1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file ForceManager.cpp |
44 |
* @author tlin |
45 |
* @date 11/09/2004 |
46 |
* @time 10:39am |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
|
51 |
#include "brains/ForceManager.hpp" |
52 |
#include "primitives/Molecule.hpp" |
53 |
#define __OPENMD_C |
54 |
#include "utils/simError.h" |
55 |
#include "primitives/Bond.hpp" |
56 |
#include "primitives/Bend.hpp" |
57 |
#include "primitives/Torsion.hpp" |
58 |
#include "primitives/Inversion.hpp" |
59 |
#include "nonbonded/NonBondedInteraction.hpp" |
60 |
#include "parallel/ForceMatrixDecomposition.hpp" |
61 |
|
62 |
using namespace std; |
63 |
namespace OpenMD { |
64 |
|
65 |
ForceManager::ForceManager(SimInfo * info) : info_(info) { |
66 |
forceField_ = info_->getForceField(); |
67 |
interactionMan_ = new InteractionManager(); |
68 |
fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_); |
69 |
} |
70 |
|
71 |
/** |
72 |
* setupCutoffs |
73 |
* |
74 |
* Sets the values of cutoffRadius, cutoffMethod, and cutoffPolicy |
75 |
* |
76 |
* cutoffRadius : realType |
77 |
* If the cutoffRadius was explicitly set, use that value. |
78 |
* If the cutoffRadius was not explicitly set: |
79 |
* Are there electrostatic atoms? Use 12.0 Angstroms. |
80 |
* No electrostatic atoms? Poll the atom types present in the |
81 |
* simulation for suggested cutoff values (e.g. 2.5 * sigma). |
82 |
* Use the maximum suggested value that was found. |
83 |
* |
84 |
* cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL) |
85 |
* If cutoffMethod was explicitly set, use that choice. |
86 |
* If cutoffMethod was not explicitly set, use SHIFTED_FORCE |
87 |
* |
88 |
* cutoffPolicy : (one of MIX, MAX, TRADITIONAL) |
89 |
* If cutoffPolicy was explicitly set, use that choice. |
90 |
* If cutoffPolicy was not explicitly set, use TRADITIONAL |
91 |
*/ |
92 |
void ForceManager::setupCutoffs() { |
93 |
|
94 |
Globals* simParams_ = info_->getSimParams(); |
95 |
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
96 |
|
97 |
if (simParams_->haveCutoffRadius()) { |
98 |
rCut_ = simParams_->getCutoffRadius(); |
99 |
} else { |
100 |
if (info_->usesElectrostaticAtoms()) { |
101 |
sprintf(painCave.errMsg, |
102 |
"ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" |
103 |
"\tOpenMD will use a default value of 12.0 angstroms" |
104 |
"\tfor the cutoffRadius.\n"); |
105 |
painCave.isFatal = 0; |
106 |
painCave.severity = OPENMD_INFO; |
107 |
simError(); |
108 |
rCut_ = 12.0; |
109 |
} else { |
110 |
RealType thisCut; |
111 |
set<AtomType*>::iterator i; |
112 |
set<AtomType*> atomTypes; |
113 |
atomTypes = info_->getSimulatedAtomTypes(); |
114 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
115 |
thisCut = interactionMan_->getSuggestedCutoffRadius((*i)); |
116 |
rCut_ = max(thisCut, rCut_); |
117 |
} |
118 |
sprintf(painCave.errMsg, |
119 |
"ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" |
120 |
"\tOpenMD will use %lf angstroms.\n", |
121 |
rCut_); |
122 |
painCave.isFatal = 0; |
123 |
painCave.severity = OPENMD_INFO; |
124 |
simError(); |
125 |
} |
126 |
fDecomp_->setUserCutoff(rCut_); |
127 |
} |
128 |
|
129 |
map<string, CutoffMethod> stringToCutoffMethod; |
130 |
stringToCutoffMethod["HARD"] = HARD; |
131 |
stringToCutoffMethod["SWITCHED"] = SWITCHED; |
132 |
stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL; |
133 |
stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE; |
134 |
|
135 |
if (simParams_->haveCutoffMethod()) { |
136 |
string cutMeth = toUpperCopy(simParams_->getCutoffMethod()); |
137 |
map<string, CutoffMethod>::iterator i; |
138 |
i = stringToCutoffMethod.find(cutMeth); |
139 |
if (i == stringToCutoffMethod.end()) { |
140 |
sprintf(painCave.errMsg, |
141 |
"ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n" |
142 |
"\tShould be one of: " |
143 |
"HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n", |
144 |
cutMeth.c_str()); |
145 |
painCave.isFatal = 1; |
146 |
painCave.severity = OPENMD_ERROR; |
147 |
simError(); |
148 |
} else { |
149 |
cutoffMethod_ = i->second; |
150 |
} |
151 |
} else { |
152 |
sprintf(painCave.errMsg, |
153 |
"ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n" |
154 |
"\tOpenMD will use SHIFTED_FORCE.\n"); |
155 |
painCave.isFatal = 0; |
156 |
painCave.severity = OPENMD_INFO; |
157 |
simError(); |
158 |
cutoffMethod_ = SHIFTED_FORCE; |
159 |
} |
160 |
|
161 |
map<string, CutoffPolicy> stringToCutoffPolicy; |
162 |
stringToCutoffPolicy["MIX"] = MIX; |
163 |
stringToCutoffPolicy["MAX"] = MAX; |
164 |
stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL; |
165 |
|
166 |
std::string cutPolicy; |
167 |
if (forceFieldOptions_.haveCutoffPolicy()){ |
168 |
cutPolicy = forceFieldOptions_.getCutoffPolicy(); |
169 |
}else if (simParams_->haveCutoffPolicy()) { |
170 |
cutPolicy = simParams_->getCutoffPolicy(); |
171 |
} |
172 |
|
173 |
if (!cutPolicy.empty()){ |
174 |
toUpper(cutPolicy); |
175 |
map<string, CutoffPolicy>::iterator i; |
176 |
i = stringToCutoffPolicy.find(cutPolicy); |
177 |
|
178 |
if (i == stringToCutoffPolicy.end()) { |
179 |
sprintf(painCave.errMsg, |
180 |
"ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n" |
181 |
"\tShould be one of: " |
182 |
"MIX, MAX, or TRADITIONAL\n", |
183 |
cutPolicy.c_str()); |
184 |
painCave.isFatal = 1; |
185 |
painCave.severity = OPENMD_ERROR; |
186 |
simError(); |
187 |
} else { |
188 |
cutoffPolicy_ = i->second; |
189 |
} |
190 |
} else { |
191 |
sprintf(painCave.errMsg, |
192 |
"ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n" |
193 |
"\tOpenMD will use TRADITIONAL.\n"); |
194 |
painCave.isFatal = 0; |
195 |
painCave.severity = OPENMD_INFO; |
196 |
simError(); |
197 |
cutoffPolicy_ = TRADITIONAL; |
198 |
} |
199 |
fDecomp_->setCutoffPolicy(cutoffPolicy_); |
200 |
} |
201 |
|
202 |
/** |
203 |
* setupSwitching |
204 |
* |
205 |
* Sets the values of switchingRadius and |
206 |
* If the switchingRadius was explicitly set, use that value (but check it) |
207 |
* If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_ |
208 |
*/ |
209 |
void ForceManager::setupSwitching() { |
210 |
Globals* simParams_ = info_->getSimParams(); |
211 |
|
212 |
// create the switching function object: |
213 |
switcher_ = new SwitchingFunction(); |
214 |
|
215 |
if (simParams_->haveSwitchingRadius()) { |
216 |
rSwitch_ = simParams_->getSwitchingRadius(); |
217 |
if (rSwitch_ > rCut_) { |
218 |
sprintf(painCave.errMsg, |
219 |
"ForceManager::setupSwitching: switchingRadius (%f) is larger " |
220 |
"than the cutoffRadius(%f)\n", rSwitch_, rCut_); |
221 |
painCave.isFatal = 1; |
222 |
painCave.severity = OPENMD_ERROR; |
223 |
simError(); |
224 |
} |
225 |
} else { |
226 |
rSwitch_ = 0.85 * rCut_; |
227 |
sprintf(painCave.errMsg, |
228 |
"ForceManager::setupSwitching: No value was set for the switchingRadius.\n" |
229 |
"\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
230 |
"\tswitchingRadius = %f. for this simulation\n", rSwitch_); |
231 |
painCave.isFatal = 0; |
232 |
painCave.severity = OPENMD_WARNING; |
233 |
simError(); |
234 |
} |
235 |
|
236 |
// Default to cubic switching function. |
237 |
sft_ = cubic; |
238 |
if (simParams_->haveSwitchingFunctionType()) { |
239 |
string funcType = simParams_->getSwitchingFunctionType(); |
240 |
toUpper(funcType); |
241 |
if (funcType == "CUBIC") { |
242 |
sft_ = cubic; |
243 |
} else { |
244 |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
245 |
sft_ = fifth_order_poly; |
246 |
} else { |
247 |
// throw error |
248 |
sprintf( painCave.errMsg, |
249 |
"ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n" |
250 |
"\tswitchingFunctionType must be one of: " |
251 |
"\"cubic\" or \"fifth_order_polynomial\".", |
252 |
funcType.c_str() ); |
253 |
painCave.isFatal = 1; |
254 |
painCave.severity = OPENMD_ERROR; |
255 |
simError(); |
256 |
} |
257 |
} |
258 |
} |
259 |
switcher_->setSwitchType(sft_); |
260 |
switcher_->setSwitch(rSwitch_, rCut_); |
261 |
} |
262 |
|
263 |
void ForceManager::initialize() { |
264 |
|
265 |
if (!info_->isTopologyDone()) { |
266 |
info_->update(); |
267 |
interactionMan_->setSimInfo(info_); |
268 |
interactionMan_->initialize(); |
269 |
|
270 |
// We want to delay the cutoffs until after the interaction |
271 |
// manager has set up the atom-atom interactions so that we can |
272 |
// query them for suggested cutoff values |
273 |
|
274 |
setupCutoffs(); |
275 |
setupSwitching(); |
276 |
|
277 |
info_->prepareTopology(); |
278 |
} |
279 |
|
280 |
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
281 |
|
282 |
// Force fields can set options on how to scale van der Waals and electrostatic |
283 |
// interactions for atoms connected via bonds, bends and torsions |
284 |
// in this case the topological distance between atoms is: |
285 |
// 0 = topologically unconnected |
286 |
// 1 = bonded together |
287 |
// 2 = connected via a bend |
288 |
// 3 = connected via a torsion |
289 |
|
290 |
vdwScale_.reserve(4); |
291 |
fill(vdwScale_.begin(), vdwScale_.end(), 0.0); |
292 |
|
293 |
electrostaticScale_.reserve(4); |
294 |
fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0); |
295 |
|
296 |
vdwScale_[0] = 1.0; |
297 |
vdwScale_[1] = fopts.getvdw12scale(); |
298 |
vdwScale_[2] = fopts.getvdw13scale(); |
299 |
vdwScale_[3] = fopts.getvdw14scale(); |
300 |
|
301 |
electrostaticScale_[0] = 1.0; |
302 |
electrostaticScale_[1] = fopts.getelectrostatic12scale(); |
303 |
electrostaticScale_[2] = fopts.getelectrostatic13scale(); |
304 |
electrostaticScale_[3] = fopts.getelectrostatic14scale(); |
305 |
|
306 |
fDecomp_->distributeInitialData(); |
307 |
|
308 |
initialized_ = true; |
309 |
|
310 |
} |
311 |
|
312 |
void ForceManager::calcForces() { |
313 |
|
314 |
if (!initialized_) initialize(); |
315 |
|
316 |
preCalculation(); |
317 |
shortRangeInteractions(); |
318 |
longRangeInteractions(); |
319 |
postCalculation(); |
320 |
} |
321 |
|
322 |
void ForceManager::preCalculation() { |
323 |
SimInfo::MoleculeIterator mi; |
324 |
Molecule* mol; |
325 |
Molecule::AtomIterator ai; |
326 |
Atom* atom; |
327 |
Molecule::RigidBodyIterator rbIter; |
328 |
RigidBody* rb; |
329 |
Molecule::CutoffGroupIterator ci; |
330 |
CutoffGroup* cg; |
331 |
|
332 |
// forces are zeroed here, before any are accumulated. |
333 |
|
334 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
335 |
mol = info_->nextMolecule(mi)) { |
336 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
337 |
atom->zeroForcesAndTorques(); |
338 |
} |
339 |
|
340 |
//change the positions of atoms which belong to the rigidbodies |
341 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
342 |
rb = mol->nextRigidBody(rbIter)) { |
343 |
rb->zeroForcesAndTorques(); |
344 |
} |
345 |
|
346 |
if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ |
347 |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
348 |
cg = mol->nextCutoffGroup(ci)) { |
349 |
//calculate the center of mass of cutoff group |
350 |
cg->updateCOM(); |
351 |
} |
352 |
} |
353 |
} |
354 |
|
355 |
// Zero out the stress tensor |
356 |
tau *= 0.0; |
357 |
|
358 |
} |
359 |
|
360 |
void ForceManager::shortRangeInteractions() { |
361 |
Molecule* mol; |
362 |
RigidBody* rb; |
363 |
Bond* bond; |
364 |
Bend* bend; |
365 |
Torsion* torsion; |
366 |
Inversion* inversion; |
367 |
SimInfo::MoleculeIterator mi; |
368 |
Molecule::RigidBodyIterator rbIter; |
369 |
Molecule::BondIterator bondIter;; |
370 |
Molecule::BendIterator bendIter; |
371 |
Molecule::TorsionIterator torsionIter; |
372 |
Molecule::InversionIterator inversionIter; |
373 |
RealType bondPotential = 0.0; |
374 |
RealType bendPotential = 0.0; |
375 |
RealType torsionPotential = 0.0; |
376 |
RealType inversionPotential = 0.0; |
377 |
|
378 |
//calculate short range interactions |
379 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
380 |
mol = info_->nextMolecule(mi)) { |
381 |
|
382 |
//change the positions of atoms which belong to the rigidbodies |
383 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
384 |
rb = mol->nextRigidBody(rbIter)) { |
385 |
rb->updateAtoms(); |
386 |
} |
387 |
|
388 |
for (bond = mol->beginBond(bondIter); bond != NULL; |
389 |
bond = mol->nextBond(bondIter)) { |
390 |
bond->calcForce(); |
391 |
bondPotential += bond->getPotential(); |
392 |
} |
393 |
|
394 |
for (bend = mol->beginBend(bendIter); bend != NULL; |
395 |
bend = mol->nextBend(bendIter)) { |
396 |
|
397 |
RealType angle; |
398 |
bend->calcForce(angle); |
399 |
RealType currBendPot = bend->getPotential(); |
400 |
|
401 |
bendPotential += bend->getPotential(); |
402 |
map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
403 |
if (i == bendDataSets.end()) { |
404 |
BendDataSet dataSet; |
405 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
406 |
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
407 |
dataSet.deltaV = 0.0; |
408 |
bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet)); |
409 |
}else { |
410 |
i->second.prev.angle = i->second.curr.angle; |
411 |
i->second.prev.potential = i->second.curr.potential; |
412 |
i->second.curr.angle = angle; |
413 |
i->second.curr.potential = currBendPot; |
414 |
i->second.deltaV = fabs(i->second.curr.potential - |
415 |
i->second.prev.potential); |
416 |
} |
417 |
} |
418 |
|
419 |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; |
420 |
torsion = mol->nextTorsion(torsionIter)) { |
421 |
RealType angle; |
422 |
torsion->calcForce(angle); |
423 |
RealType currTorsionPot = torsion->getPotential(); |
424 |
torsionPotential += torsion->getPotential(); |
425 |
map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
426 |
if (i == torsionDataSets.end()) { |
427 |
TorsionDataSet dataSet; |
428 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
429 |
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
430 |
dataSet.deltaV = 0.0; |
431 |
torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
432 |
}else { |
433 |
i->second.prev.angle = i->second.curr.angle; |
434 |
i->second.prev.potential = i->second.curr.potential; |
435 |
i->second.curr.angle = angle; |
436 |
i->second.curr.potential = currTorsionPot; |
437 |
i->second.deltaV = fabs(i->second.curr.potential - |
438 |
i->second.prev.potential); |
439 |
} |
440 |
} |
441 |
|
442 |
for (inversion = mol->beginInversion(inversionIter); |
443 |
inversion != NULL; |
444 |
inversion = mol->nextInversion(inversionIter)) { |
445 |
RealType angle; |
446 |
inversion->calcForce(angle); |
447 |
RealType currInversionPot = inversion->getPotential(); |
448 |
inversionPotential += inversion->getPotential(); |
449 |
map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
450 |
if (i == inversionDataSets.end()) { |
451 |
InversionDataSet dataSet; |
452 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
453 |
dataSet.prev.potential = dataSet.curr.potential = currInversionPot; |
454 |
dataSet.deltaV = 0.0; |
455 |
inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet)); |
456 |
}else { |
457 |
i->second.prev.angle = i->second.curr.angle; |
458 |
i->second.prev.potential = i->second.curr.potential; |
459 |
i->second.curr.angle = angle; |
460 |
i->second.curr.potential = currInversionPot; |
461 |
i->second.deltaV = fabs(i->second.curr.potential - |
462 |
i->second.prev.potential); |
463 |
} |
464 |
} |
465 |
} |
466 |
|
467 |
RealType shortRangePotential = bondPotential + bendPotential + |
468 |
torsionPotential + inversionPotential; |
469 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
470 |
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
471 |
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
472 |
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
473 |
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
474 |
curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential; |
475 |
} |
476 |
|
477 |
void ForceManager::longRangeInteractions() { |
478 |
|
479 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
480 |
DataStorage* config = &(curSnapshot->atomData); |
481 |
DataStorage* cgConfig = &(curSnapshot->cgData); |
482 |
|
483 |
//calculate the center of mass of cutoff group |
484 |
|
485 |
SimInfo::MoleculeIterator mi; |
486 |
Molecule* mol; |
487 |
Molecule::CutoffGroupIterator ci; |
488 |
CutoffGroup* cg; |
489 |
|
490 |
if(info_->getNCutoffGroups() > 0){ |
491 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
492 |
mol = info_->nextMolecule(mi)) { |
493 |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
494 |
cg = mol->nextCutoffGroup(ci)) { |
495 |
cg->updateCOM(); |
496 |
} |
497 |
} |
498 |
} else { |
499 |
// center of mass of the group is the same as position of the atom |
500 |
// if cutoff group does not exist |
501 |
cgConfig->position = config->position; |
502 |
} |
503 |
|
504 |
fDecomp_->zeroWorkArrays(); |
505 |
fDecomp_->distributeData(); |
506 |
|
507 |
int cg1, cg2, atom1, atom2, topoDist; |
508 |
Vector3d d_grp, dag, d; |
509 |
RealType rgrpsq, rgrp, r2, r; |
510 |
RealType electroMult, vdwMult; |
511 |
RealType vij; |
512 |
Vector3d fij, fg, f1; |
513 |
tuple3<RealType, RealType, RealType> cuts; |
514 |
RealType rCutSq; |
515 |
bool in_switching_region; |
516 |
RealType sw, dswdr, swderiv; |
517 |
vector<int> atomListColumn, atomListRow, atomListLocal; |
518 |
InteractionData idat; |
519 |
SelfData sdat; |
520 |
RealType mf; |
521 |
potVec pot(0.0); |
522 |
potVec longRangePotential(0.0); |
523 |
RealType lrPot; |
524 |
RealType vpair; |
525 |
|
526 |
int loopStart, loopEnd; |
527 |
|
528 |
idat.vdwMult = &vdwMult; |
529 |
idat.electroMult = &electroMult; |
530 |
idat.pot = &pot; |
531 |
idat.vpair = &vpair; |
532 |
idat.f1 = &f1; |
533 |
idat.sw = &sw; |
534 |
|
535 |
loopEnd = PAIR_LOOP; |
536 |
if (info_->requiresPrepair() ) { |
537 |
loopStart = PREPAIR_LOOP; |
538 |
} else { |
539 |
loopStart = PAIR_LOOP; |
540 |
} |
541 |
|
542 |
for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) { |
543 |
|
544 |
if (iLoop == loopStart) { |
545 |
bool update_nlist = fDecomp_->checkNeighborList(); |
546 |
if (update_nlist) |
547 |
neighborList = fDecomp_->buildNeighborList(); |
548 |
} |
549 |
|
550 |
for (vector<pair<int, int> >::iterator it = neighborList.begin(); |
551 |
it != neighborList.end(); ++it) { |
552 |
|
553 |
cg1 = (*it).first; |
554 |
cg2 = (*it).second; |
555 |
|
556 |
cuts = fDecomp_->getGroupCutoffs(cg1, cg2); |
557 |
|
558 |
d_grp = fDecomp_->getIntergroupVector(cg1, cg2); |
559 |
curSnapshot->wrapVector(d_grp); |
560 |
rgrpsq = d_grp.lengthSquare(); |
561 |
|
562 |
rCutSq = cuts.second; |
563 |
|
564 |
if (rgrpsq < rCutSq) { |
565 |
idat.rcut = &cuts.first; |
566 |
if (iLoop == PAIR_LOOP) { |
567 |
vij *= 0.0; |
568 |
fij = V3Zero; |
569 |
} |
570 |
|
571 |
in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr, |
572 |
rgrp); |
573 |
|
574 |
atomListRow = fDecomp_->getAtomsInGroupRow(cg1); |
575 |
atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2); |
576 |
|
577 |
for (vector<int>::iterator ia = atomListRow.begin(); |
578 |
ia != atomListRow.end(); ++ia) { |
579 |
atom1 = (*ia); |
580 |
|
581 |
for (vector<int>::iterator jb = atomListColumn.begin(); |
582 |
jb != atomListColumn.end(); ++jb) { |
583 |
atom2 = (*jb); |
584 |
|
585 |
if (!fDecomp_->skipAtomPair(atom1, atom2)) { |
586 |
|
587 |
vpair = 0.0; |
588 |
f1 = V3Zero; |
589 |
|
590 |
fDecomp_->fillInteractionData(idat, atom1, atom2); |
591 |
|
592 |
topoDist = fDecomp_->getTopologicalDistance(atom1, atom2); |
593 |
vdwMult = vdwScale_[topoDist]; |
594 |
electroMult = electrostaticScale_[topoDist]; |
595 |
|
596 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
597 |
idat.d = &d_grp; |
598 |
idat.r2 = &rgrpsq; |
599 |
} else { |
600 |
d = fDecomp_->getInteratomicVector(atom1, atom2); |
601 |
curSnapshot->wrapVector( d ); |
602 |
r2 = d.lengthSquare(); |
603 |
idat.d = &d; |
604 |
idat.r2 = &r2; |
605 |
} |
606 |
|
607 |
r = sqrt( *(idat.r2) ); |
608 |
idat.rij = &r; |
609 |
|
610 |
if (iLoop == PREPAIR_LOOP) { |
611 |
interactionMan_->doPrePair(idat); |
612 |
} else { |
613 |
interactionMan_->doPair(idat); |
614 |
fDecomp_->unpackInteractionData(idat, atom1, atom2); |
615 |
vij += vpair; |
616 |
fij += f1; |
617 |
tau -= outProduct( *(idat.d), f1); |
618 |
} |
619 |
} |
620 |
} |
621 |
} |
622 |
|
623 |
if (iLoop == PAIR_LOOP) { |
624 |
if (in_switching_region) { |
625 |
swderiv = vij * dswdr / rgrp; |
626 |
fg = swderiv * d_grp; |
627 |
|
628 |
fij += fg; |
629 |
|
630 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
631 |
tau -= outProduct( *(idat.d), fg); |
632 |
} |
633 |
|
634 |
for (vector<int>::iterator ia = atomListRow.begin(); |
635 |
ia != atomListRow.end(); ++ia) { |
636 |
atom1 = (*ia); |
637 |
mf = fDecomp_->getMassFactorRow(atom1); |
638 |
// fg is the force on atom ia due to cutoff group's |
639 |
// presence in switching region |
640 |
fg = swderiv * d_grp * mf; |
641 |
fDecomp_->addForceToAtomRow(atom1, fg); |
642 |
|
643 |
if (atomListRow.size() > 1) { |
644 |
if (info_->usesAtomicVirial()) { |
645 |
// find the distance between the atom |
646 |
// and the center of the cutoff group: |
647 |
dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1); |
648 |
tau -= outProduct(dag, fg); |
649 |
} |
650 |
} |
651 |
} |
652 |
for (vector<int>::iterator jb = atomListColumn.begin(); |
653 |
jb != atomListColumn.end(); ++jb) { |
654 |
atom2 = (*jb); |
655 |
mf = fDecomp_->getMassFactorColumn(atom2); |
656 |
// fg is the force on atom jb due to cutoff group's |
657 |
// presence in switching region |
658 |
fg = -swderiv * d_grp * mf; |
659 |
fDecomp_->addForceToAtomColumn(atom2, fg); |
660 |
|
661 |
if (atomListColumn.size() > 1) { |
662 |
if (info_->usesAtomicVirial()) { |
663 |
// find the distance between the atom |
664 |
// and the center of the cutoff group: |
665 |
dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2); |
666 |
tau -= outProduct(dag, fg); |
667 |
} |
668 |
} |
669 |
} |
670 |
} |
671 |
//if (!SIM_uses_AtomicVirial) { |
672 |
// tau -= outProduct(d_grp, fij); |
673 |
//} |
674 |
} |
675 |
} |
676 |
} |
677 |
|
678 |
if (iLoop == PREPAIR_LOOP) { |
679 |
if (info_->requiresPrepair()) { |
680 |
fDecomp_->collectIntermediateData(); |
681 |
|
682 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
683 |
fDecomp_->fillSelfData(sdat, atom1); |
684 |
interactionMan_->doPreForce(sdat); |
685 |
} |
686 |
|
687 |
fDecomp_->distributeIntermediateData(); |
688 |
} |
689 |
} |
690 |
|
691 |
} |
692 |
|
693 |
fDecomp_->collectData(); |
694 |
|
695 |
if ( info_->requiresSkipCorrection() ) { |
696 |
|
697 |
for (int atom1 = 0; atom1 < fDecomp_->getNAtomsInRow(); atom1++) { |
698 |
|
699 |
vector<int> skipList = fDecomp_->getSkipsForAtom( atom1 ); |
700 |
|
701 |
for (vector<int>::iterator jb = skipList.begin(); |
702 |
jb != skipList.end(); ++jb) { |
703 |
|
704 |
atom2 = (*jb); |
705 |
fDecomp_->fillSkipData(idat, atom1, atom2); |
706 |
interactionMan_->doSkipCorrection(idat); |
707 |
|
708 |
} |
709 |
} |
710 |
} |
711 |
|
712 |
if (info_->requiresSelfCorrection()) { |
713 |
|
714 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
715 |
fDecomp_->fillSelfData(sdat, atom1); |
716 |
interactionMan_->doSelfCorrection(sdat); |
717 |
} |
718 |
|
719 |
} |
720 |
|
721 |
longRangePotential = fDecomp_->getLongRangePotential(); |
722 |
lrPot = longRangePotential.sum(); |
723 |
|
724 |
//store the tau and long range potential |
725 |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
726 |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY]; |
727 |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY]; |
728 |
} |
729 |
|
730 |
|
731 |
void ForceManager::postCalculation() { |
732 |
SimInfo::MoleculeIterator mi; |
733 |
Molecule* mol; |
734 |
Molecule::RigidBodyIterator rbIter; |
735 |
RigidBody* rb; |
736 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
737 |
|
738 |
// collect the atomic forces onto rigid bodies |
739 |
|
740 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
741 |
mol = info_->nextMolecule(mi)) { |
742 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
743 |
rb = mol->nextRigidBody(rbIter)) { |
744 |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
745 |
tau += rbTau; |
746 |
} |
747 |
} |
748 |
|
749 |
#ifdef IS_MPI |
750 |
Mat3x3d tmpTau(tau); |
751 |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
752 |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
753 |
#endif |
754 |
curSnapshot->statData.setTau(tau); |
755 |
} |
756 |
|
757 |
} //end namespace OpenMD |