ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
Revision: 1597
Committed: Tue Jul 26 15:49:24 2011 UTC (13 years, 9 months ago) by gezelter
File size: 28399 byte(s)
Log Message:
Debugging mainly

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 /**
43 * @file ForceManager.cpp
44 * @author tlin
45 * @date 11/09/2004
46 * @time 10:39am
47 * @version 1.0
48 */
49
50
51 #include "brains/ForceManager.hpp"
52 #include "primitives/Molecule.hpp"
53 #define __OPENMD_C
54 #include "utils/simError.h"
55 #include "primitives/Bond.hpp"
56 #include "primitives/Bend.hpp"
57 #include "primitives/Torsion.hpp"
58 #include "primitives/Inversion.hpp"
59 #include "nonbonded/NonBondedInteraction.hpp"
60 #include "parallel/ForceMatrixDecomposition.hpp"
61
62 #include <cstdio>
63 #include <iostream>
64 #include <iomanip>
65
66 using namespace std;
67 namespace OpenMD {
68
69 ForceManager::ForceManager(SimInfo * info) : info_(info) {
70 forceField_ = info_->getForceField();
71 interactionMan_ = new InteractionManager();
72 fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_);
73 }
74
75 /**
76 * setupCutoffs
77 *
78 * Sets the values of cutoffRadius, switchingRadius, cutoffMethod,
79 * and cutoffPolicy
80 *
81 * cutoffRadius : realType
82 * If the cutoffRadius was explicitly set, use that value.
83 * If the cutoffRadius was not explicitly set:
84 * Are there electrostatic atoms? Use 12.0 Angstroms.
85 * No electrostatic atoms? Poll the atom types present in the
86 * simulation for suggested cutoff values (e.g. 2.5 * sigma).
87 * Use the maximum suggested value that was found.
88 *
89 * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE,
90 * or SHIFTED_POTENTIAL)
91 * If cutoffMethod was explicitly set, use that choice.
92 * If cutoffMethod was not explicitly set, use SHIFTED_FORCE
93 *
94 * cutoffPolicy : (one of MIX, MAX, TRADITIONAL)
95 * If cutoffPolicy was explicitly set, use that choice.
96 * If cutoffPolicy was not explicitly set, use TRADITIONAL
97 *
98 * switchingRadius : realType
99 * If the cutoffMethod was set to SWITCHED:
100 * If the switchingRadius was explicitly set, use that value
101 * (but do a sanity check first).
102 * If the switchingRadius was not explicitly set: use 0.85 *
103 * cutoffRadius_
104 * If the cutoffMethod was not set to SWITCHED:
105 * Set switchingRadius equal to cutoffRadius for safety.
106 */
107 void ForceManager::setupCutoffs() {
108
109 Globals* simParams_ = info_->getSimParams();
110 ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
111
112 if (simParams_->haveCutoffRadius()) {
113 rCut_ = simParams_->getCutoffRadius();
114 } else {
115 if (info_->usesElectrostaticAtoms()) {
116 sprintf(painCave.errMsg,
117 "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
118 "\tOpenMD will use a default value of 12.0 angstroms"
119 "\tfor the cutoffRadius.\n");
120 painCave.isFatal = 0;
121 painCave.severity = OPENMD_INFO;
122 simError();
123 rCut_ = 12.0;
124 } else {
125 RealType thisCut;
126 set<AtomType*>::iterator i;
127 set<AtomType*> atomTypes;
128 atomTypes = info_->getSimulatedAtomTypes();
129 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
130 thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
131 rCut_ = max(thisCut, rCut_);
132 }
133 sprintf(painCave.errMsg,
134 "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
135 "\tOpenMD will use %lf angstroms.\n",
136 rCut_);
137 painCave.isFatal = 0;
138 painCave.severity = OPENMD_INFO;
139 simError();
140 }
141 }
142
143 fDecomp_->setUserCutoff(rCut_);
144 interactionMan_->setCutoffRadius(rCut_);
145
146 map<string, CutoffMethod> stringToCutoffMethod;
147 stringToCutoffMethod["HARD"] = HARD;
148 stringToCutoffMethod["SWITCHED"] = SWITCHED;
149 stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;
150 stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
151
152 if (simParams_->haveCutoffMethod()) {
153 string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
154 map<string, CutoffMethod>::iterator i;
155 i = stringToCutoffMethod.find(cutMeth);
156 if (i == stringToCutoffMethod.end()) {
157 sprintf(painCave.errMsg,
158 "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
159 "\tShould be one of: "
160 "HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
161 cutMeth.c_str());
162 painCave.isFatal = 1;
163 painCave.severity = OPENMD_ERROR;
164 simError();
165 } else {
166 cutoffMethod_ = i->second;
167 }
168 } else {
169 sprintf(painCave.errMsg,
170 "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
171 "\tOpenMD will use SHIFTED_FORCE.\n");
172 painCave.isFatal = 0;
173 painCave.severity = OPENMD_INFO;
174 simError();
175 cutoffMethod_ = SHIFTED_FORCE;
176 }
177
178 map<string, CutoffPolicy> stringToCutoffPolicy;
179 stringToCutoffPolicy["MIX"] = MIX;
180 stringToCutoffPolicy["MAX"] = MAX;
181 stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL;
182
183 std::string cutPolicy;
184 if (forceFieldOptions_.haveCutoffPolicy()){
185 cutPolicy = forceFieldOptions_.getCutoffPolicy();
186 }else if (simParams_->haveCutoffPolicy()) {
187 cutPolicy = simParams_->getCutoffPolicy();
188 }
189
190 if (!cutPolicy.empty()){
191 toUpper(cutPolicy);
192 map<string, CutoffPolicy>::iterator i;
193 i = stringToCutoffPolicy.find(cutPolicy);
194
195 if (i == stringToCutoffPolicy.end()) {
196 sprintf(painCave.errMsg,
197 "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n"
198 "\tShould be one of: "
199 "MIX, MAX, or TRADITIONAL\n",
200 cutPolicy.c_str());
201 painCave.isFatal = 1;
202 painCave.severity = OPENMD_ERROR;
203 simError();
204 } else {
205 cutoffPolicy_ = i->second;
206 }
207 } else {
208 sprintf(painCave.errMsg,
209 "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n"
210 "\tOpenMD will use TRADITIONAL.\n");
211 painCave.isFatal = 0;
212 painCave.severity = OPENMD_INFO;
213 simError();
214 cutoffPolicy_ = TRADITIONAL;
215 }
216
217 fDecomp_->setCutoffPolicy(cutoffPolicy_);
218
219 // create the switching function object:
220
221 switcher_ = new SwitchingFunction();
222
223 if (cutoffMethod_ == SWITCHED) {
224 if (simParams_->haveSwitchingRadius()) {
225 rSwitch_ = simParams_->getSwitchingRadius();
226 if (rSwitch_ > rCut_) {
227 sprintf(painCave.errMsg,
228 "ForceManager::setupCutoffs: switchingRadius (%f) is larger "
229 "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
230 painCave.isFatal = 1;
231 painCave.severity = OPENMD_ERROR;
232 simError();
233 }
234 } else {
235 rSwitch_ = 0.85 * rCut_;
236 sprintf(painCave.errMsg,
237 "ForceManager::setupCutoffs: No value was set for the switchingRadius.\n"
238 "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
239 "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
240 painCave.isFatal = 0;
241 painCave.severity = OPENMD_WARNING;
242 simError();
243 }
244 } else {
245 if (simParams_->haveSwitchingRadius()) {
246 map<string, CutoffMethod>::const_iterator it;
247 string theMeth;
248 for (it = stringToCutoffMethod.begin();
249 it != stringToCutoffMethod.end(); ++it) {
250 if (it->second == cutoffMethod_) {
251 theMeth = it->first;
252 break;
253 }
254 }
255 sprintf(painCave.errMsg,
256 "ForceManager::setupCutoffs: the cutoffMethod (%s)\n"
257 "\tis not set to SWITCHED, so switchingRadius value\n"
258 "\twill be ignored for this simulation\n", theMeth.c_str());
259 painCave.isFatal = 0;
260 painCave.severity = OPENMD_WARNING;
261 simError();
262 }
263
264 rSwitch_ = rCut_;
265 }
266
267 // Default to cubic switching function.
268 sft_ = cubic;
269 if (simParams_->haveSwitchingFunctionType()) {
270 string funcType = simParams_->getSwitchingFunctionType();
271 toUpper(funcType);
272 if (funcType == "CUBIC") {
273 sft_ = cubic;
274 } else {
275 if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
276 sft_ = fifth_order_poly;
277 } else {
278 // throw error
279 sprintf( painCave.errMsg,
280 "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
281 "\tswitchingFunctionType must be one of: "
282 "\"cubic\" or \"fifth_order_polynomial\".",
283 funcType.c_str() );
284 painCave.isFatal = 1;
285 painCave.severity = OPENMD_ERROR;
286 simError();
287 }
288 }
289 }
290 switcher_->setSwitchType(sft_);
291 switcher_->setSwitch(rSwitch_, rCut_);
292 interactionMan_->setSwitchingRadius(rSwitch_);
293 }
294
295 void ForceManager::initialize() {
296
297 if (!info_->isTopologyDone()) {
298
299 info_->update();
300 interactionMan_->setSimInfo(info_);
301 interactionMan_->initialize();
302
303 // We want to delay the cutoffs until after the interaction
304 // manager has set up the atom-atom interactions so that we can
305 // query them for suggested cutoff values
306 setupCutoffs();
307
308 info_->prepareTopology();
309 }
310
311 ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
312
313 // Force fields can set options on how to scale van der Waals and
314 // electrostatic interactions for atoms connected via bonds, bends
315 // and torsions in this case the topological distance between
316 // atoms is:
317 // 0 = topologically unconnected
318 // 1 = bonded together
319 // 2 = connected via a bend
320 // 3 = connected via a torsion
321
322 vdwScale_.reserve(4);
323 fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
324
325 electrostaticScale_.reserve(4);
326 fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
327
328 vdwScale_[0] = 1.0;
329 vdwScale_[1] = fopts.getvdw12scale();
330 vdwScale_[2] = fopts.getvdw13scale();
331 vdwScale_[3] = fopts.getvdw14scale();
332
333 electrostaticScale_[0] = 1.0;
334 electrostaticScale_[1] = fopts.getelectrostatic12scale();
335 electrostaticScale_[2] = fopts.getelectrostatic13scale();
336 electrostaticScale_[3] = fopts.getelectrostatic14scale();
337
338 fDecomp_->distributeInitialData();
339
340 initialized_ = true;
341
342 }
343
344 void ForceManager::calcForces() {
345
346 if (!initialized_) initialize();
347
348 preCalculation();
349 shortRangeInteractions();
350 longRangeInteractions();
351 postCalculation();
352 }
353
354 void ForceManager::preCalculation() {
355 SimInfo::MoleculeIterator mi;
356 Molecule* mol;
357 Molecule::AtomIterator ai;
358 Atom* atom;
359 Molecule::RigidBodyIterator rbIter;
360 RigidBody* rb;
361 Molecule::CutoffGroupIterator ci;
362 CutoffGroup* cg;
363
364 // forces are zeroed here, before any are accumulated.
365
366 for (mol = info_->beginMolecule(mi); mol != NULL;
367 mol = info_->nextMolecule(mi)) {
368 for(atom = mol->beginAtom(ai); atom != NULL;
369 atom = mol->nextAtom(ai)) {
370 atom->zeroForcesAndTorques();
371 cerr << "apos = " << atom->getPos() << "\n";
372 }
373
374 //change the positions of atoms which belong to the rigidbodies
375 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
376 rb = mol->nextRigidBody(rbIter)) {
377 rb->zeroForcesAndTorques();
378 }
379
380 if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
381 for(cg = mol->beginCutoffGroup(ci); cg != NULL;
382 cg = mol->nextCutoffGroup(ci)) {
383 //calculate the center of mass of cutoff group
384 cg->updateCOM();
385 cerr << "cgpos = " << cg->getPos() << "\n";
386 }
387 }
388 }
389
390 // Zero out the stress tensor
391 tau *= 0.0;
392
393 }
394
395 void ForceManager::shortRangeInteractions() {
396 Molecule* mol;
397 RigidBody* rb;
398 Bond* bond;
399 Bend* bend;
400 Torsion* torsion;
401 Inversion* inversion;
402 SimInfo::MoleculeIterator mi;
403 Molecule::RigidBodyIterator rbIter;
404 Molecule::BondIterator bondIter;;
405 Molecule::BendIterator bendIter;
406 Molecule::TorsionIterator torsionIter;
407 Molecule::InversionIterator inversionIter;
408 RealType bondPotential = 0.0;
409 RealType bendPotential = 0.0;
410 RealType torsionPotential = 0.0;
411 RealType inversionPotential = 0.0;
412
413 //calculate short range interactions
414 for (mol = info_->beginMolecule(mi); mol != NULL;
415 mol = info_->nextMolecule(mi)) {
416
417 //change the positions of atoms which belong to the rigidbodies
418 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
419 rb = mol->nextRigidBody(rbIter)) {
420 rb->updateAtoms();
421 }
422
423 for (bond = mol->beginBond(bondIter); bond != NULL;
424 bond = mol->nextBond(bondIter)) {
425 bond->calcForce();
426 bondPotential += bond->getPotential();
427 }
428
429 for (bend = mol->beginBend(bendIter); bend != NULL;
430 bend = mol->nextBend(bendIter)) {
431
432 RealType angle;
433 bend->calcForce(angle);
434 RealType currBendPot = bend->getPotential();
435
436 bendPotential += bend->getPotential();
437 map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
438 if (i == bendDataSets.end()) {
439 BendDataSet dataSet;
440 dataSet.prev.angle = dataSet.curr.angle = angle;
441 dataSet.prev.potential = dataSet.curr.potential = currBendPot;
442 dataSet.deltaV = 0.0;
443 bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend,
444 dataSet));
445 }else {
446 i->second.prev.angle = i->second.curr.angle;
447 i->second.prev.potential = i->second.curr.potential;
448 i->second.curr.angle = angle;
449 i->second.curr.potential = currBendPot;
450 i->second.deltaV = fabs(i->second.curr.potential -
451 i->second.prev.potential);
452 }
453 }
454
455 for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
456 torsion = mol->nextTorsion(torsionIter)) {
457 RealType angle;
458 torsion->calcForce(angle);
459 RealType currTorsionPot = torsion->getPotential();
460 torsionPotential += torsion->getPotential();
461 map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
462 if (i == torsionDataSets.end()) {
463 TorsionDataSet dataSet;
464 dataSet.prev.angle = dataSet.curr.angle = angle;
465 dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
466 dataSet.deltaV = 0.0;
467 torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
468 }else {
469 i->second.prev.angle = i->second.curr.angle;
470 i->second.prev.potential = i->second.curr.potential;
471 i->second.curr.angle = angle;
472 i->second.curr.potential = currTorsionPot;
473 i->second.deltaV = fabs(i->second.curr.potential -
474 i->second.prev.potential);
475 }
476 }
477
478 for (inversion = mol->beginInversion(inversionIter);
479 inversion != NULL;
480 inversion = mol->nextInversion(inversionIter)) {
481 RealType angle;
482 inversion->calcForce(angle);
483 RealType currInversionPot = inversion->getPotential();
484 inversionPotential += inversion->getPotential();
485 map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
486 if (i == inversionDataSets.end()) {
487 InversionDataSet dataSet;
488 dataSet.prev.angle = dataSet.curr.angle = angle;
489 dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
490 dataSet.deltaV = 0.0;
491 inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
492 }else {
493 i->second.prev.angle = i->second.curr.angle;
494 i->second.prev.potential = i->second.curr.potential;
495 i->second.curr.angle = angle;
496 i->second.curr.potential = currInversionPot;
497 i->second.deltaV = fabs(i->second.curr.potential -
498 i->second.prev.potential);
499 }
500 }
501 }
502
503 RealType shortRangePotential = bondPotential + bendPotential +
504 torsionPotential + inversionPotential;
505 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
506 curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
507 curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
508 curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
509 curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
510 curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;
511 }
512
513 void ForceManager::longRangeInteractions() {
514
515 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
516 DataStorage* config = &(curSnapshot->atomData);
517 DataStorage* cgConfig = &(curSnapshot->cgData);
518
519 //calculate the center of mass of cutoff group
520
521 SimInfo::MoleculeIterator mi;
522 Molecule* mol;
523 Molecule::CutoffGroupIterator ci;
524 CutoffGroup* cg;
525
526 if(info_->getNCutoffGroups() > 0){
527 for (mol = info_->beginMolecule(mi); mol != NULL;
528 mol = info_->nextMolecule(mi)) {
529 for(cg = mol->beginCutoffGroup(ci); cg != NULL;
530 cg = mol->nextCutoffGroup(ci)) {
531 cerr << "branch1\n";
532 cerr << "globind = " << cg->getGlobalIndex() << "\n";
533 cg->updateCOM();
534 }
535 }
536 } else {
537 // center of mass of the group is the same as position of the atom
538 // if cutoff group does not exist
539 cerr << "branch2\n";
540 cgConfig->position = config->position;
541 }
542
543 fDecomp_->zeroWorkArrays();
544 fDecomp_->distributeData();
545
546 int cg1, cg2, atom1, atom2, topoDist;
547 Vector3d d_grp, dag, d;
548 RealType rgrpsq, rgrp, r2, r;
549 RealType electroMult, vdwMult;
550 RealType vij;
551 Vector3d fij, fg, f1;
552 tuple3<RealType, RealType, RealType> cuts;
553 RealType rCutSq;
554 bool in_switching_region;
555 RealType sw, dswdr, swderiv;
556 vector<int> atomListColumn, atomListRow, atomListLocal;
557 InteractionData idat;
558 SelfData sdat;
559 RealType mf;
560 RealType lrPot;
561 RealType vpair;
562 potVec longRangePotential(0.0);
563 potVec workPot(0.0);
564
565 int loopStart, loopEnd;
566
567 idat.vdwMult = &vdwMult;
568 idat.electroMult = &electroMult;
569 idat.pot = &workPot;
570 sdat.pot = fDecomp_->getEmbeddingPotential();
571 idat.vpair = &vpair;
572 idat.f1 = &f1;
573 idat.sw = &sw;
574 idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false;
575 idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false;
576
577 loopEnd = PAIR_LOOP;
578 if (info_->requiresPrepair() ) {
579 loopStart = PREPAIR_LOOP;
580 } else {
581 loopStart = PAIR_LOOP;
582 }
583
584 for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
585
586 if (iLoop == loopStart) {
587 bool update_nlist = fDecomp_->checkNeighborList();
588 if (update_nlist)
589 neighborList = fDecomp_->buildNeighborList();
590 }
591
592 for (vector<pair<int, int> >::iterator it = neighborList.begin();
593 it != neighborList.end(); ++it) {
594
595 cg1 = (*it).first;
596 cg2 = (*it).second;
597
598 cuts = fDecomp_->getGroupCutoffs(cg1, cg2);
599
600 d_grp = fDecomp_->getIntergroupVector(cg1, cg2);
601 curSnapshot->wrapVector(d_grp);
602 rgrpsq = d_grp.lengthSquare();
603
604 rCutSq = cuts.second;
605
606 if (rgrpsq < rCutSq) {
607 idat.rcut = &cuts.first;
608 if (iLoop == PAIR_LOOP) {
609 vij = 0.0;
610 fij = V3Zero;
611 }
612
613 in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
614 rgrp);
615
616 atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
617 atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
618
619 for (vector<int>::iterator ia = atomListRow.begin();
620 ia != atomListRow.end(); ++ia) {
621 atom1 = (*ia);
622
623 for (vector<int>::iterator jb = atomListColumn.begin();
624 jb != atomListColumn.end(); ++jb) {
625 atom2 = (*jb);
626
627 if (!fDecomp_->skipAtomPair(atom1, atom2)) {
628 vpair = 0.0;
629 workPot = 0.0;
630 f1 = V3Zero;
631
632 fDecomp_->fillInteractionData(idat, atom1, atom2);
633
634 topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
635 vdwMult = vdwScale_[topoDist];
636 electroMult = electrostaticScale_[topoDist];
637
638 if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
639 idat.d = &d_grp;
640 idat.r2 = &rgrpsq;
641 cerr << "dgrp = " << d_grp << "\n";
642 } else {
643 d = fDecomp_->getInteratomicVector(atom1, atom2);
644 curSnapshot->wrapVector( d );
645 r2 = d.lengthSquare();
646 cerr << "datm = " << d<< "\n";
647 idat.d = &d;
648 idat.r2 = &r2;
649 }
650
651 cerr << "idat.d = " << *(idat.d) << "\n";
652 r = sqrt( *(idat.r2) );
653 idat.rij = &r;
654
655 if (iLoop == PREPAIR_LOOP) {
656 interactionMan_->doPrePair(idat);
657 } else {
658 interactionMan_->doPair(idat);
659 fDecomp_->unpackInteractionData(idat, atom1, atom2);
660
661 cerr << "d = " << *(idat.d) << "\tv=" << vpair << "\tf=" << f1 << "\n";
662 vij += vpair;
663 fij += f1;
664 tau -= outProduct( *(idat.d), f1);
665 }
666 }
667 }
668 }
669
670 if (iLoop == PAIR_LOOP) {
671 if (in_switching_region) {
672 swderiv = vij * dswdr / rgrp;
673 fg = swderiv * d_grp;
674 fij += fg;
675
676 if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
677 tau -= outProduct( *(idat.d), fg);
678 }
679
680 for (vector<int>::iterator ia = atomListRow.begin();
681 ia != atomListRow.end(); ++ia) {
682 atom1 = (*ia);
683 mf = fDecomp_->getMassFactorRow(atom1);
684 // fg is the force on atom ia due to cutoff group's
685 // presence in switching region
686 fg = swderiv * d_grp * mf;
687 fDecomp_->addForceToAtomRow(atom1, fg);
688
689 if (atomListRow.size() > 1) {
690 if (info_->usesAtomicVirial()) {
691 // find the distance between the atom
692 // and the center of the cutoff group:
693 dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
694 tau -= outProduct(dag, fg);
695 }
696 }
697 }
698 for (vector<int>::iterator jb = atomListColumn.begin();
699 jb != atomListColumn.end(); ++jb) {
700 atom2 = (*jb);
701 mf = fDecomp_->getMassFactorColumn(atom2);
702 // fg is the force on atom jb due to cutoff group's
703 // presence in switching region
704 fg = -swderiv * d_grp * mf;
705 fDecomp_->addForceToAtomColumn(atom2, fg);
706
707 if (atomListColumn.size() > 1) {
708 if (info_->usesAtomicVirial()) {
709 // find the distance between the atom
710 // and the center of the cutoff group:
711 dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
712 tau -= outProduct(dag, fg);
713 }
714 }
715 }
716 }
717 //if (!SIM_uses_AtomicVirial) {
718 // tau -= outProduct(d_grp, fij);
719 //}
720 }
721 }
722 }
723
724 if (iLoop == PREPAIR_LOOP) {
725 if (info_->requiresPrepair()) {
726
727 fDecomp_->collectIntermediateData();
728
729 for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
730 fDecomp_->fillSelfData(sdat, atom1);
731 interactionMan_->doPreForce(sdat);
732 }
733
734 fDecomp_->distributeIntermediateData();
735
736 }
737 }
738
739 }
740
741 fDecomp_->collectData();
742
743 if (info_->requiresSelfCorrection()) {
744
745 for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
746 fDecomp_->fillSelfData(sdat, atom1);
747 interactionMan_->doSelfCorrection(sdat);
748 }
749
750 }
751
752 longRangePotential = *(fDecomp_->getEmbeddingPotential()) +
753 *(fDecomp_->getPairwisePotential());
754
755 lrPot = longRangePotential.sum();
756
757 //store the tau and long range potential
758 curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
759 curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY];
760 curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY];
761 }
762
763
764 void ForceManager::postCalculation() {
765 SimInfo::MoleculeIterator mi;
766 Molecule* mol;
767 Molecule::RigidBodyIterator rbIter;
768 RigidBody* rb;
769 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
770
771 // collect the atomic forces onto rigid bodies
772
773 for (mol = info_->beginMolecule(mi); mol != NULL;
774 mol = info_->nextMolecule(mi)) {
775 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
776 rb = mol->nextRigidBody(rbIter)) {
777 Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
778 tau += rbTau;
779 }
780 }
781
782 #ifdef IS_MPI
783 Mat3x3d tmpTau(tau);
784 MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
785 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
786 #endif
787 curSnapshot->statData.setTau(tau);
788 }
789
790 } //end namespace OpenMD

Properties

Name Value
svn:executable *
svn:keywords Author Id Revision Date