ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
Revision: 1590
Committed: Mon Jul 11 01:39:49 2011 UTC (13 years, 9 months ago) by gezelter
File size: 27938 byte(s)
Log Message:
more bug fixes

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 /**
43 * @file ForceManager.cpp
44 * @author tlin
45 * @date 11/09/2004
46 * @time 10:39am
47 * @version 1.0
48 */
49
50
51 #include "brains/ForceManager.hpp"
52 #include "primitives/Molecule.hpp"
53 #define __OPENMD_C
54 #include "utils/simError.h"
55 #include "primitives/Bond.hpp"
56 #include "primitives/Bend.hpp"
57 #include "primitives/Torsion.hpp"
58 #include "primitives/Inversion.hpp"
59 #include "nonbonded/NonBondedInteraction.hpp"
60 #include "parallel/ForceMatrixDecomposition.hpp"
61
62 #include <cstdio>
63 #include <iostream>
64 #include <iomanip>
65
66 using namespace std;
67 namespace OpenMD {
68
69 ForceManager::ForceManager(SimInfo * info) : info_(info) {
70 forceField_ = info_->getForceField();
71 interactionMan_ = new InteractionManager();
72 fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_);
73 }
74
75 /**
76 * setupCutoffs
77 *
78 * Sets the values of cutoffRadius, switchingRadius, cutoffMethod,
79 * and cutoffPolicy
80 *
81 * cutoffRadius : realType
82 * If the cutoffRadius was explicitly set, use that value.
83 * If the cutoffRadius was not explicitly set:
84 * Are there electrostatic atoms? Use 12.0 Angstroms.
85 * No electrostatic atoms? Poll the atom types present in the
86 * simulation for suggested cutoff values (e.g. 2.5 * sigma).
87 * Use the maximum suggested value that was found.
88 *
89 * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE,
90 * or SHIFTED_POTENTIAL)
91 * If cutoffMethod was explicitly set, use that choice.
92 * If cutoffMethod was not explicitly set, use SHIFTED_FORCE
93 *
94 * cutoffPolicy : (one of MIX, MAX, TRADITIONAL)
95 * If cutoffPolicy was explicitly set, use that choice.
96 * If cutoffPolicy was not explicitly set, use TRADITIONAL
97 *
98 * switchingRadius : realType
99 * If the cutoffMethod was set to SWITCHED:
100 * If the switchingRadius was explicitly set, use that value
101 * (but do a sanity check first).
102 * If the switchingRadius was not explicitly set: use 0.85 *
103 * cutoffRadius_
104 * If the cutoffMethod was not set to SWITCHED:
105 * Set switchingRadius equal to cutoffRadius for safety.
106 */
107 void ForceManager::setupCutoffs() {
108
109 Globals* simParams_ = info_->getSimParams();
110 ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
111
112 if (simParams_->haveCutoffRadius()) {
113 rCut_ = simParams_->getCutoffRadius();
114 } else {
115 if (info_->usesElectrostaticAtoms()) {
116 sprintf(painCave.errMsg,
117 "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
118 "\tOpenMD will use a default value of 12.0 angstroms"
119 "\tfor the cutoffRadius.\n");
120 painCave.isFatal = 0;
121 painCave.severity = OPENMD_INFO;
122 simError();
123 rCut_ = 12.0;
124 } else {
125 RealType thisCut;
126 set<AtomType*>::iterator i;
127 set<AtomType*> atomTypes;
128 atomTypes = info_->getSimulatedAtomTypes();
129 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
130 thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
131 rCut_ = max(thisCut, rCut_);
132 }
133 sprintf(painCave.errMsg,
134 "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
135 "\tOpenMD will use %lf angstroms.\n",
136 rCut_);
137 painCave.isFatal = 0;
138 painCave.severity = OPENMD_INFO;
139 simError();
140 }
141 }
142
143 fDecomp_->setUserCutoff(rCut_);
144 interactionMan_->setCutoffRadius(rCut_);
145
146 map<string, CutoffMethod> stringToCutoffMethod;
147 stringToCutoffMethod["HARD"] = HARD;
148 stringToCutoffMethod["SWITCHED"] = SWITCHED;
149 stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;
150 stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
151
152 if (simParams_->haveCutoffMethod()) {
153 string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
154 map<string, CutoffMethod>::iterator i;
155 i = stringToCutoffMethod.find(cutMeth);
156 if (i == stringToCutoffMethod.end()) {
157 sprintf(painCave.errMsg,
158 "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
159 "\tShould be one of: "
160 "HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
161 cutMeth.c_str());
162 painCave.isFatal = 1;
163 painCave.severity = OPENMD_ERROR;
164 simError();
165 } else {
166 cutoffMethod_ = i->second;
167 }
168 } else {
169 sprintf(painCave.errMsg,
170 "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
171 "\tOpenMD will use SHIFTED_FORCE.\n");
172 painCave.isFatal = 0;
173 painCave.severity = OPENMD_INFO;
174 simError();
175 cutoffMethod_ = SHIFTED_FORCE;
176 }
177
178 map<string, CutoffPolicy> stringToCutoffPolicy;
179 stringToCutoffPolicy["MIX"] = MIX;
180 stringToCutoffPolicy["MAX"] = MAX;
181 stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL;
182
183 std::string cutPolicy;
184 if (forceFieldOptions_.haveCutoffPolicy()){
185 cutPolicy = forceFieldOptions_.getCutoffPolicy();
186 }else if (simParams_->haveCutoffPolicy()) {
187 cutPolicy = simParams_->getCutoffPolicy();
188 }
189
190 if (!cutPolicy.empty()){
191 toUpper(cutPolicy);
192 map<string, CutoffPolicy>::iterator i;
193 i = stringToCutoffPolicy.find(cutPolicy);
194
195 if (i == stringToCutoffPolicy.end()) {
196 sprintf(painCave.errMsg,
197 "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n"
198 "\tShould be one of: "
199 "MIX, MAX, or TRADITIONAL\n",
200 cutPolicy.c_str());
201 painCave.isFatal = 1;
202 painCave.severity = OPENMD_ERROR;
203 simError();
204 } else {
205 cutoffPolicy_ = i->second;
206 }
207 } else {
208 sprintf(painCave.errMsg,
209 "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n"
210 "\tOpenMD will use TRADITIONAL.\n");
211 painCave.isFatal = 0;
212 painCave.severity = OPENMD_INFO;
213 simError();
214 cutoffPolicy_ = TRADITIONAL;
215 }
216
217 fDecomp_->setCutoffPolicy(cutoffPolicy_);
218
219 // create the switching function object:
220
221 switcher_ = new SwitchingFunction();
222
223 if (cutoffMethod_ == SWITCHED) {
224 if (simParams_->haveSwitchingRadius()) {
225 rSwitch_ = simParams_->getSwitchingRadius();
226 if (rSwitch_ > rCut_) {
227 sprintf(painCave.errMsg,
228 "ForceManager::setupCutoffs: switchingRadius (%f) is larger "
229 "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
230 painCave.isFatal = 1;
231 painCave.severity = OPENMD_ERROR;
232 simError();
233 }
234 } else {
235 rSwitch_ = 0.85 * rCut_;
236 sprintf(painCave.errMsg,
237 "ForceManager::setupCutoffs: No value was set for the switchingRadius.\n"
238 "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
239 "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
240 painCave.isFatal = 0;
241 painCave.severity = OPENMD_WARNING;
242 simError();
243 }
244 } else {
245 if (simParams_->haveSwitchingRadius()) {
246 map<string, CutoffMethod>::const_iterator it;
247 string theMeth;
248 for (it = stringToCutoffMethod.begin();
249 it != stringToCutoffMethod.end(); ++it) {
250 if (it->second == cutoffMethod_) {
251 theMeth = it->first;
252 break;
253 }
254 }
255 sprintf(painCave.errMsg,
256 "ForceManager::setupCutoffs: the cutoffMethod (%s)\n"
257 "\tis not set to SWITCHED, so switchingRadius value\n"
258 "\twill be ignored for this simulation\n", theMeth.c_str());
259 painCave.isFatal = 0;
260 painCave.severity = OPENMD_WARNING;
261 simError();
262 }
263
264 rSwitch_ = rCut_;
265 }
266
267 // Default to cubic switching function.
268 sft_ = cubic;
269 if (simParams_->haveSwitchingFunctionType()) {
270 string funcType = simParams_->getSwitchingFunctionType();
271 toUpper(funcType);
272 if (funcType == "CUBIC") {
273 sft_ = cubic;
274 } else {
275 if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
276 sft_ = fifth_order_poly;
277 } else {
278 // throw error
279 sprintf( painCave.errMsg,
280 "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
281 "\tswitchingFunctionType must be one of: "
282 "\"cubic\" or \"fifth_order_polynomial\".",
283 funcType.c_str() );
284 painCave.isFatal = 1;
285 painCave.severity = OPENMD_ERROR;
286 simError();
287 }
288 }
289 }
290 switcher_->setSwitchType(sft_);
291 switcher_->setSwitch(rSwitch_, rCut_);
292 interactionMan_->setSwitchingRadius(rSwitch_);
293 }
294
295 void ForceManager::initialize() {
296
297 if (!info_->isTopologyDone()) {
298
299 info_->update();
300 interactionMan_->setSimInfo(info_);
301 interactionMan_->initialize();
302
303 // We want to delay the cutoffs until after the interaction
304 // manager has set up the atom-atom interactions so that we can
305 // query them for suggested cutoff values
306 setupCutoffs();
307
308 info_->prepareTopology();
309 }
310
311 ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
312
313 // Force fields can set options on how to scale van der Waals and
314 // electrostatic interactions for atoms connected via bonds, bends
315 // and torsions in this case the topological distance between
316 // atoms is:
317 // 0 = topologically unconnected
318 // 1 = bonded together
319 // 2 = connected via a bend
320 // 3 = connected via a torsion
321
322 vdwScale_.reserve(4);
323 fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
324
325 electrostaticScale_.reserve(4);
326 fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
327
328 vdwScale_[0] = 1.0;
329 vdwScale_[1] = fopts.getvdw12scale();
330 vdwScale_[2] = fopts.getvdw13scale();
331 vdwScale_[3] = fopts.getvdw14scale();
332
333 electrostaticScale_[0] = 1.0;
334 electrostaticScale_[1] = fopts.getelectrostatic12scale();
335 electrostaticScale_[2] = fopts.getelectrostatic13scale();
336 electrostaticScale_[3] = fopts.getelectrostatic14scale();
337
338 fDecomp_->distributeInitialData();
339
340 initialized_ = true;
341
342 }
343
344 void ForceManager::calcForces() {
345
346 if (!initialized_) initialize();
347
348 preCalculation();
349 shortRangeInteractions();
350 longRangeInteractions();
351 postCalculation();
352 }
353
354 void ForceManager::preCalculation() {
355 SimInfo::MoleculeIterator mi;
356 Molecule* mol;
357 Molecule::AtomIterator ai;
358 Atom* atom;
359 Molecule::RigidBodyIterator rbIter;
360 RigidBody* rb;
361 Molecule::CutoffGroupIterator ci;
362 CutoffGroup* cg;
363
364 // forces are zeroed here, before any are accumulated.
365
366 for (mol = info_->beginMolecule(mi); mol != NULL;
367 mol = info_->nextMolecule(mi)) {
368 for(atom = mol->beginAtom(ai); atom != NULL;
369 atom = mol->nextAtom(ai)) {
370 atom->zeroForcesAndTorques();
371 }
372
373 //change the positions of atoms which belong to the rigidbodies
374 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
375 rb = mol->nextRigidBody(rbIter)) {
376 rb->zeroForcesAndTorques();
377 }
378
379 if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
380 for(cg = mol->beginCutoffGroup(ci); cg != NULL;
381 cg = mol->nextCutoffGroup(ci)) {
382 //calculate the center of mass of cutoff group
383 cg->updateCOM();
384 }
385 }
386 }
387
388 // Zero out the stress tensor
389 tau = Mat3x3d(0.0);
390
391 }
392
393 void ForceManager::shortRangeInteractions() {
394 Molecule* mol;
395 RigidBody* rb;
396 Bond* bond;
397 Bend* bend;
398 Torsion* torsion;
399 Inversion* inversion;
400 SimInfo::MoleculeIterator mi;
401 Molecule::RigidBodyIterator rbIter;
402 Molecule::BondIterator bondIter;;
403 Molecule::BendIterator bendIter;
404 Molecule::TorsionIterator torsionIter;
405 Molecule::InversionIterator inversionIter;
406 RealType bondPotential = 0.0;
407 RealType bendPotential = 0.0;
408 RealType torsionPotential = 0.0;
409 RealType inversionPotential = 0.0;
410
411 //calculate short range interactions
412 for (mol = info_->beginMolecule(mi); mol != NULL;
413 mol = info_->nextMolecule(mi)) {
414
415 //change the positions of atoms which belong to the rigidbodies
416 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
417 rb = mol->nextRigidBody(rbIter)) {
418 rb->updateAtoms();
419 }
420
421 for (bond = mol->beginBond(bondIter); bond != NULL;
422 bond = mol->nextBond(bondIter)) {
423 bond->calcForce();
424 bondPotential += bond->getPotential();
425 }
426
427 for (bend = mol->beginBend(bendIter); bend != NULL;
428 bend = mol->nextBend(bendIter)) {
429
430 RealType angle;
431 bend->calcForce(angle);
432 RealType currBendPot = bend->getPotential();
433
434 bendPotential += bend->getPotential();
435 map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
436 if (i == bendDataSets.end()) {
437 BendDataSet dataSet;
438 dataSet.prev.angle = dataSet.curr.angle = angle;
439 dataSet.prev.potential = dataSet.curr.potential = currBendPot;
440 dataSet.deltaV = 0.0;
441 bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend,
442 dataSet));
443 }else {
444 i->second.prev.angle = i->second.curr.angle;
445 i->second.prev.potential = i->second.curr.potential;
446 i->second.curr.angle = angle;
447 i->second.curr.potential = currBendPot;
448 i->second.deltaV = fabs(i->second.curr.potential -
449 i->second.prev.potential);
450 }
451 }
452
453 for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
454 torsion = mol->nextTorsion(torsionIter)) {
455 RealType angle;
456 torsion->calcForce(angle);
457 RealType currTorsionPot = torsion->getPotential();
458 torsionPotential += torsion->getPotential();
459 map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
460 if (i == torsionDataSets.end()) {
461 TorsionDataSet dataSet;
462 dataSet.prev.angle = dataSet.curr.angle = angle;
463 dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
464 dataSet.deltaV = 0.0;
465 torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
466 }else {
467 i->second.prev.angle = i->second.curr.angle;
468 i->second.prev.potential = i->second.curr.potential;
469 i->second.curr.angle = angle;
470 i->second.curr.potential = currTorsionPot;
471 i->second.deltaV = fabs(i->second.curr.potential -
472 i->second.prev.potential);
473 }
474 }
475
476 for (inversion = mol->beginInversion(inversionIter);
477 inversion != NULL;
478 inversion = mol->nextInversion(inversionIter)) {
479 RealType angle;
480 inversion->calcForce(angle);
481 RealType currInversionPot = inversion->getPotential();
482 inversionPotential += inversion->getPotential();
483 map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
484 if (i == inversionDataSets.end()) {
485 InversionDataSet dataSet;
486 dataSet.prev.angle = dataSet.curr.angle = angle;
487 dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
488 dataSet.deltaV = 0.0;
489 inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
490 }else {
491 i->second.prev.angle = i->second.curr.angle;
492 i->second.prev.potential = i->second.curr.potential;
493 i->second.curr.angle = angle;
494 i->second.curr.potential = currInversionPot;
495 i->second.deltaV = fabs(i->second.curr.potential -
496 i->second.prev.potential);
497 }
498 }
499 }
500
501 RealType shortRangePotential = bondPotential + bendPotential +
502 torsionPotential + inversionPotential;
503 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
504 curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
505 curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
506 curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
507 curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
508 curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;
509 }
510
511 void ForceManager::longRangeInteractions() {
512
513 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
514 DataStorage* config = &(curSnapshot->atomData);
515 DataStorage* cgConfig = &(curSnapshot->cgData);
516
517 //calculate the center of mass of cutoff group
518
519 SimInfo::MoleculeIterator mi;
520 Molecule* mol;
521 Molecule::CutoffGroupIterator ci;
522 CutoffGroup* cg;
523
524 if(info_->getNCutoffGroups() > 0){
525 for (mol = info_->beginMolecule(mi); mol != NULL;
526 mol = info_->nextMolecule(mi)) {
527 for(cg = mol->beginCutoffGroup(ci); cg != NULL;
528 cg = mol->nextCutoffGroup(ci)) {
529 cg->updateCOM();
530 }
531 }
532 } else {
533 // center of mass of the group is the same as position of the atom
534 // if cutoff group does not exist
535 cgConfig->position = config->position;
536 }
537
538 fDecomp_->zeroWorkArrays();
539 fDecomp_->distributeData();
540
541 int cg1, cg2, atom1, atom2, topoDist;
542 Vector3d d_grp, dag, d;
543 RealType rgrpsq, rgrp, r2, r;
544 RealType electroMult, vdwMult;
545 RealType vij;
546 Vector3d fij, fg, f1;
547 tuple3<RealType, RealType, RealType> cuts;
548 RealType rCutSq;
549 bool in_switching_region;
550 RealType sw, dswdr, swderiv;
551 vector<int> atomListColumn, atomListRow, atomListLocal;
552 InteractionData idat;
553 SelfData sdat;
554 RealType mf;
555 RealType lrPot;
556 RealType vpair;
557 potVec longRangePotential(0.0);
558 potVec workPot(0.0);
559
560 int loopStart, loopEnd;
561
562 idat.vdwMult = &vdwMult;
563 idat.electroMult = &electroMult;
564 idat.pot = &workPot;
565 sdat.pot = fDecomp_->getEmbeddingPotential();
566 idat.vpair = &vpair;
567 idat.f1 = &f1;
568 idat.sw = &sw;
569 idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false;
570 idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false;
571
572 loopEnd = PAIR_LOOP;
573 if (info_->requiresPrepair() ) {
574 loopStart = PREPAIR_LOOP;
575 } else {
576 loopStart = PAIR_LOOP;
577 }
578
579 for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
580
581 if (iLoop == loopStart) {
582 bool update_nlist = fDecomp_->checkNeighborList();
583 if (update_nlist)
584 neighborList = fDecomp_->buildNeighborList();
585 }
586
587 for (vector<pair<int, int> >::iterator it = neighborList.begin();
588 it != neighborList.end(); ++it) {
589
590 cg1 = (*it).first;
591 cg2 = (*it).second;
592
593 cuts = fDecomp_->getGroupCutoffs(cg1, cg2);
594
595 d_grp = fDecomp_->getIntergroupVector(cg1, cg2);
596 curSnapshot->wrapVector(d_grp);
597 rgrpsq = d_grp.lengthSquare();
598
599 rCutSq = cuts.second;
600
601 if (rgrpsq < rCutSq) {
602 idat.rcut = &cuts.first;
603 if (iLoop == PAIR_LOOP) {
604 vij = 0.0;
605 fij = V3Zero;
606 }
607
608 in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
609 rgrp);
610
611 atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
612 atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
613
614 for (vector<int>::iterator ia = atomListRow.begin();
615 ia != atomListRow.end(); ++ia) {
616 atom1 = (*ia);
617
618 for (vector<int>::iterator jb = atomListColumn.begin();
619 jb != atomListColumn.end(); ++jb) {
620 atom2 = (*jb);
621
622 if (!fDecomp_->skipAtomPair(atom1, atom2)) {
623 vpair = 0.0;
624 workPot = 0.0;
625 f1 = V3Zero;
626
627 fDecomp_->fillInteractionData(idat, atom1, atom2);
628
629 topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
630 vdwMult = vdwScale_[topoDist];
631 electroMult = electrostaticScale_[topoDist];
632
633 if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
634 idat.d = &d_grp;
635 idat.r2 = &rgrpsq;
636 } else {
637 d = fDecomp_->getInteratomicVector(atom1, atom2);
638 curSnapshot->wrapVector( d );
639 r2 = d.lengthSquare();
640 idat.d = &d;
641 idat.r2 = &r2;
642 }
643
644 r = sqrt( *(idat.r2) );
645 idat.rij = &r;
646
647 if (iLoop == PREPAIR_LOOP) {
648 interactionMan_->doPrePair(idat);
649 } else {
650 interactionMan_->doPair(idat);
651 fDecomp_->unpackInteractionData(idat, atom1, atom2);
652 vij += vpair;
653 fij += f1;
654 tau -= outProduct( *(idat.d), f1);
655 }
656 }
657 }
658 }
659
660 if (iLoop == PAIR_LOOP) {
661 if (in_switching_region) {
662 swderiv = vij * dswdr / rgrp;
663 fg = swderiv * d_grp;
664 fij += fg;
665
666 if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
667 tau -= outProduct( *(idat.d), fg);
668 }
669
670 for (vector<int>::iterator ia = atomListRow.begin();
671 ia != atomListRow.end(); ++ia) {
672 atom1 = (*ia);
673 mf = fDecomp_->getMassFactorRow(atom1);
674 // fg is the force on atom ia due to cutoff group's
675 // presence in switching region
676 fg = swderiv * d_grp * mf;
677 fDecomp_->addForceToAtomRow(atom1, fg);
678
679 if (atomListRow.size() > 1) {
680 if (info_->usesAtomicVirial()) {
681 // find the distance between the atom
682 // and the center of the cutoff group:
683 dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
684 tau -= outProduct(dag, fg);
685 }
686 }
687 }
688 for (vector<int>::iterator jb = atomListColumn.begin();
689 jb != atomListColumn.end(); ++jb) {
690 atom2 = (*jb);
691 mf = fDecomp_->getMassFactorColumn(atom2);
692 // fg is the force on atom jb due to cutoff group's
693 // presence in switching region
694 fg = -swderiv * d_grp * mf;
695 fDecomp_->addForceToAtomColumn(atom2, fg);
696
697 if (atomListColumn.size() > 1) {
698 if (info_->usesAtomicVirial()) {
699 // find the distance between the atom
700 // and the center of the cutoff group:
701 dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
702 tau -= outProduct(dag, fg);
703 }
704 }
705 }
706 }
707 //if (!SIM_uses_AtomicVirial) {
708 // tau -= outProduct(d_grp, fij);
709 //}
710 }
711 }
712 }
713
714 if (iLoop == PREPAIR_LOOP) {
715 if (info_->requiresPrepair()) {
716
717 fDecomp_->collectIntermediateData();
718
719 for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
720 fDecomp_->fillSelfData(sdat, atom1);
721 interactionMan_->doPreForce(sdat);
722 }
723
724 fDecomp_->distributeIntermediateData();
725
726 }
727 }
728
729 }
730
731 fDecomp_->collectData();
732
733 if (info_->requiresSelfCorrection()) {
734
735 for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
736 fDecomp_->fillSelfData(sdat, atom1);
737 interactionMan_->doSelfCorrection(sdat);
738 }
739
740 }
741
742 longRangePotential = *(fDecomp_->getEmbeddingPotential()) +
743 *(fDecomp_->getPairwisePotential());
744
745 lrPot = longRangePotential.sum();
746
747 //store the tau and long range potential
748 curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
749 curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY];
750 curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY];
751 }
752
753
754 void ForceManager::postCalculation() {
755 SimInfo::MoleculeIterator mi;
756 Molecule* mol;
757 Molecule::RigidBodyIterator rbIter;
758 RigidBody* rb;
759 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
760
761 // collect the atomic forces onto rigid bodies
762
763 for (mol = info_->beginMolecule(mi); mol != NULL;
764 mol = info_->nextMolecule(mi)) {
765 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
766 rb = mol->nextRigidBody(rbIter)) {
767 Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
768 tau += rbTau;
769 }
770 }
771
772 #ifdef IS_MPI
773 Mat3x3d tmpTau(tau);
774 MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
775 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
776 #endif
777 curSnapshot->statData.setTau(tau);
778 }
779
780 } //end namespace OpenMD

Properties

Name Value
svn:executable *
svn:keywords Author Id Revision Date