ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
Revision: 1581
Committed: Mon Jun 13 22:13:12 2011 UTC (13 years, 10 months ago) by gezelter
File size: 26997 byte(s)
Log Message:
bug fixes

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 /**
43 * @file ForceManager.cpp
44 * @author tlin
45 * @date 11/09/2004
46 * @time 10:39am
47 * @version 1.0
48 */
49
50
51 #include "brains/ForceManager.hpp"
52 #include "primitives/Molecule.hpp"
53 #define __OPENMD_C
54 #include "utils/simError.h"
55 #include "primitives/Bond.hpp"
56 #include "primitives/Bend.hpp"
57 #include "primitives/Torsion.hpp"
58 #include "primitives/Inversion.hpp"
59 #include "nonbonded/NonBondedInteraction.hpp"
60 #include "parallel/ForceMatrixDecomposition.hpp"
61
62 using namespace std;
63 namespace OpenMD {
64
65 ForceManager::ForceManager(SimInfo * info) : info_(info) {
66 forceField_ = info_->getForceField();
67 interactionMan_ = new InteractionManager();
68 fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_);
69 }
70
71 /**
72 * setupCutoffs
73 *
74 * Sets the values of cutoffRadius, cutoffMethod, and cutoffPolicy
75 *
76 * cutoffRadius : realType
77 * If the cutoffRadius was explicitly set, use that value.
78 * If the cutoffRadius was not explicitly set:
79 * Are there electrostatic atoms? Use 12.0 Angstroms.
80 * No electrostatic atoms? Poll the atom types present in the
81 * simulation for suggested cutoff values (e.g. 2.5 * sigma).
82 * Use the maximum suggested value that was found.
83 *
84 * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL)
85 * If cutoffMethod was explicitly set, use that choice.
86 * If cutoffMethod was not explicitly set, use SHIFTED_FORCE
87 *
88 * cutoffPolicy : (one of MIX, MAX, TRADITIONAL)
89 * If cutoffPolicy was explicitly set, use that choice.
90 * If cutoffPolicy was not explicitly set, use TRADITIONAL
91 */
92 void ForceManager::setupCutoffs() {
93
94 Globals* simParams_ = info_->getSimParams();
95 ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
96
97 if (simParams_->haveCutoffRadius()) {
98 rCut_ = simParams_->getCutoffRadius();
99 } else {
100 if (info_->usesElectrostaticAtoms()) {
101 sprintf(painCave.errMsg,
102 "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
103 "\tOpenMD will use a default value of 12.0 angstroms"
104 "\tfor the cutoffRadius.\n");
105 painCave.isFatal = 0;
106 painCave.severity = OPENMD_INFO;
107 simError();
108 rCut_ = 12.0;
109 } else {
110 RealType thisCut;
111 set<AtomType*>::iterator i;
112 set<AtomType*> atomTypes;
113 atomTypes = info_->getSimulatedAtomTypes();
114 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
115 thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
116 rCut_ = max(thisCut, rCut_);
117 }
118 sprintf(painCave.errMsg,
119 "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
120 "\tOpenMD will use %lf angstroms.\n",
121 rCut_);
122 painCave.isFatal = 0;
123 painCave.severity = OPENMD_INFO;
124 simError();
125 }
126 fDecomp_->setUserCutoff(rCut_);
127 }
128
129 map<string, CutoffMethod> stringToCutoffMethod;
130 stringToCutoffMethod["HARD"] = HARD;
131 stringToCutoffMethod["SWITCHED"] = SWITCHED;
132 stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;
133 stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
134
135 if (simParams_->haveCutoffMethod()) {
136 string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
137 map<string, CutoffMethod>::iterator i;
138 i = stringToCutoffMethod.find(cutMeth);
139 if (i == stringToCutoffMethod.end()) {
140 sprintf(painCave.errMsg,
141 "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
142 "\tShould be one of: "
143 "HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
144 cutMeth.c_str());
145 painCave.isFatal = 1;
146 painCave.severity = OPENMD_ERROR;
147 simError();
148 } else {
149 cutoffMethod_ = i->second;
150 }
151 } else {
152 sprintf(painCave.errMsg,
153 "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
154 "\tOpenMD will use SHIFTED_FORCE.\n");
155 painCave.isFatal = 0;
156 painCave.severity = OPENMD_INFO;
157 simError();
158 cutoffMethod_ = SHIFTED_FORCE;
159 }
160
161 map<string, CutoffPolicy> stringToCutoffPolicy;
162 stringToCutoffPolicy["MIX"] = MIX;
163 stringToCutoffPolicy["MAX"] = MAX;
164 stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL;
165
166 std::string cutPolicy;
167 if (forceFieldOptions_.haveCutoffPolicy()){
168 cutPolicy = forceFieldOptions_.getCutoffPolicy();
169 }else if (simParams_->haveCutoffPolicy()) {
170 cutPolicy = simParams_->getCutoffPolicy();
171 }
172
173 if (!cutPolicy.empty()){
174 toUpper(cutPolicy);
175 map<string, CutoffPolicy>::iterator i;
176 i = stringToCutoffPolicy.find(cutPolicy);
177
178 if (i == stringToCutoffPolicy.end()) {
179 sprintf(painCave.errMsg,
180 "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n"
181 "\tShould be one of: "
182 "MIX, MAX, or TRADITIONAL\n",
183 cutPolicy.c_str());
184 painCave.isFatal = 1;
185 painCave.severity = OPENMD_ERROR;
186 simError();
187 } else {
188 cutoffPolicy_ = i->second;
189 }
190 } else {
191 sprintf(painCave.errMsg,
192 "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n"
193 "\tOpenMD will use TRADITIONAL.\n");
194 painCave.isFatal = 0;
195 painCave.severity = OPENMD_INFO;
196 simError();
197 cutoffPolicy_ = TRADITIONAL;
198 }
199 fDecomp_->setCutoffPolicy(cutoffPolicy_);
200 }
201
202 /**
203 * setupSwitching
204 *
205 * Sets the values of switchingRadius and
206 * If the switchingRadius was explicitly set, use that value (but check it)
207 * If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
208 */
209 void ForceManager::setupSwitching() {
210 Globals* simParams_ = info_->getSimParams();
211
212 // create the switching function object:
213 switcher_ = new SwitchingFunction();
214
215 if (simParams_->haveSwitchingRadius()) {
216 rSwitch_ = simParams_->getSwitchingRadius();
217 if (rSwitch_ > rCut_) {
218 sprintf(painCave.errMsg,
219 "ForceManager::setupSwitching: switchingRadius (%f) is larger "
220 "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
221 painCave.isFatal = 1;
222 painCave.severity = OPENMD_ERROR;
223 simError();
224 }
225 } else {
226 rSwitch_ = 0.85 * rCut_;
227 sprintf(painCave.errMsg,
228 "ForceManager::setupSwitching: No value was set for the switchingRadius.\n"
229 "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
230 "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
231 painCave.isFatal = 0;
232 painCave.severity = OPENMD_WARNING;
233 simError();
234 }
235
236 // Default to cubic switching function.
237 sft_ = cubic;
238 if (simParams_->haveSwitchingFunctionType()) {
239 string funcType = simParams_->getSwitchingFunctionType();
240 toUpper(funcType);
241 if (funcType == "CUBIC") {
242 sft_ = cubic;
243 } else {
244 if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
245 sft_ = fifth_order_poly;
246 } else {
247 // throw error
248 sprintf( painCave.errMsg,
249 "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
250 "\tswitchingFunctionType must be one of: "
251 "\"cubic\" or \"fifth_order_polynomial\".",
252 funcType.c_str() );
253 painCave.isFatal = 1;
254 painCave.severity = OPENMD_ERROR;
255 simError();
256 }
257 }
258 }
259 switcher_->setSwitchType(sft_);
260 switcher_->setSwitch(rSwitch_, rCut_);
261 }
262
263 void ForceManager::initialize() {
264
265 if (!info_->isTopologyDone()) {
266 info_->update();
267 interactionMan_->setSimInfo(info_);
268 interactionMan_->initialize();
269
270 // We want to delay the cutoffs until after the interaction
271 // manager has set up the atom-atom interactions so that we can
272 // query them for suggested cutoff values
273
274 setupCutoffs();
275 setupSwitching();
276
277 info_->prepareTopology();
278 }
279
280 ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
281
282 // Force fields can set options on how to scale van der Waals and electrostatic
283 // interactions for atoms connected via bonds, bends and torsions
284 // in this case the topological distance between atoms is:
285 // 0 = topologically unconnected
286 // 1 = bonded together
287 // 2 = connected via a bend
288 // 3 = connected via a torsion
289
290 vdwScale_.reserve(4);
291 fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
292
293 electrostaticScale_.reserve(4);
294 fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
295
296 vdwScale_[0] = 1.0;
297 vdwScale_[1] = fopts.getvdw12scale();
298 vdwScale_[2] = fopts.getvdw13scale();
299 vdwScale_[3] = fopts.getvdw14scale();
300
301 electrostaticScale_[0] = 1.0;
302 electrostaticScale_[1] = fopts.getelectrostatic12scale();
303 electrostaticScale_[2] = fopts.getelectrostatic13scale();
304 electrostaticScale_[3] = fopts.getelectrostatic14scale();
305
306 fDecomp_->distributeInitialData();
307
308 initialized_ = true;
309
310 }
311
312 void ForceManager::calcForces() {
313
314 if (!initialized_) initialize();
315
316 preCalculation();
317 shortRangeInteractions();
318 longRangeInteractions();
319 postCalculation();
320 }
321
322 void ForceManager::preCalculation() {
323 SimInfo::MoleculeIterator mi;
324 Molecule* mol;
325 Molecule::AtomIterator ai;
326 Atom* atom;
327 Molecule::RigidBodyIterator rbIter;
328 RigidBody* rb;
329 Molecule::CutoffGroupIterator ci;
330 CutoffGroup* cg;
331
332 // forces are zeroed here, before any are accumulated.
333
334 for (mol = info_->beginMolecule(mi); mol != NULL;
335 mol = info_->nextMolecule(mi)) {
336 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
337 atom->zeroForcesAndTorques();
338 }
339
340 //change the positions of atoms which belong to the rigidbodies
341 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
342 rb = mol->nextRigidBody(rbIter)) {
343 rb->zeroForcesAndTorques();
344 }
345
346 if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
347 for(cg = mol->beginCutoffGroup(ci); cg != NULL;
348 cg = mol->nextCutoffGroup(ci)) {
349 //calculate the center of mass of cutoff group
350 cg->updateCOM();
351 }
352 }
353 }
354
355 // Zero out the stress tensor
356 tau *= 0.0;
357
358 }
359
360 void ForceManager::shortRangeInteractions() {
361 Molecule* mol;
362 RigidBody* rb;
363 Bond* bond;
364 Bend* bend;
365 Torsion* torsion;
366 Inversion* inversion;
367 SimInfo::MoleculeIterator mi;
368 Molecule::RigidBodyIterator rbIter;
369 Molecule::BondIterator bondIter;;
370 Molecule::BendIterator bendIter;
371 Molecule::TorsionIterator torsionIter;
372 Molecule::InversionIterator inversionIter;
373 RealType bondPotential = 0.0;
374 RealType bendPotential = 0.0;
375 RealType torsionPotential = 0.0;
376 RealType inversionPotential = 0.0;
377
378 //calculate short range interactions
379 for (mol = info_->beginMolecule(mi); mol != NULL;
380 mol = info_->nextMolecule(mi)) {
381
382 //change the positions of atoms which belong to the rigidbodies
383 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
384 rb = mol->nextRigidBody(rbIter)) {
385 rb->updateAtoms();
386 }
387
388 for (bond = mol->beginBond(bondIter); bond != NULL;
389 bond = mol->nextBond(bondIter)) {
390 bond->calcForce();
391 bondPotential += bond->getPotential();
392 }
393
394 for (bend = mol->beginBend(bendIter); bend != NULL;
395 bend = mol->nextBend(bendIter)) {
396
397 RealType angle;
398 bend->calcForce(angle);
399 RealType currBendPot = bend->getPotential();
400
401 bendPotential += bend->getPotential();
402 map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
403 if (i == bendDataSets.end()) {
404 BendDataSet dataSet;
405 dataSet.prev.angle = dataSet.curr.angle = angle;
406 dataSet.prev.potential = dataSet.curr.potential = currBendPot;
407 dataSet.deltaV = 0.0;
408 bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet));
409 }else {
410 i->second.prev.angle = i->second.curr.angle;
411 i->second.prev.potential = i->second.curr.potential;
412 i->second.curr.angle = angle;
413 i->second.curr.potential = currBendPot;
414 i->second.deltaV = fabs(i->second.curr.potential -
415 i->second.prev.potential);
416 }
417 }
418
419 for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
420 torsion = mol->nextTorsion(torsionIter)) {
421 RealType angle;
422 torsion->calcForce(angle);
423 RealType currTorsionPot = torsion->getPotential();
424 torsionPotential += torsion->getPotential();
425 map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
426 if (i == torsionDataSets.end()) {
427 TorsionDataSet dataSet;
428 dataSet.prev.angle = dataSet.curr.angle = angle;
429 dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
430 dataSet.deltaV = 0.0;
431 torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
432 }else {
433 i->second.prev.angle = i->second.curr.angle;
434 i->second.prev.potential = i->second.curr.potential;
435 i->second.curr.angle = angle;
436 i->second.curr.potential = currTorsionPot;
437 i->second.deltaV = fabs(i->second.curr.potential -
438 i->second.prev.potential);
439 }
440 }
441
442 for (inversion = mol->beginInversion(inversionIter);
443 inversion != NULL;
444 inversion = mol->nextInversion(inversionIter)) {
445 RealType angle;
446 inversion->calcForce(angle);
447 RealType currInversionPot = inversion->getPotential();
448 inversionPotential += inversion->getPotential();
449 map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
450 if (i == inversionDataSets.end()) {
451 InversionDataSet dataSet;
452 dataSet.prev.angle = dataSet.curr.angle = angle;
453 dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
454 dataSet.deltaV = 0.0;
455 inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
456 }else {
457 i->second.prev.angle = i->second.curr.angle;
458 i->second.prev.potential = i->second.curr.potential;
459 i->second.curr.angle = angle;
460 i->second.curr.potential = currInversionPot;
461 i->second.deltaV = fabs(i->second.curr.potential -
462 i->second.prev.potential);
463 }
464 }
465 }
466
467 RealType shortRangePotential = bondPotential + bendPotential +
468 torsionPotential + inversionPotential;
469 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
470 curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
471 curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
472 curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
473 curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
474 curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;
475 }
476
477 void ForceManager::longRangeInteractions() {
478
479 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
480 DataStorage* config = &(curSnapshot->atomData);
481 DataStorage* cgConfig = &(curSnapshot->cgData);
482
483 //calculate the center of mass of cutoff group
484
485 SimInfo::MoleculeIterator mi;
486 Molecule* mol;
487 Molecule::CutoffGroupIterator ci;
488 CutoffGroup* cg;
489
490 if(info_->getNCutoffGroups() > 0){
491 for (mol = info_->beginMolecule(mi); mol != NULL;
492 mol = info_->nextMolecule(mi)) {
493 for(cg = mol->beginCutoffGroup(ci); cg != NULL;
494 cg = mol->nextCutoffGroup(ci)) {
495 cg->updateCOM();
496 }
497 }
498 } else {
499 // center of mass of the group is the same as position of the atom
500 // if cutoff group does not exist
501 cgConfig->position = config->position;
502 }
503
504 fDecomp_->zeroWorkArrays();
505 fDecomp_->distributeData();
506
507 int cg1, cg2, atom1, atom2, topoDist;
508 Vector3d d_grp, dag, d;
509 RealType rgrpsq, rgrp, r2, r;
510 RealType electroMult, vdwMult;
511 RealType vij;
512 Vector3d fij, fg, f1;
513 tuple3<RealType, RealType, RealType> cuts;
514 RealType rCutSq;
515 bool in_switching_region;
516 RealType sw, dswdr, swderiv;
517 vector<int> atomListColumn, atomListRow, atomListLocal;
518 InteractionData idat;
519 SelfData sdat;
520 RealType mf;
521 potVec pot(0.0);
522 potVec longRangePotential(0.0);
523 RealType lrPot;
524 RealType vpair;
525
526 int loopStart, loopEnd;
527
528 idat.vdwMult = &vdwMult;
529 idat.electroMult = &electroMult;
530 idat.pot = &pot;
531 idat.vpair = &vpair;
532 idat.f1 = &f1;
533 idat.sw = &sw;
534
535 loopEnd = PAIR_LOOP;
536 if (info_->requiresPrepair() ) {
537 loopStart = PREPAIR_LOOP;
538 } else {
539 loopStart = PAIR_LOOP;
540 }
541
542 for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
543
544 if (iLoop == loopStart) {
545 bool update_nlist = fDecomp_->checkNeighborList();
546 if (update_nlist)
547 neighborList = fDecomp_->buildNeighborList();
548 }
549
550 for (vector<pair<int, int> >::iterator it = neighborList.begin();
551 it != neighborList.end(); ++it) {
552
553 cg1 = (*it).first;
554 cg2 = (*it).second;
555
556 cuts = fDecomp_->getGroupCutoffs(cg1, cg2);
557
558 d_grp = fDecomp_->getIntergroupVector(cg1, cg2);
559 curSnapshot->wrapVector(d_grp);
560 rgrpsq = d_grp.lengthSquare();
561
562 rCutSq = cuts.second;
563
564 if (rgrpsq < rCutSq) {
565 idat.rcut = &cuts.first;
566 if (iLoop == PAIR_LOOP) {
567 vij *= 0.0;
568 fij = V3Zero;
569 }
570
571 in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
572 rgrp);
573
574 atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
575 atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
576
577 for (vector<int>::iterator ia = atomListRow.begin();
578 ia != atomListRow.end(); ++ia) {
579 atom1 = (*ia);
580
581 for (vector<int>::iterator jb = atomListColumn.begin();
582 jb != atomListColumn.end(); ++jb) {
583 atom2 = (*jb);
584
585 if (!fDecomp_->skipAtomPair(atom1, atom2)) {
586
587 vpair = 0.0;
588 f1 = V3Zero;
589
590 fDecomp_->fillInteractionData(idat, atom1, atom2);
591
592 topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
593 vdwMult = vdwScale_[topoDist];
594 electroMult = electrostaticScale_[topoDist];
595
596 if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
597 idat.d = &d_grp;
598 idat.r2 = &rgrpsq;
599 } else {
600 d = fDecomp_->getInteratomicVector(atom1, atom2);
601 curSnapshot->wrapVector( d );
602 r2 = d.lengthSquare();
603 idat.d = &d;
604 idat.r2 = &r2;
605 }
606
607 r = sqrt( *(idat.r2) );
608 idat.rij = &r;
609
610 if (iLoop == PREPAIR_LOOP) {
611 interactionMan_->doPrePair(idat);
612 } else {
613 interactionMan_->doPair(idat);
614 fDecomp_->unpackInteractionData(idat, atom1, atom2);
615 vij += vpair;
616 fij += f1;
617 tau -= outProduct( *(idat.d), f1);
618 }
619 }
620 }
621 }
622
623 if (iLoop == PAIR_LOOP) {
624 if (in_switching_region) {
625 swderiv = vij * dswdr / rgrp;
626 fg = swderiv * d_grp;
627
628 fij += fg;
629
630 if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
631 tau -= outProduct( *(idat.d), fg);
632 }
633
634 for (vector<int>::iterator ia = atomListRow.begin();
635 ia != atomListRow.end(); ++ia) {
636 atom1 = (*ia);
637 mf = fDecomp_->getMassFactorRow(atom1);
638 // fg is the force on atom ia due to cutoff group's
639 // presence in switching region
640 fg = swderiv * d_grp * mf;
641 fDecomp_->addForceToAtomRow(atom1, fg);
642
643 if (atomListRow.size() > 1) {
644 if (info_->usesAtomicVirial()) {
645 // find the distance between the atom
646 // and the center of the cutoff group:
647 dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
648 tau -= outProduct(dag, fg);
649 }
650 }
651 }
652 for (vector<int>::iterator jb = atomListColumn.begin();
653 jb != atomListColumn.end(); ++jb) {
654 atom2 = (*jb);
655 mf = fDecomp_->getMassFactorColumn(atom2);
656 // fg is the force on atom jb due to cutoff group's
657 // presence in switching region
658 fg = -swderiv * d_grp * mf;
659 fDecomp_->addForceToAtomColumn(atom2, fg);
660
661 if (atomListColumn.size() > 1) {
662 if (info_->usesAtomicVirial()) {
663 // find the distance between the atom
664 // and the center of the cutoff group:
665 dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
666 tau -= outProduct(dag, fg);
667 }
668 }
669 }
670 }
671 //if (!SIM_uses_AtomicVirial) {
672 // tau -= outProduct(d_grp, fij);
673 //}
674 }
675 }
676 }
677
678 if (iLoop == PREPAIR_LOOP) {
679 if (info_->requiresPrepair()) {
680 fDecomp_->collectIntermediateData();
681
682 for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
683 fDecomp_->fillSelfData(sdat, atom1);
684 interactionMan_->doPreForce(sdat);
685 }
686
687 fDecomp_->distributeIntermediateData();
688 }
689 }
690
691 }
692
693 fDecomp_->collectData();
694
695 if ( info_->requiresSkipCorrection() ) {
696
697 for (int atom1 = 0; atom1 < fDecomp_->getNAtomsInRow(); atom1++) {
698
699 vector<int> skipList = fDecomp_->getSkipsForAtom( atom1 );
700
701 for (vector<int>::iterator jb = skipList.begin();
702 jb != skipList.end(); ++jb) {
703
704 atom2 = (*jb);
705 fDecomp_->fillSkipData(idat, atom1, atom2);
706 interactionMan_->doSkipCorrection(idat);
707
708 }
709 }
710 }
711
712 if (info_->requiresSelfCorrection()) {
713
714 for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
715 fDecomp_->fillSelfData(sdat, atom1);
716 interactionMan_->doSelfCorrection(sdat);
717 }
718
719 }
720
721 longRangePotential = fDecomp_->getLongRangePotential();
722 lrPot = longRangePotential.sum();
723
724 //store the tau and long range potential
725 curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
726 curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY];
727 curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY];
728 }
729
730
731 void ForceManager::postCalculation() {
732 SimInfo::MoleculeIterator mi;
733 Molecule* mol;
734 Molecule::RigidBodyIterator rbIter;
735 RigidBody* rb;
736 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
737
738 // collect the atomic forces onto rigid bodies
739
740 for (mol = info_->beginMolecule(mi); mol != NULL;
741 mol = info_->nextMolecule(mi)) {
742 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
743 rb = mol->nextRigidBody(rbIter)) {
744 Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
745 tau += rbTau;
746 }
747 }
748
749 #ifdef IS_MPI
750 Mat3x3d tmpTau(tau);
751 MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
752 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
753 #endif
754 curSnapshot->statData.setTau(tau);
755 }
756
757 } //end namespace OpenMD

Properties

Name Value
svn:executable *
svn:keywords Author Id Revision Date