1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file ForceManager.cpp |
44 |
* @author tlin |
45 |
* @date 11/09/2004 |
46 |
* @time 10:39am |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
|
51 |
#include "brains/ForceManager.hpp" |
52 |
#include "primitives/Molecule.hpp" |
53 |
#define __OPENMD_C |
54 |
#include "utils/simError.h" |
55 |
#include "primitives/Bond.hpp" |
56 |
#include "primitives/Bend.hpp" |
57 |
#include "primitives/Torsion.hpp" |
58 |
#include "primitives/Inversion.hpp" |
59 |
#include "nonbonded/NonBondedInteraction.hpp" |
60 |
#include "parallel/ForceMatrixDecomposition.hpp" |
61 |
|
62 |
#include <cstdio> |
63 |
#include <iostream> |
64 |
#include <iomanip> |
65 |
|
66 |
using namespace std; |
67 |
namespace OpenMD { |
68 |
|
69 |
ForceManager::ForceManager(SimInfo * info) : info_(info) { |
70 |
forceField_ = info_->getForceField(); |
71 |
interactionMan_ = new InteractionManager(); |
72 |
fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_); |
73 |
} |
74 |
|
75 |
/** |
76 |
* setupCutoffs |
77 |
* |
78 |
* Sets the values of cutoffRadius, cutoffMethod, and cutoffPolicy |
79 |
* |
80 |
* cutoffRadius : realType |
81 |
* If the cutoffRadius was explicitly set, use that value. |
82 |
* If the cutoffRadius was not explicitly set: |
83 |
* Are there electrostatic atoms? Use 12.0 Angstroms. |
84 |
* No electrostatic atoms? Poll the atom types present in the |
85 |
* simulation for suggested cutoff values (e.g. 2.5 * sigma). |
86 |
* Use the maximum suggested value that was found. |
87 |
* |
88 |
* cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL) |
89 |
* If cutoffMethod was explicitly set, use that choice. |
90 |
* If cutoffMethod was not explicitly set, use SHIFTED_FORCE |
91 |
* |
92 |
* cutoffPolicy : (one of MIX, MAX, TRADITIONAL) |
93 |
* If cutoffPolicy was explicitly set, use that choice. |
94 |
* If cutoffPolicy was not explicitly set, use TRADITIONAL |
95 |
*/ |
96 |
void ForceManager::setupCutoffs() { |
97 |
|
98 |
Globals* simParams_ = info_->getSimParams(); |
99 |
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
100 |
|
101 |
if (simParams_->haveCutoffRadius()) { |
102 |
rCut_ = simParams_->getCutoffRadius(); |
103 |
} else { |
104 |
if (info_->usesElectrostaticAtoms()) { |
105 |
sprintf(painCave.errMsg, |
106 |
"ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" |
107 |
"\tOpenMD will use a default value of 12.0 angstroms" |
108 |
"\tfor the cutoffRadius.\n"); |
109 |
painCave.isFatal = 0; |
110 |
painCave.severity = OPENMD_INFO; |
111 |
simError(); |
112 |
rCut_ = 12.0; |
113 |
} else { |
114 |
RealType thisCut; |
115 |
set<AtomType*>::iterator i; |
116 |
set<AtomType*> atomTypes; |
117 |
atomTypes = info_->getSimulatedAtomTypes(); |
118 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
119 |
thisCut = interactionMan_->getSuggestedCutoffRadius((*i)); |
120 |
rCut_ = max(thisCut, rCut_); |
121 |
} |
122 |
sprintf(painCave.errMsg, |
123 |
"ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" |
124 |
"\tOpenMD will use %lf angstroms.\n", |
125 |
rCut_); |
126 |
painCave.isFatal = 0; |
127 |
painCave.severity = OPENMD_INFO; |
128 |
simError(); |
129 |
} |
130 |
} |
131 |
|
132 |
fDecomp_->setUserCutoff(rCut_); |
133 |
|
134 |
map<string, CutoffMethod> stringToCutoffMethod; |
135 |
stringToCutoffMethod["HARD"] = HARD; |
136 |
stringToCutoffMethod["SWITCHED"] = SWITCHED; |
137 |
stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL; |
138 |
stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE; |
139 |
|
140 |
if (simParams_->haveCutoffMethod()) { |
141 |
string cutMeth = toUpperCopy(simParams_->getCutoffMethod()); |
142 |
map<string, CutoffMethod>::iterator i; |
143 |
i = stringToCutoffMethod.find(cutMeth); |
144 |
if (i == stringToCutoffMethod.end()) { |
145 |
sprintf(painCave.errMsg, |
146 |
"ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n" |
147 |
"\tShould be one of: " |
148 |
"HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n", |
149 |
cutMeth.c_str()); |
150 |
painCave.isFatal = 1; |
151 |
painCave.severity = OPENMD_ERROR; |
152 |
simError(); |
153 |
} else { |
154 |
cutoffMethod_ = i->second; |
155 |
} |
156 |
} else { |
157 |
sprintf(painCave.errMsg, |
158 |
"ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n" |
159 |
"\tOpenMD will use SHIFTED_FORCE.\n"); |
160 |
painCave.isFatal = 0; |
161 |
painCave.severity = OPENMD_INFO; |
162 |
simError(); |
163 |
cutoffMethod_ = SHIFTED_FORCE; |
164 |
} |
165 |
|
166 |
map<string, CutoffPolicy> stringToCutoffPolicy; |
167 |
stringToCutoffPolicy["MIX"] = MIX; |
168 |
stringToCutoffPolicy["MAX"] = MAX; |
169 |
stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL; |
170 |
|
171 |
std::string cutPolicy; |
172 |
if (forceFieldOptions_.haveCutoffPolicy()){ |
173 |
cutPolicy = forceFieldOptions_.getCutoffPolicy(); |
174 |
}else if (simParams_->haveCutoffPolicy()) { |
175 |
cutPolicy = simParams_->getCutoffPolicy(); |
176 |
} |
177 |
|
178 |
if (!cutPolicy.empty()){ |
179 |
toUpper(cutPolicy); |
180 |
map<string, CutoffPolicy>::iterator i; |
181 |
i = stringToCutoffPolicy.find(cutPolicy); |
182 |
|
183 |
if (i == stringToCutoffPolicy.end()) { |
184 |
sprintf(painCave.errMsg, |
185 |
"ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n" |
186 |
"\tShould be one of: " |
187 |
"MIX, MAX, or TRADITIONAL\n", |
188 |
cutPolicy.c_str()); |
189 |
painCave.isFatal = 1; |
190 |
painCave.severity = OPENMD_ERROR; |
191 |
simError(); |
192 |
} else { |
193 |
cutoffPolicy_ = i->second; |
194 |
} |
195 |
} else { |
196 |
sprintf(painCave.errMsg, |
197 |
"ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n" |
198 |
"\tOpenMD will use TRADITIONAL.\n"); |
199 |
painCave.isFatal = 0; |
200 |
painCave.severity = OPENMD_INFO; |
201 |
simError(); |
202 |
cutoffPolicy_ = TRADITIONAL; |
203 |
} |
204 |
fDecomp_->setCutoffPolicy(cutoffPolicy_); |
205 |
} |
206 |
|
207 |
/** |
208 |
* setupSwitching |
209 |
* |
210 |
* Sets the values of switchingRadius and |
211 |
* If the switchingRadius was explicitly set, use that value (but check it) |
212 |
* If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_ |
213 |
*/ |
214 |
void ForceManager::setupSwitching() { |
215 |
Globals* simParams_ = info_->getSimParams(); |
216 |
|
217 |
// create the switching function object: |
218 |
switcher_ = new SwitchingFunction(); |
219 |
|
220 |
if (simParams_->haveSwitchingRadius()) { |
221 |
rSwitch_ = simParams_->getSwitchingRadius(); |
222 |
if (rSwitch_ > rCut_) { |
223 |
sprintf(painCave.errMsg, |
224 |
"ForceManager::setupSwitching: switchingRadius (%f) is larger " |
225 |
"than the cutoffRadius(%f)\n", rSwitch_, rCut_); |
226 |
painCave.isFatal = 1; |
227 |
painCave.severity = OPENMD_ERROR; |
228 |
simError(); |
229 |
} |
230 |
} else { |
231 |
rSwitch_ = 0.85 * rCut_; |
232 |
sprintf(painCave.errMsg, |
233 |
"ForceManager::setupSwitching: No value was set for the switchingRadius.\n" |
234 |
"\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
235 |
"\tswitchingRadius = %f. for this simulation\n", rSwitch_); |
236 |
painCave.isFatal = 0; |
237 |
painCave.severity = OPENMD_WARNING; |
238 |
simError(); |
239 |
} |
240 |
|
241 |
// Default to cubic switching function. |
242 |
sft_ = cubic; |
243 |
if (simParams_->haveSwitchingFunctionType()) { |
244 |
string funcType = simParams_->getSwitchingFunctionType(); |
245 |
toUpper(funcType); |
246 |
if (funcType == "CUBIC") { |
247 |
sft_ = cubic; |
248 |
} else { |
249 |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
250 |
sft_ = fifth_order_poly; |
251 |
} else { |
252 |
// throw error |
253 |
sprintf( painCave.errMsg, |
254 |
"ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n" |
255 |
"\tswitchingFunctionType must be one of: " |
256 |
"\"cubic\" or \"fifth_order_polynomial\".", |
257 |
funcType.c_str() ); |
258 |
painCave.isFatal = 1; |
259 |
painCave.severity = OPENMD_ERROR; |
260 |
simError(); |
261 |
} |
262 |
} |
263 |
} |
264 |
switcher_->setSwitchType(sft_); |
265 |
switcher_->setSwitch(rSwitch_, rCut_); |
266 |
} |
267 |
|
268 |
void ForceManager::initialize() { |
269 |
|
270 |
if (!info_->isTopologyDone()) { |
271 |
info_->update(); |
272 |
interactionMan_->setSimInfo(info_); |
273 |
interactionMan_->initialize(); |
274 |
|
275 |
// We want to delay the cutoffs until after the interaction |
276 |
// manager has set up the atom-atom interactions so that we can |
277 |
// query them for suggested cutoff values |
278 |
|
279 |
setupCutoffs(); |
280 |
setupSwitching(); |
281 |
|
282 |
info_->prepareTopology(); |
283 |
} |
284 |
|
285 |
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
286 |
|
287 |
// Force fields can set options on how to scale van der Waals and electrostatic |
288 |
// interactions for atoms connected via bonds, bends and torsions |
289 |
// in this case the topological distance between atoms is: |
290 |
// 0 = topologically unconnected |
291 |
// 1 = bonded together |
292 |
// 2 = connected via a bend |
293 |
// 3 = connected via a torsion |
294 |
|
295 |
vdwScale_.reserve(4); |
296 |
fill(vdwScale_.begin(), vdwScale_.end(), 0.0); |
297 |
|
298 |
electrostaticScale_.reserve(4); |
299 |
fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0); |
300 |
|
301 |
vdwScale_[0] = 1.0; |
302 |
vdwScale_[1] = fopts.getvdw12scale(); |
303 |
vdwScale_[2] = fopts.getvdw13scale(); |
304 |
vdwScale_[3] = fopts.getvdw14scale(); |
305 |
|
306 |
electrostaticScale_[0] = 1.0; |
307 |
electrostaticScale_[1] = fopts.getelectrostatic12scale(); |
308 |
electrostaticScale_[2] = fopts.getelectrostatic13scale(); |
309 |
electrostaticScale_[3] = fopts.getelectrostatic14scale(); |
310 |
|
311 |
fDecomp_->distributeInitialData(); |
312 |
|
313 |
initialized_ = true; |
314 |
|
315 |
} |
316 |
|
317 |
void ForceManager::calcForces() { |
318 |
|
319 |
if (!initialized_) initialize(); |
320 |
|
321 |
preCalculation(); |
322 |
shortRangeInteractions(); |
323 |
longRangeInteractions(); |
324 |
postCalculation(); |
325 |
} |
326 |
|
327 |
void ForceManager::preCalculation() { |
328 |
SimInfo::MoleculeIterator mi; |
329 |
Molecule* mol; |
330 |
Molecule::AtomIterator ai; |
331 |
Atom* atom; |
332 |
Molecule::RigidBodyIterator rbIter; |
333 |
RigidBody* rb; |
334 |
Molecule::CutoffGroupIterator ci; |
335 |
CutoffGroup* cg; |
336 |
|
337 |
// forces are zeroed here, before any are accumulated. |
338 |
|
339 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
340 |
mol = info_->nextMolecule(mi)) { |
341 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
342 |
atom->zeroForcesAndTorques(); |
343 |
} |
344 |
|
345 |
//change the positions of atoms which belong to the rigidbodies |
346 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
347 |
rb = mol->nextRigidBody(rbIter)) { |
348 |
rb->zeroForcesAndTorques(); |
349 |
} |
350 |
|
351 |
if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ |
352 |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
353 |
cg = mol->nextCutoffGroup(ci)) { |
354 |
//calculate the center of mass of cutoff group |
355 |
cg->updateCOM(); |
356 |
} |
357 |
} |
358 |
} |
359 |
|
360 |
// Zero out the stress tensor |
361 |
tau *= 0.0; |
362 |
|
363 |
} |
364 |
|
365 |
void ForceManager::shortRangeInteractions() { |
366 |
Molecule* mol; |
367 |
RigidBody* rb; |
368 |
Bond* bond; |
369 |
Bend* bend; |
370 |
Torsion* torsion; |
371 |
Inversion* inversion; |
372 |
SimInfo::MoleculeIterator mi; |
373 |
Molecule::RigidBodyIterator rbIter; |
374 |
Molecule::BondIterator bondIter;; |
375 |
Molecule::BendIterator bendIter; |
376 |
Molecule::TorsionIterator torsionIter; |
377 |
Molecule::InversionIterator inversionIter; |
378 |
RealType bondPotential = 0.0; |
379 |
RealType bendPotential = 0.0; |
380 |
RealType torsionPotential = 0.0; |
381 |
RealType inversionPotential = 0.0; |
382 |
|
383 |
//calculate short range interactions |
384 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
385 |
mol = info_->nextMolecule(mi)) { |
386 |
|
387 |
//change the positions of atoms which belong to the rigidbodies |
388 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
389 |
rb = mol->nextRigidBody(rbIter)) { |
390 |
rb->updateAtoms(); |
391 |
} |
392 |
|
393 |
for (bond = mol->beginBond(bondIter); bond != NULL; |
394 |
bond = mol->nextBond(bondIter)) { |
395 |
bond->calcForce(); |
396 |
bondPotential += bond->getPotential(); |
397 |
} |
398 |
|
399 |
for (bend = mol->beginBend(bendIter); bend != NULL; |
400 |
bend = mol->nextBend(bendIter)) { |
401 |
|
402 |
RealType angle; |
403 |
bend->calcForce(angle); |
404 |
RealType currBendPot = bend->getPotential(); |
405 |
|
406 |
bendPotential += bend->getPotential(); |
407 |
map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
408 |
if (i == bendDataSets.end()) { |
409 |
BendDataSet dataSet; |
410 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
411 |
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
412 |
dataSet.deltaV = 0.0; |
413 |
bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet)); |
414 |
}else { |
415 |
i->second.prev.angle = i->second.curr.angle; |
416 |
i->second.prev.potential = i->second.curr.potential; |
417 |
i->second.curr.angle = angle; |
418 |
i->second.curr.potential = currBendPot; |
419 |
i->second.deltaV = fabs(i->second.curr.potential - |
420 |
i->second.prev.potential); |
421 |
} |
422 |
} |
423 |
|
424 |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; |
425 |
torsion = mol->nextTorsion(torsionIter)) { |
426 |
RealType angle; |
427 |
torsion->calcForce(angle); |
428 |
RealType currTorsionPot = torsion->getPotential(); |
429 |
torsionPotential += torsion->getPotential(); |
430 |
map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
431 |
if (i == torsionDataSets.end()) { |
432 |
TorsionDataSet dataSet; |
433 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
434 |
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
435 |
dataSet.deltaV = 0.0; |
436 |
torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
437 |
}else { |
438 |
i->second.prev.angle = i->second.curr.angle; |
439 |
i->second.prev.potential = i->second.curr.potential; |
440 |
i->second.curr.angle = angle; |
441 |
i->second.curr.potential = currTorsionPot; |
442 |
i->second.deltaV = fabs(i->second.curr.potential - |
443 |
i->second.prev.potential); |
444 |
} |
445 |
} |
446 |
|
447 |
for (inversion = mol->beginInversion(inversionIter); |
448 |
inversion != NULL; |
449 |
inversion = mol->nextInversion(inversionIter)) { |
450 |
RealType angle; |
451 |
inversion->calcForce(angle); |
452 |
RealType currInversionPot = inversion->getPotential(); |
453 |
inversionPotential += inversion->getPotential(); |
454 |
map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
455 |
if (i == inversionDataSets.end()) { |
456 |
InversionDataSet dataSet; |
457 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
458 |
dataSet.prev.potential = dataSet.curr.potential = currInversionPot; |
459 |
dataSet.deltaV = 0.0; |
460 |
inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet)); |
461 |
}else { |
462 |
i->second.prev.angle = i->second.curr.angle; |
463 |
i->second.prev.potential = i->second.curr.potential; |
464 |
i->second.curr.angle = angle; |
465 |
i->second.curr.potential = currInversionPot; |
466 |
i->second.deltaV = fabs(i->second.curr.potential - |
467 |
i->second.prev.potential); |
468 |
} |
469 |
} |
470 |
} |
471 |
|
472 |
RealType shortRangePotential = bondPotential + bendPotential + |
473 |
torsionPotential + inversionPotential; |
474 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
475 |
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
476 |
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
477 |
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
478 |
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
479 |
curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential; |
480 |
} |
481 |
|
482 |
void ForceManager::longRangeInteractions() { |
483 |
|
484 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
485 |
DataStorage* config = &(curSnapshot->atomData); |
486 |
DataStorage* cgConfig = &(curSnapshot->cgData); |
487 |
|
488 |
//calculate the center of mass of cutoff group |
489 |
|
490 |
SimInfo::MoleculeIterator mi; |
491 |
Molecule* mol; |
492 |
Molecule::CutoffGroupIterator ci; |
493 |
CutoffGroup* cg; |
494 |
|
495 |
if(info_->getNCutoffGroups() > 0){ |
496 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
497 |
mol = info_->nextMolecule(mi)) { |
498 |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
499 |
cg = mol->nextCutoffGroup(ci)) { |
500 |
cg->updateCOM(); |
501 |
} |
502 |
} |
503 |
} else { |
504 |
// center of mass of the group is the same as position of the atom |
505 |
// if cutoff group does not exist |
506 |
cgConfig->position = config->position; |
507 |
} |
508 |
|
509 |
fDecomp_->zeroWorkArrays(); |
510 |
fDecomp_->distributeData(); |
511 |
|
512 |
int cg1, cg2, atom1, atom2, topoDist; |
513 |
Vector3d d_grp, dag, d; |
514 |
RealType rgrpsq, rgrp, r2, r; |
515 |
RealType electroMult, vdwMult; |
516 |
RealType vij; |
517 |
Vector3d fij, fg, f1; |
518 |
tuple3<RealType, RealType, RealType> cuts; |
519 |
RealType rCutSq; |
520 |
bool in_switching_region; |
521 |
RealType sw, dswdr, swderiv; |
522 |
vector<int> atomListColumn, atomListRow, atomListLocal; |
523 |
InteractionData idat; |
524 |
SelfData sdat; |
525 |
RealType mf; |
526 |
RealType lrPot; |
527 |
RealType vpair; |
528 |
potVec longRangePotential(0.0); |
529 |
potVec workPot(0.0); |
530 |
|
531 |
int loopStart, loopEnd; |
532 |
|
533 |
idat.vdwMult = &vdwMult; |
534 |
idat.electroMult = &electroMult; |
535 |
idat.pot = &workPot; |
536 |
sdat.pot = fDecomp_->getEmbeddingPotential(); |
537 |
idat.vpair = &vpair; |
538 |
idat.f1 = &f1; |
539 |
idat.sw = &sw; |
540 |
idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false; |
541 |
idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false; |
542 |
|
543 |
loopEnd = PAIR_LOOP; |
544 |
if (info_->requiresPrepair() ) { |
545 |
loopStart = PREPAIR_LOOP; |
546 |
} else { |
547 |
loopStart = PAIR_LOOP; |
548 |
} |
549 |
|
550 |
for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) { |
551 |
|
552 |
if (iLoop == loopStart) { |
553 |
bool update_nlist = fDecomp_->checkNeighborList(); |
554 |
if (update_nlist) |
555 |
neighborList = fDecomp_->buildNeighborList(); |
556 |
} |
557 |
|
558 |
for (vector<pair<int, int> >::iterator it = neighborList.begin(); |
559 |
it != neighborList.end(); ++it) { |
560 |
|
561 |
cg1 = (*it).first; |
562 |
cg2 = (*it).second; |
563 |
|
564 |
cuts = fDecomp_->getGroupCutoffs(cg1, cg2); |
565 |
|
566 |
d_grp = fDecomp_->getIntergroupVector(cg1, cg2); |
567 |
curSnapshot->wrapVector(d_grp); |
568 |
rgrpsq = d_grp.lengthSquare(); |
569 |
|
570 |
rCutSq = cuts.second; |
571 |
|
572 |
if (rgrpsq < rCutSq) { |
573 |
idat.rcut = &cuts.first; |
574 |
if (iLoop == PAIR_LOOP) { |
575 |
vij *= 0.0; |
576 |
fij = V3Zero; |
577 |
} |
578 |
|
579 |
in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr, |
580 |
rgrp); |
581 |
|
582 |
atomListRow = fDecomp_->getAtomsInGroupRow(cg1); |
583 |
atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2); |
584 |
|
585 |
for (vector<int>::iterator ia = atomListRow.begin(); |
586 |
ia != atomListRow.end(); ++ia) { |
587 |
atom1 = (*ia); |
588 |
|
589 |
for (vector<int>::iterator jb = atomListColumn.begin(); |
590 |
jb != atomListColumn.end(); ++jb) { |
591 |
atom2 = (*jb); |
592 |
|
593 |
if (!fDecomp_->skipAtomPair(atom1, atom2)) { |
594 |
vpair = 0.0; |
595 |
workPot = 0.0; |
596 |
f1 = V3Zero; |
597 |
|
598 |
fDecomp_->fillInteractionData(idat, atom1, atom2); |
599 |
|
600 |
topoDist = fDecomp_->getTopologicalDistance(atom1, atom2); |
601 |
vdwMult = vdwScale_[topoDist]; |
602 |
electroMult = electrostaticScale_[topoDist]; |
603 |
|
604 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
605 |
idat.d = &d_grp; |
606 |
idat.r2 = &rgrpsq; |
607 |
} else { |
608 |
d = fDecomp_->getInteratomicVector(atom1, atom2); |
609 |
curSnapshot->wrapVector( d ); |
610 |
r2 = d.lengthSquare(); |
611 |
idat.d = &d; |
612 |
idat.r2 = &r2; |
613 |
} |
614 |
|
615 |
r = sqrt( *(idat.r2) ); |
616 |
idat.rij = &r; |
617 |
|
618 |
if (iLoop == PREPAIR_LOOP) { |
619 |
interactionMan_->doPrePair(idat); |
620 |
} else { |
621 |
interactionMan_->doPair(idat); |
622 |
fDecomp_->unpackInteractionData(idat, atom1, atom2); |
623 |
vij += vpair; |
624 |
fij += f1; |
625 |
tau -= outProduct( *(idat.d), f1); |
626 |
} |
627 |
} |
628 |
} |
629 |
} |
630 |
|
631 |
if (iLoop == PAIR_LOOP) { |
632 |
if (in_switching_region) { |
633 |
swderiv = vij * dswdr / rgrp; |
634 |
fg = swderiv * d_grp; |
635 |
|
636 |
fij += fg; |
637 |
|
638 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
639 |
tau -= outProduct( *(idat.d), fg); |
640 |
} |
641 |
|
642 |
for (vector<int>::iterator ia = atomListRow.begin(); |
643 |
ia != atomListRow.end(); ++ia) { |
644 |
atom1 = (*ia); |
645 |
mf = fDecomp_->getMassFactorRow(atom1); |
646 |
// fg is the force on atom ia due to cutoff group's |
647 |
// presence in switching region |
648 |
fg = swderiv * d_grp * mf; |
649 |
fDecomp_->addForceToAtomRow(atom1, fg); |
650 |
|
651 |
if (atomListRow.size() > 1) { |
652 |
if (info_->usesAtomicVirial()) { |
653 |
// find the distance between the atom |
654 |
// and the center of the cutoff group: |
655 |
dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1); |
656 |
tau -= outProduct(dag, fg); |
657 |
} |
658 |
} |
659 |
} |
660 |
for (vector<int>::iterator jb = atomListColumn.begin(); |
661 |
jb != atomListColumn.end(); ++jb) { |
662 |
atom2 = (*jb); |
663 |
mf = fDecomp_->getMassFactorColumn(atom2); |
664 |
// fg is the force on atom jb due to cutoff group's |
665 |
// presence in switching region |
666 |
fg = -swderiv * d_grp * mf; |
667 |
fDecomp_->addForceToAtomColumn(atom2, fg); |
668 |
|
669 |
if (atomListColumn.size() > 1) { |
670 |
if (info_->usesAtomicVirial()) { |
671 |
// find the distance between the atom |
672 |
// and the center of the cutoff group: |
673 |
dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2); |
674 |
tau -= outProduct(dag, fg); |
675 |
} |
676 |
} |
677 |
} |
678 |
} |
679 |
//if (!SIM_uses_AtomicVirial) { |
680 |
// tau -= outProduct(d_grp, fij); |
681 |
//} |
682 |
} |
683 |
} |
684 |
} |
685 |
|
686 |
if (iLoop == PREPAIR_LOOP) { |
687 |
if (info_->requiresPrepair()) { |
688 |
fDecomp_->collectIntermediateData(); |
689 |
|
690 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
691 |
fDecomp_->fillSelfData(sdat, atom1); |
692 |
interactionMan_->doPreForce(sdat); |
693 |
} |
694 |
|
695 |
|
696 |
fDecomp_->distributeIntermediateData(); |
697 |
} |
698 |
} |
699 |
|
700 |
} |
701 |
|
702 |
fDecomp_->collectData(); |
703 |
|
704 |
if ( info_->requiresSkipCorrection() ) { |
705 |
|
706 |
for (int atom1 = 0; atom1 < fDecomp_->getNAtomsInRow(); atom1++) { |
707 |
|
708 |
vector<int> skipList = fDecomp_->getSkipsForAtom( atom1 ); |
709 |
|
710 |
for (vector<int>::iterator jb = skipList.begin(); |
711 |
jb != skipList.end(); ++jb) { |
712 |
|
713 |
atom2 = (*jb); |
714 |
fDecomp_->fillSkipData(idat, atom1, atom2); |
715 |
interactionMan_->doSkipCorrection(idat); |
716 |
fDecomp_->unpackSkipData(idat, atom1, atom2); |
717 |
|
718 |
} |
719 |
} |
720 |
} |
721 |
|
722 |
if (info_->requiresSelfCorrection()) { |
723 |
|
724 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
725 |
fDecomp_->fillSelfData(sdat, atom1); |
726 |
interactionMan_->doSelfCorrection(sdat); |
727 |
} |
728 |
|
729 |
} |
730 |
|
731 |
longRangePotential = *(fDecomp_->getEmbeddingPotential()) + |
732 |
*(fDecomp_->getPairwisePotential()); |
733 |
|
734 |
lrPot = longRangePotential.sum(); |
735 |
|
736 |
//store the tau and long range potential |
737 |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
738 |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY]; |
739 |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY]; |
740 |
} |
741 |
|
742 |
|
743 |
void ForceManager::postCalculation() { |
744 |
SimInfo::MoleculeIterator mi; |
745 |
Molecule* mol; |
746 |
Molecule::RigidBodyIterator rbIter; |
747 |
RigidBody* rb; |
748 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
749 |
|
750 |
// collect the atomic forces onto rigid bodies |
751 |
|
752 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
753 |
mol = info_->nextMolecule(mi)) { |
754 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
755 |
rb = mol->nextRigidBody(rbIter)) { |
756 |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
757 |
tau += rbTau; |
758 |
} |
759 |
} |
760 |
|
761 |
#ifdef IS_MPI |
762 |
Mat3x3d tmpTau(tau); |
763 |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
764 |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
765 |
#endif |
766 |
curSnapshot->statData.setTau(tau); |
767 |
} |
768 |
|
769 |
} //end namespace OpenMD |