ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
Revision: 1583
Committed: Thu Jun 16 22:00:08 2011 UTC (13 years, 10 months ago) by gezelter
File size: 27401 byte(s)
Log Message:
Bug squashing

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 /**
43 * @file ForceManager.cpp
44 * @author tlin
45 * @date 11/09/2004
46 * @time 10:39am
47 * @version 1.0
48 */
49
50
51 #include "brains/ForceManager.hpp"
52 #include "primitives/Molecule.hpp"
53 #define __OPENMD_C
54 #include "utils/simError.h"
55 #include "primitives/Bond.hpp"
56 #include "primitives/Bend.hpp"
57 #include "primitives/Torsion.hpp"
58 #include "primitives/Inversion.hpp"
59 #include "nonbonded/NonBondedInteraction.hpp"
60 #include "parallel/ForceMatrixDecomposition.hpp"
61
62 #include <cstdio>
63 #include <iostream>
64 #include <iomanip>
65
66 using namespace std;
67 namespace OpenMD {
68
69 ForceManager::ForceManager(SimInfo * info) : info_(info) {
70 forceField_ = info_->getForceField();
71 interactionMan_ = new InteractionManager();
72 fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_);
73 }
74
75 /**
76 * setupCutoffs
77 *
78 * Sets the values of cutoffRadius, cutoffMethod, and cutoffPolicy
79 *
80 * cutoffRadius : realType
81 * If the cutoffRadius was explicitly set, use that value.
82 * If the cutoffRadius was not explicitly set:
83 * Are there electrostatic atoms? Use 12.0 Angstroms.
84 * No electrostatic atoms? Poll the atom types present in the
85 * simulation for suggested cutoff values (e.g. 2.5 * sigma).
86 * Use the maximum suggested value that was found.
87 *
88 * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL)
89 * If cutoffMethod was explicitly set, use that choice.
90 * If cutoffMethod was not explicitly set, use SHIFTED_FORCE
91 *
92 * cutoffPolicy : (one of MIX, MAX, TRADITIONAL)
93 * If cutoffPolicy was explicitly set, use that choice.
94 * If cutoffPolicy was not explicitly set, use TRADITIONAL
95 */
96 void ForceManager::setupCutoffs() {
97
98 Globals* simParams_ = info_->getSimParams();
99 ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
100
101 if (simParams_->haveCutoffRadius()) {
102 rCut_ = simParams_->getCutoffRadius();
103 } else {
104 if (info_->usesElectrostaticAtoms()) {
105 sprintf(painCave.errMsg,
106 "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
107 "\tOpenMD will use a default value of 12.0 angstroms"
108 "\tfor the cutoffRadius.\n");
109 painCave.isFatal = 0;
110 painCave.severity = OPENMD_INFO;
111 simError();
112 rCut_ = 12.0;
113 } else {
114 RealType thisCut;
115 set<AtomType*>::iterator i;
116 set<AtomType*> atomTypes;
117 atomTypes = info_->getSimulatedAtomTypes();
118 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
119 thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
120 rCut_ = max(thisCut, rCut_);
121 }
122 sprintf(painCave.errMsg,
123 "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
124 "\tOpenMD will use %lf angstroms.\n",
125 rCut_);
126 painCave.isFatal = 0;
127 painCave.severity = OPENMD_INFO;
128 simError();
129 }
130 }
131
132 fDecomp_->setUserCutoff(rCut_);
133
134 map<string, CutoffMethod> stringToCutoffMethod;
135 stringToCutoffMethod["HARD"] = HARD;
136 stringToCutoffMethod["SWITCHED"] = SWITCHED;
137 stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;
138 stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
139
140 if (simParams_->haveCutoffMethod()) {
141 string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
142 map<string, CutoffMethod>::iterator i;
143 i = stringToCutoffMethod.find(cutMeth);
144 if (i == stringToCutoffMethod.end()) {
145 sprintf(painCave.errMsg,
146 "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
147 "\tShould be one of: "
148 "HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
149 cutMeth.c_str());
150 painCave.isFatal = 1;
151 painCave.severity = OPENMD_ERROR;
152 simError();
153 } else {
154 cutoffMethod_ = i->second;
155 }
156 } else {
157 sprintf(painCave.errMsg,
158 "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
159 "\tOpenMD will use SHIFTED_FORCE.\n");
160 painCave.isFatal = 0;
161 painCave.severity = OPENMD_INFO;
162 simError();
163 cutoffMethod_ = SHIFTED_FORCE;
164 }
165
166 map<string, CutoffPolicy> stringToCutoffPolicy;
167 stringToCutoffPolicy["MIX"] = MIX;
168 stringToCutoffPolicy["MAX"] = MAX;
169 stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL;
170
171 std::string cutPolicy;
172 if (forceFieldOptions_.haveCutoffPolicy()){
173 cutPolicy = forceFieldOptions_.getCutoffPolicy();
174 }else if (simParams_->haveCutoffPolicy()) {
175 cutPolicy = simParams_->getCutoffPolicy();
176 }
177
178 if (!cutPolicy.empty()){
179 toUpper(cutPolicy);
180 map<string, CutoffPolicy>::iterator i;
181 i = stringToCutoffPolicy.find(cutPolicy);
182
183 if (i == stringToCutoffPolicy.end()) {
184 sprintf(painCave.errMsg,
185 "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n"
186 "\tShould be one of: "
187 "MIX, MAX, or TRADITIONAL\n",
188 cutPolicy.c_str());
189 painCave.isFatal = 1;
190 painCave.severity = OPENMD_ERROR;
191 simError();
192 } else {
193 cutoffPolicy_ = i->second;
194 }
195 } else {
196 sprintf(painCave.errMsg,
197 "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n"
198 "\tOpenMD will use TRADITIONAL.\n");
199 painCave.isFatal = 0;
200 painCave.severity = OPENMD_INFO;
201 simError();
202 cutoffPolicy_ = TRADITIONAL;
203 }
204 fDecomp_->setCutoffPolicy(cutoffPolicy_);
205 }
206
207 /**
208 * setupSwitching
209 *
210 * Sets the values of switchingRadius and
211 * If the switchingRadius was explicitly set, use that value (but check it)
212 * If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
213 */
214 void ForceManager::setupSwitching() {
215 Globals* simParams_ = info_->getSimParams();
216
217 // create the switching function object:
218 switcher_ = new SwitchingFunction();
219
220 if (simParams_->haveSwitchingRadius()) {
221 rSwitch_ = simParams_->getSwitchingRadius();
222 if (rSwitch_ > rCut_) {
223 sprintf(painCave.errMsg,
224 "ForceManager::setupSwitching: switchingRadius (%f) is larger "
225 "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
226 painCave.isFatal = 1;
227 painCave.severity = OPENMD_ERROR;
228 simError();
229 }
230 } else {
231 rSwitch_ = 0.85 * rCut_;
232 sprintf(painCave.errMsg,
233 "ForceManager::setupSwitching: No value was set for the switchingRadius.\n"
234 "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
235 "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
236 painCave.isFatal = 0;
237 painCave.severity = OPENMD_WARNING;
238 simError();
239 }
240
241 // Default to cubic switching function.
242 sft_ = cubic;
243 if (simParams_->haveSwitchingFunctionType()) {
244 string funcType = simParams_->getSwitchingFunctionType();
245 toUpper(funcType);
246 if (funcType == "CUBIC") {
247 sft_ = cubic;
248 } else {
249 if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
250 sft_ = fifth_order_poly;
251 } else {
252 // throw error
253 sprintf( painCave.errMsg,
254 "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
255 "\tswitchingFunctionType must be one of: "
256 "\"cubic\" or \"fifth_order_polynomial\".",
257 funcType.c_str() );
258 painCave.isFatal = 1;
259 painCave.severity = OPENMD_ERROR;
260 simError();
261 }
262 }
263 }
264 switcher_->setSwitchType(sft_);
265 switcher_->setSwitch(rSwitch_, rCut_);
266 }
267
268 void ForceManager::initialize() {
269
270 if (!info_->isTopologyDone()) {
271 info_->update();
272 interactionMan_->setSimInfo(info_);
273 interactionMan_->initialize();
274
275 // We want to delay the cutoffs until after the interaction
276 // manager has set up the atom-atom interactions so that we can
277 // query them for suggested cutoff values
278
279 setupCutoffs();
280 setupSwitching();
281
282 info_->prepareTopology();
283 }
284
285 ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
286
287 // Force fields can set options on how to scale van der Waals and electrostatic
288 // interactions for atoms connected via bonds, bends and torsions
289 // in this case the topological distance between atoms is:
290 // 0 = topologically unconnected
291 // 1 = bonded together
292 // 2 = connected via a bend
293 // 3 = connected via a torsion
294
295 vdwScale_.reserve(4);
296 fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
297
298 electrostaticScale_.reserve(4);
299 fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
300
301 vdwScale_[0] = 1.0;
302 vdwScale_[1] = fopts.getvdw12scale();
303 vdwScale_[2] = fopts.getvdw13scale();
304 vdwScale_[3] = fopts.getvdw14scale();
305
306 electrostaticScale_[0] = 1.0;
307 electrostaticScale_[1] = fopts.getelectrostatic12scale();
308 electrostaticScale_[2] = fopts.getelectrostatic13scale();
309 electrostaticScale_[3] = fopts.getelectrostatic14scale();
310
311 fDecomp_->distributeInitialData();
312
313 initialized_ = true;
314
315 }
316
317 void ForceManager::calcForces() {
318
319 if (!initialized_) initialize();
320
321 preCalculation();
322 shortRangeInteractions();
323 longRangeInteractions();
324 postCalculation();
325 }
326
327 void ForceManager::preCalculation() {
328 SimInfo::MoleculeIterator mi;
329 Molecule* mol;
330 Molecule::AtomIterator ai;
331 Atom* atom;
332 Molecule::RigidBodyIterator rbIter;
333 RigidBody* rb;
334 Molecule::CutoffGroupIterator ci;
335 CutoffGroup* cg;
336
337 // forces are zeroed here, before any are accumulated.
338
339 for (mol = info_->beginMolecule(mi); mol != NULL;
340 mol = info_->nextMolecule(mi)) {
341 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
342 atom->zeroForcesAndTorques();
343 }
344
345 //change the positions of atoms which belong to the rigidbodies
346 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
347 rb = mol->nextRigidBody(rbIter)) {
348 rb->zeroForcesAndTorques();
349 }
350
351 if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
352 for(cg = mol->beginCutoffGroup(ci); cg != NULL;
353 cg = mol->nextCutoffGroup(ci)) {
354 //calculate the center of mass of cutoff group
355 cg->updateCOM();
356 }
357 }
358 }
359
360 // Zero out the stress tensor
361 tau *= 0.0;
362
363 }
364
365 void ForceManager::shortRangeInteractions() {
366 Molecule* mol;
367 RigidBody* rb;
368 Bond* bond;
369 Bend* bend;
370 Torsion* torsion;
371 Inversion* inversion;
372 SimInfo::MoleculeIterator mi;
373 Molecule::RigidBodyIterator rbIter;
374 Molecule::BondIterator bondIter;;
375 Molecule::BendIterator bendIter;
376 Molecule::TorsionIterator torsionIter;
377 Molecule::InversionIterator inversionIter;
378 RealType bondPotential = 0.0;
379 RealType bendPotential = 0.0;
380 RealType torsionPotential = 0.0;
381 RealType inversionPotential = 0.0;
382
383 //calculate short range interactions
384 for (mol = info_->beginMolecule(mi); mol != NULL;
385 mol = info_->nextMolecule(mi)) {
386
387 //change the positions of atoms which belong to the rigidbodies
388 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
389 rb = mol->nextRigidBody(rbIter)) {
390 rb->updateAtoms();
391 }
392
393 for (bond = mol->beginBond(bondIter); bond != NULL;
394 bond = mol->nextBond(bondIter)) {
395 bond->calcForce();
396 bondPotential += bond->getPotential();
397 }
398
399 for (bend = mol->beginBend(bendIter); bend != NULL;
400 bend = mol->nextBend(bendIter)) {
401
402 RealType angle;
403 bend->calcForce(angle);
404 RealType currBendPot = bend->getPotential();
405
406 bendPotential += bend->getPotential();
407 map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
408 if (i == bendDataSets.end()) {
409 BendDataSet dataSet;
410 dataSet.prev.angle = dataSet.curr.angle = angle;
411 dataSet.prev.potential = dataSet.curr.potential = currBendPot;
412 dataSet.deltaV = 0.0;
413 bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet));
414 }else {
415 i->second.prev.angle = i->second.curr.angle;
416 i->second.prev.potential = i->second.curr.potential;
417 i->second.curr.angle = angle;
418 i->second.curr.potential = currBendPot;
419 i->second.deltaV = fabs(i->second.curr.potential -
420 i->second.prev.potential);
421 }
422 }
423
424 for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
425 torsion = mol->nextTorsion(torsionIter)) {
426 RealType angle;
427 torsion->calcForce(angle);
428 RealType currTorsionPot = torsion->getPotential();
429 torsionPotential += torsion->getPotential();
430 map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
431 if (i == torsionDataSets.end()) {
432 TorsionDataSet dataSet;
433 dataSet.prev.angle = dataSet.curr.angle = angle;
434 dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
435 dataSet.deltaV = 0.0;
436 torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
437 }else {
438 i->second.prev.angle = i->second.curr.angle;
439 i->second.prev.potential = i->second.curr.potential;
440 i->second.curr.angle = angle;
441 i->second.curr.potential = currTorsionPot;
442 i->second.deltaV = fabs(i->second.curr.potential -
443 i->second.prev.potential);
444 }
445 }
446
447 for (inversion = mol->beginInversion(inversionIter);
448 inversion != NULL;
449 inversion = mol->nextInversion(inversionIter)) {
450 RealType angle;
451 inversion->calcForce(angle);
452 RealType currInversionPot = inversion->getPotential();
453 inversionPotential += inversion->getPotential();
454 map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
455 if (i == inversionDataSets.end()) {
456 InversionDataSet dataSet;
457 dataSet.prev.angle = dataSet.curr.angle = angle;
458 dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
459 dataSet.deltaV = 0.0;
460 inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
461 }else {
462 i->second.prev.angle = i->second.curr.angle;
463 i->second.prev.potential = i->second.curr.potential;
464 i->second.curr.angle = angle;
465 i->second.curr.potential = currInversionPot;
466 i->second.deltaV = fabs(i->second.curr.potential -
467 i->second.prev.potential);
468 }
469 }
470 }
471
472 RealType shortRangePotential = bondPotential + bendPotential +
473 torsionPotential + inversionPotential;
474 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
475 curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
476 curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
477 curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
478 curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
479 curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;
480 }
481
482 void ForceManager::longRangeInteractions() {
483
484 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
485 DataStorage* config = &(curSnapshot->atomData);
486 DataStorage* cgConfig = &(curSnapshot->cgData);
487
488 //calculate the center of mass of cutoff group
489
490 SimInfo::MoleculeIterator mi;
491 Molecule* mol;
492 Molecule::CutoffGroupIterator ci;
493 CutoffGroup* cg;
494
495 if(info_->getNCutoffGroups() > 0){
496 for (mol = info_->beginMolecule(mi); mol != NULL;
497 mol = info_->nextMolecule(mi)) {
498 for(cg = mol->beginCutoffGroup(ci); cg != NULL;
499 cg = mol->nextCutoffGroup(ci)) {
500 cg->updateCOM();
501 }
502 }
503 } else {
504 // center of mass of the group is the same as position of the atom
505 // if cutoff group does not exist
506 cgConfig->position = config->position;
507 }
508
509 fDecomp_->zeroWorkArrays();
510 fDecomp_->distributeData();
511
512 int cg1, cg2, atom1, atom2, topoDist;
513 Vector3d d_grp, dag, d;
514 RealType rgrpsq, rgrp, r2, r;
515 RealType electroMult, vdwMult;
516 RealType vij;
517 Vector3d fij, fg, f1;
518 tuple3<RealType, RealType, RealType> cuts;
519 RealType rCutSq;
520 bool in_switching_region;
521 RealType sw, dswdr, swderiv;
522 vector<int> atomListColumn, atomListRow, atomListLocal;
523 InteractionData idat;
524 SelfData sdat;
525 RealType mf;
526 RealType lrPot;
527 RealType vpair;
528 potVec longRangePotential(0.0);
529 potVec workPot(0.0);
530
531 int loopStart, loopEnd;
532
533 idat.vdwMult = &vdwMult;
534 idat.electroMult = &electroMult;
535 idat.pot = &workPot;
536 sdat.pot = fDecomp_->getEmbeddingPotential();
537 idat.vpair = &vpair;
538 idat.f1 = &f1;
539 idat.sw = &sw;
540 idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false;
541 idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false;
542
543 loopEnd = PAIR_LOOP;
544 if (info_->requiresPrepair() ) {
545 loopStart = PREPAIR_LOOP;
546 } else {
547 loopStart = PAIR_LOOP;
548 }
549
550 for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
551
552 if (iLoop == loopStart) {
553 bool update_nlist = fDecomp_->checkNeighborList();
554 if (update_nlist)
555 neighborList = fDecomp_->buildNeighborList();
556 }
557
558 for (vector<pair<int, int> >::iterator it = neighborList.begin();
559 it != neighborList.end(); ++it) {
560
561 cg1 = (*it).first;
562 cg2 = (*it).second;
563
564 cuts = fDecomp_->getGroupCutoffs(cg1, cg2);
565
566 d_grp = fDecomp_->getIntergroupVector(cg1, cg2);
567 curSnapshot->wrapVector(d_grp);
568 rgrpsq = d_grp.lengthSquare();
569
570 rCutSq = cuts.second;
571
572 if (rgrpsq < rCutSq) {
573 idat.rcut = &cuts.first;
574 if (iLoop == PAIR_LOOP) {
575 vij *= 0.0;
576 fij = V3Zero;
577 }
578
579 in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
580 rgrp);
581
582 atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
583 atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
584
585 for (vector<int>::iterator ia = atomListRow.begin();
586 ia != atomListRow.end(); ++ia) {
587 atom1 = (*ia);
588
589 for (vector<int>::iterator jb = atomListColumn.begin();
590 jb != atomListColumn.end(); ++jb) {
591 atom2 = (*jb);
592
593 if (!fDecomp_->skipAtomPair(atom1, atom2)) {
594 vpair = 0.0;
595 workPot = 0.0;
596 f1 = V3Zero;
597
598 fDecomp_->fillInteractionData(idat, atom1, atom2);
599
600 topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
601 vdwMult = vdwScale_[topoDist];
602 electroMult = electrostaticScale_[topoDist];
603
604 if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
605 idat.d = &d_grp;
606 idat.r2 = &rgrpsq;
607 } else {
608 d = fDecomp_->getInteratomicVector(atom1, atom2);
609 curSnapshot->wrapVector( d );
610 r2 = d.lengthSquare();
611 idat.d = &d;
612 idat.r2 = &r2;
613 }
614
615 r = sqrt( *(idat.r2) );
616 idat.rij = &r;
617
618 if (iLoop == PREPAIR_LOOP) {
619 interactionMan_->doPrePair(idat);
620 } else {
621 interactionMan_->doPair(idat);
622 fDecomp_->unpackInteractionData(idat, atom1, atom2);
623 vij += vpair;
624 fij += f1;
625 tau -= outProduct( *(idat.d), f1);
626 }
627 }
628 }
629 }
630
631 if (iLoop == PAIR_LOOP) {
632 if (in_switching_region) {
633 swderiv = vij * dswdr / rgrp;
634 fg = swderiv * d_grp;
635
636 fij += fg;
637
638 if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
639 tau -= outProduct( *(idat.d), fg);
640 }
641
642 for (vector<int>::iterator ia = atomListRow.begin();
643 ia != atomListRow.end(); ++ia) {
644 atom1 = (*ia);
645 mf = fDecomp_->getMassFactorRow(atom1);
646 // fg is the force on atom ia due to cutoff group's
647 // presence in switching region
648 fg = swderiv * d_grp * mf;
649 fDecomp_->addForceToAtomRow(atom1, fg);
650
651 if (atomListRow.size() > 1) {
652 if (info_->usesAtomicVirial()) {
653 // find the distance between the atom
654 // and the center of the cutoff group:
655 dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
656 tau -= outProduct(dag, fg);
657 }
658 }
659 }
660 for (vector<int>::iterator jb = atomListColumn.begin();
661 jb != atomListColumn.end(); ++jb) {
662 atom2 = (*jb);
663 mf = fDecomp_->getMassFactorColumn(atom2);
664 // fg is the force on atom jb due to cutoff group's
665 // presence in switching region
666 fg = -swderiv * d_grp * mf;
667 fDecomp_->addForceToAtomColumn(atom2, fg);
668
669 if (atomListColumn.size() > 1) {
670 if (info_->usesAtomicVirial()) {
671 // find the distance between the atom
672 // and the center of the cutoff group:
673 dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
674 tau -= outProduct(dag, fg);
675 }
676 }
677 }
678 }
679 //if (!SIM_uses_AtomicVirial) {
680 // tau -= outProduct(d_grp, fij);
681 //}
682 }
683 }
684 }
685
686 if (iLoop == PREPAIR_LOOP) {
687 if (info_->requiresPrepair()) {
688 fDecomp_->collectIntermediateData();
689
690 for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
691 fDecomp_->fillSelfData(sdat, atom1);
692 interactionMan_->doPreForce(sdat);
693 }
694
695
696 fDecomp_->distributeIntermediateData();
697 }
698 }
699
700 }
701
702 fDecomp_->collectData();
703
704 if ( info_->requiresSkipCorrection() ) {
705
706 for (int atom1 = 0; atom1 < fDecomp_->getNAtomsInRow(); atom1++) {
707
708 vector<int> skipList = fDecomp_->getSkipsForAtom( atom1 );
709
710 for (vector<int>::iterator jb = skipList.begin();
711 jb != skipList.end(); ++jb) {
712
713 atom2 = (*jb);
714 fDecomp_->fillSkipData(idat, atom1, atom2);
715 interactionMan_->doSkipCorrection(idat);
716 fDecomp_->unpackSkipData(idat, atom1, atom2);
717
718 }
719 }
720 }
721
722 if (info_->requiresSelfCorrection()) {
723
724 for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
725 fDecomp_->fillSelfData(sdat, atom1);
726 interactionMan_->doSelfCorrection(sdat);
727 }
728
729 }
730
731 longRangePotential = *(fDecomp_->getEmbeddingPotential()) +
732 *(fDecomp_->getPairwisePotential());
733
734 lrPot = longRangePotential.sum();
735
736 //store the tau and long range potential
737 curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
738 curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY];
739 curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY];
740 }
741
742
743 void ForceManager::postCalculation() {
744 SimInfo::MoleculeIterator mi;
745 Molecule* mol;
746 Molecule::RigidBodyIterator rbIter;
747 RigidBody* rb;
748 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
749
750 // collect the atomic forces onto rigid bodies
751
752 for (mol = info_->beginMolecule(mi); mol != NULL;
753 mol = info_->nextMolecule(mi)) {
754 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
755 rb = mol->nextRigidBody(rbIter)) {
756 Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
757 tau += rbTau;
758 }
759 }
760
761 #ifdef IS_MPI
762 Mat3x3d tmpTau(tau);
763 MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
764 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
765 #endif
766 curSnapshot->statData.setTau(tau);
767 }
768
769 } //end namespace OpenMD

Properties

Name Value
svn:executable *
svn:keywords Author Id Revision Date