
519
520 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
521 DataStorage* config = &(curSnapshot->atomData);
522 DataStorage* cgConfig = &(curSnapshot->cgData);
523
524 //calculate the center of mass of cutoff group
525
526 SimInfo::MoleculeIterator mi;
527 Molecule* mol;
528 Molecule::CutoffGroupIterator ci;
529 CutoffGroup* cg;
530
531 if(info_->getNCutoffGroups() > 0){
532 for (mol = info_->beginMolecule(mi); mol != NULL;
533 mol = info_->nextMolecule(mi)) {
534 for(cg = mol->beginCutoffGroup(ci); cg != NULL;
535 cg = mol->nextCutoffGroup(ci)) {
536 cg->updateCOM();
537 }
538 }
539 } else {
540 // center of mass of the group is the same as position of the atom
541 // if cutoff group does not exist
542 cgConfig->position = config->position;
543 }
544
545 fDecomp_->zeroWorkArrays();
546 fDecomp_->distributeData();
547
548 int cg1, cg2, atom1, atom2, topoDist;
549 Vector3d d_grp, dag, d;
550 RealType rgrpsq, rgrp, r2, r;
551 RealType electroMult, vdwMult;
552 RealType vij;
553 Vector3d fij, fg, f1;
554 tuple3<RealType, RealType, RealType> cuts;
555 RealType rCutSq;
556 bool in_switching_region;
557 RealType sw, dswdr, swderiv;
558 vector<int> atomListColumn, atomListRow, atomListLocal;
559 InteractionData idat;
560 SelfData sdat;
561 RealType mf;
562 RealType lrPot;
563 RealType vpair;
564 potVec longRangePotential(0.0);
565 potVec workPot(0.0);
566
567 int loopStart, loopEnd;
568
569 idat.vdwMult = &vdwMult;
570 idat.electroMult = &electroMult;
571 idat.pot = &workPot;
572 sdat.pot = fDecomp_->getEmbeddingPotential();
573 idat.vpair = &vpair;
574 idat.f1 = &f1;
575 idat.sw = &sw;
576 idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false;
577 idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false;
578
579 loopEnd = PAIR_LOOP;
580 if (info_->requiresPrepair() ) {
581 loopStart = PREPAIR_LOOP;
582 } else {
583 loopStart = PAIR_LOOP;
584 }
585
586 for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
587
588 if (iLoop == loopStart) {
589 bool update_nlist = fDecomp_->checkNeighborList();
590 if (update_nlist)
591 neighborList = fDecomp_->buildNeighborList();
592 }
593
594 for (vector<pair<int, int> >::iterator it = neighborList.begin();
595 it != neighborList.end(); ++it) {
596
597 cg1 = (*it).first;
598 cg2 = (*it).second;
599
600 cuts = fDecomp_->getGroupCutoffs(cg1, cg2);
601
602 d_grp = fDecomp_->getIntergroupVector(cg1, cg2);
603
604 curSnapshot->wrapVector(d_grp);
605 rgrpsq = d_grp.lengthSquare();
606 rCutSq = cuts.second;
607
608 if (rgrpsq < rCutSq) {
609 idat.rcut = &cuts.first;
610 if (iLoop == PAIR_LOOP) {
611 vij = 0.0;
612 fij = V3Zero;
613 }
614
615 in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
616 rgrp);
617
618 atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
619 atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
620
621
622 for (vector<int>::iterator ia = atomListRow.begin();
623 ia != atomListRow.end(); ++ia) {
624 atom1 = (*ia);
625
626 for (vector<int>::iterator jb = atomListColumn.begin();
627 jb != atomListColumn.end(); ++jb) {
628 atom2 = (*jb);
629
630 if (!fDecomp_->skipAtomPair(atom1, atom2)) {
631 vpair = 0.0;
632 workPot = 0.0;
633 f1 = V3Zero;
634
635 fDecomp_->fillInteractionData(idat, atom1, atom2);
636
637 topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
638 vdwMult = vdwScale_[topoDist];
639 electroMult = electrostaticScale_[topoDist];
640
641 if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
642 idat.d = &d_grp;
643 idat.r2 = &rgrpsq;
644 } else {
645 d = fDecomp_->getInteratomicVector(atom1, atom2);
646 curSnapshot->wrapVector( d );
647 r2 = d.lengthSquare();
648 idat.d = &d;
649 idat.r2 = &r2;
650 }
651
652 r = sqrt( *(idat.r2) );
653 idat.rij = &r;
654
655 if (iLoop == PREPAIR_LOOP) {
656 interactionMan_->doPrePair(idat);
657 } else {
658 interactionMan_->doPair(idat);
659 fDecomp_->unpackInteractionData(idat, atom1, atom2);
660
661 vij += vpair;
662 fij += f1;
663 tau -= outProduct( *(idat.d), f1);
664 }
665 }
666 }
667 }
668
669 if (iLoop == PAIR_LOOP) {
670 if (in_switching_region) {
671 swderiv = vij * dswdr / rgrp;
672 fg = swderiv * d_grp;
673 fij += fg;
674
675 if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
676 tau -= outProduct( *(idat.d), fg);
677 }
678
679 for (vector<int>::iterator ia = atomListRow.begin();
680 ia != atomListRow.end(); ++ia) {
681 atom1 = (*ia);
682 mf = fDecomp_->getMassFactorRow(atom1);
683 // fg is the force on atom ia due to cutoff group's
684 // presence in switching region
685 fg = swderiv * d_grp * mf;
686 fDecomp_->addForceToAtomRow(atom1, fg);
687
688 if (atomListRow.size() > 1) {
689 if (info_->usesAtomicVirial()) {
690 // find the distance between the atom
691 // and the center of the cutoff group:
692 dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
693 tau -= outProduct(dag, fg);
694 }
695 }
696 }
697 for (vector<int>::iterator jb = atomListColumn.begin();
698 jb != atomListColumn.end(); ++jb) {
699 atom2 = (*jb);
700 mf = fDecomp_->getMassFactorColumn(atom2);
701 // fg is the force on atom jb due to cutoff group's
702 // presence in switching region
703 fg = -swderiv * d_grp * mf;
704 fDecomp_->addForceToAtomColumn(atom2, fg);
705
706 if (atomListColumn.size() > 1) {
707 if (info_->usesAtomicVirial()) {
708 // find the distance between the atom
709 // and the center of the cutoff group:
710 dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
711 tau -= outProduct(dag, fg);
712 }
713 }
714 }
715 }
716 //if (!info_->usesAtomicVirial()) {
717 // tau -= outProduct(d_grp, fij);
718 //}
719 }
720 }
721 }
722
723 if (iLoop == PREPAIR_LOOP) {
724 if (info_->requiresPrepair()) {
725
726 fDecomp_->collectIntermediateData();
727
728 for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
729 fDecomp_->fillSelfData(sdat, atom1);
730 interactionMan_->doPreForce(sdat);
731 }
732
733 fDecomp_->distributeIntermediateData();
734
735 }
736 }
737 }
738
739 fDecomp_->collectData();
740
741 if (info_->requiresSelfCorrection()) {
742
743 for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
744 fDecomp_->fillSelfData(sdat, atom1);
745 interactionMan_->doSelfCorrection(sdat);
746 }
747
748 }
749
750 longRangePotential = *(fDecomp_->getEmbeddingPotential()) +
751 *(fDecomp_->getPairwisePotential());
752
753 lrPot = longRangePotential.sum();
754
755 //store the tau and long range potential
756 curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
757 curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY];
758 curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY];
759 }
760
761
762 void ForceManager::postCalculation() {
763 SimInfo::MoleculeIterator mi;
764 Molecule* mol;
765 Molecule::RigidBodyIterator rbIter;
766 RigidBody* rb;
767 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
768
769 // collect the atomic forces onto rigid bodies
770
771 for (mol = info_->beginMolecule(mi); mol != NULL;
772 mol = info_->nextMolecule(mi)) {
773 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
774 rb = mol->nextRigidBody(rbIter)) {
775 Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
776 tau += rbTau;
777 }
778 }
779
780 #ifdef IS_MPI
781 Mat3x3d tmpTau(tau);
782 MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
783 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
784 #endif
785 curSnapshot->statData.setTau(tau);
786 }
787
788 } //end namespace OpenMD

Properties

Name Value
svn:executable *
svn:keywords Author Id Revision Date