1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file ForceManager.cpp |
44 |
* @author tlin |
45 |
* @date 11/09/2004 |
46 |
* @time 10:39am |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
|
51 |
#include "brains/ForceManager.hpp" |
52 |
#include "primitives/Molecule.hpp" |
53 |
#define __OPENMD_C |
54 |
#include "utils/simError.h" |
55 |
#include "primitives/Bond.hpp" |
56 |
#include "primitives/Bend.hpp" |
57 |
#include "primitives/Torsion.hpp" |
58 |
#include "primitives/Inversion.hpp" |
59 |
#include "nonbonded/NonBondedInteraction.hpp" |
60 |
#include "parallel/ForceMatrixDecomposition.hpp" |
61 |
|
62 |
using namespace std; |
63 |
namespace OpenMD { |
64 |
|
65 |
ForceManager::ForceManager(SimInfo * info) : info_(info) { |
66 |
forceField_ = info_->getForceField(); |
67 |
fDecomp_ = new ForceMatrixDecomposition(info_); |
68 |
} |
69 |
|
70 |
/** |
71 |
* setupCutoffs |
72 |
* |
73 |
* Sets the values of cutoffRadius, cutoffMethod, and cutoffPolicy |
74 |
* |
75 |
* cutoffRadius : realType |
76 |
* If the cutoffRadius was explicitly set, use that value. |
77 |
* If the cutoffRadius was not explicitly set: |
78 |
* Are there electrostatic atoms? Use 12.0 Angstroms. |
79 |
* No electrostatic atoms? Poll the atom types present in the |
80 |
* simulation for suggested cutoff values (e.g. 2.5 * sigma). |
81 |
* Use the maximum suggested value that was found. |
82 |
* |
83 |
* cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL) |
84 |
* If cutoffMethod was explicitly set, use that choice. |
85 |
* If cutoffMethod was not explicitly set, use SHIFTED_FORCE |
86 |
* |
87 |
* cutoffPolicy : (one of MIX, MAX, TRADITIONAL) |
88 |
* If cutoffPolicy was explicitly set, use that choice. |
89 |
* If cutoffPolicy was not explicitly set, use TRADITIONAL |
90 |
*/ |
91 |
void ForceManager::setupCutoffs() { |
92 |
|
93 |
Globals* simParams_ = info_->getSimParams(); |
94 |
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
95 |
|
96 |
if (simParams_->haveCutoffRadius()) { |
97 |
rCut_ = simParams_->getCutoffRadius(); |
98 |
} else { |
99 |
if (info_->usesElectrostaticAtoms()) { |
100 |
sprintf(painCave.errMsg, |
101 |
"ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" |
102 |
"\tOpenMD will use a default value of 12.0 angstroms" |
103 |
"\tfor the cutoffRadius.\n"); |
104 |
painCave.isFatal = 0; |
105 |
painCave.severity = OPENMD_INFO; |
106 |
simError(); |
107 |
rCut_ = 12.0; |
108 |
} else { |
109 |
RealType thisCut; |
110 |
set<AtomType*>::iterator i; |
111 |
set<AtomType*> atomTypes; |
112 |
atomTypes = info_->getSimulatedAtomTypes(); |
113 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
114 |
thisCut = interactionMan_->getSuggestedCutoffRadius((*i)); |
115 |
rCut_ = max(thisCut, rCut_); |
116 |
} |
117 |
sprintf(painCave.errMsg, |
118 |
"ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" |
119 |
"\tOpenMD will use %lf angstroms.\n", |
120 |
rCut_); |
121 |
painCave.isFatal = 0; |
122 |
painCave.severity = OPENMD_INFO; |
123 |
simError(); |
124 |
} |
125 |
} |
126 |
|
127 |
map<string, CutoffMethod> stringToCutoffMethod; |
128 |
stringToCutoffMethod["HARD"] = HARD; |
129 |
stringToCutoffMethod["SWITCHED"] = SWITCHED; |
130 |
stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL; |
131 |
stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE; |
132 |
|
133 |
if (simParams_->haveCutoffMethod()) { |
134 |
string cutMeth = toUpperCopy(simParams_->getCutoffMethod()); |
135 |
map<string, CutoffMethod>::iterator i; |
136 |
i = stringToCutoffMethod.find(cutMeth); |
137 |
if (i == stringToCutoffMethod.end()) { |
138 |
sprintf(painCave.errMsg, |
139 |
"ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n" |
140 |
"\tShould be one of: " |
141 |
"HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n", |
142 |
cutMeth.c_str()); |
143 |
painCave.isFatal = 1; |
144 |
painCave.severity = OPENMD_ERROR; |
145 |
simError(); |
146 |
} else { |
147 |
cutoffMethod_ = i->second; |
148 |
} |
149 |
} else { |
150 |
sprintf(painCave.errMsg, |
151 |
"ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n" |
152 |
"\tOpenMD will use SHIFTED_FORCE.\n"); |
153 |
painCave.isFatal = 0; |
154 |
painCave.severity = OPENMD_INFO; |
155 |
simError(); |
156 |
cutoffMethod_ = SHIFTED_FORCE; |
157 |
} |
158 |
|
159 |
map<string, CutoffPolicy> stringToCutoffPolicy; |
160 |
stringToCutoffPolicy["MIX"] = MIX; |
161 |
stringToCutoffPolicy["MAX"] = MAX; |
162 |
stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL; |
163 |
|
164 |
std::string cutPolicy; |
165 |
if (forceFieldOptions_.haveCutoffPolicy()){ |
166 |
cutPolicy = forceFieldOptions_.getCutoffPolicy(); |
167 |
}else if (simParams_->haveCutoffPolicy()) { |
168 |
cutPolicy = simParams_->getCutoffPolicy(); |
169 |
} |
170 |
|
171 |
if (!cutPolicy.empty()){ |
172 |
toUpper(cutPolicy); |
173 |
map<string, CutoffPolicy>::iterator i; |
174 |
i = stringToCutoffPolicy.find(cutPolicy); |
175 |
|
176 |
if (i == stringToCutoffPolicy.end()) { |
177 |
sprintf(painCave.errMsg, |
178 |
"ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n" |
179 |
"\tShould be one of: " |
180 |
"MIX, MAX, or TRADITIONAL\n", |
181 |
cutPolicy.c_str()); |
182 |
painCave.isFatal = 1; |
183 |
painCave.severity = OPENMD_ERROR; |
184 |
simError(); |
185 |
} else { |
186 |
cutoffPolicy_ = i->second; |
187 |
} |
188 |
} else { |
189 |
sprintf(painCave.errMsg, |
190 |
"ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n" |
191 |
"\tOpenMD will use TRADITIONAL.\n"); |
192 |
painCave.isFatal = 0; |
193 |
painCave.severity = OPENMD_INFO; |
194 |
simError(); |
195 |
cutoffPolicy_ = TRADITIONAL; |
196 |
} |
197 |
} |
198 |
|
199 |
/** |
200 |
* setupSwitching |
201 |
* |
202 |
* Sets the values of switchingRadius and |
203 |
* If the switchingRadius was explicitly set, use that value (but check it) |
204 |
* If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_ |
205 |
*/ |
206 |
void ForceManager::setupSwitching() { |
207 |
Globals* simParams_ = info_->getSimParams(); |
208 |
|
209 |
if (simParams_->haveSwitchingRadius()) { |
210 |
rSwitch_ = simParams_->getSwitchingRadius(); |
211 |
if (rSwitch_ > rCut_) { |
212 |
sprintf(painCave.errMsg, |
213 |
"ForceManager::setupSwitching: switchingRadius (%f) is larger than cutoffRadius(%f)\n", |
214 |
rSwitch_, rCut_); |
215 |
painCave.isFatal = 1; |
216 |
painCave.severity = OPENMD_ERROR; |
217 |
simError(); |
218 |
} |
219 |
} else { |
220 |
rSwitch_ = 0.85 * rCut_; |
221 |
sprintf(painCave.errMsg, |
222 |
"ForceManager::setupSwitching: No value was set for the switchingRadius.\n" |
223 |
"\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
224 |
"\tswitchingRadius = %f. for this simulation\n", rSwitch_); |
225 |
painCave.isFatal = 0; |
226 |
painCave.severity = OPENMD_WARNING; |
227 |
simError(); |
228 |
} |
229 |
|
230 |
if (simParams_->haveSwitchingFunctionType()) { |
231 |
string funcType = simParams_->getSwitchingFunctionType(); |
232 |
toUpper(funcType); |
233 |
if (funcType == "CUBIC") { |
234 |
sft_ = cubic; |
235 |
} else { |
236 |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
237 |
sft_ = fifth_order_poly; |
238 |
} else { |
239 |
// throw error |
240 |
sprintf( painCave.errMsg, |
241 |
"ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n" |
242 |
"\tswitchingFunctionType must be one of: " |
243 |
"\"cubic\" or \"fifth_order_polynomial\".", |
244 |
funcType.c_str() ); |
245 |
painCave.isFatal = 1; |
246 |
painCave.severity = OPENMD_ERROR; |
247 |
simError(); |
248 |
} |
249 |
} |
250 |
} |
251 |
switcher_->setSwitchType(sft_); |
252 |
switcher_->setSwitch(rSwitch_, rCut_); |
253 |
} |
254 |
|
255 |
void ForceManager::initialize() { |
256 |
|
257 |
if (!info_->isTopologyDone()) { |
258 |
info_->update(); |
259 |
interactionMan_->setSimInfo(info_); |
260 |
interactionMan_->initialize(); |
261 |
|
262 |
// We want to delay the cutoffs until after the interaction |
263 |
// manager has set up the atom-atom interactions so that we can |
264 |
// query them for suggested cutoff values |
265 |
|
266 |
setupCutoffs(); |
267 |
setupSwitching(); |
268 |
|
269 |
info_->prepareTopology(); |
270 |
} |
271 |
|
272 |
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
273 |
|
274 |
// Force fields can set options on how to scale van der Waals and electrostatic |
275 |
// interactions for atoms connected via bonds, bends and torsions |
276 |
// in this case the topological distance between atoms is: |
277 |
// 0 = topologically unconnected |
278 |
// 1 = bonded together |
279 |
// 2 = connected via a bend |
280 |
// 3 = connected via a torsion |
281 |
|
282 |
vdwScale_.reserve(4); |
283 |
fill(vdwScale_.begin(), vdwScale_.end(), 0.0); |
284 |
|
285 |
electrostaticScale_.reserve(4); |
286 |
fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0); |
287 |
|
288 |
vdwScale_[0] = 1.0; |
289 |
vdwScale_[1] = fopts.getvdw12scale(); |
290 |
vdwScale_[2] = fopts.getvdw13scale(); |
291 |
vdwScale_[3] = fopts.getvdw14scale(); |
292 |
|
293 |
electrostaticScale_[0] = 1.0; |
294 |
electrostaticScale_[1] = fopts.getelectrostatic12scale(); |
295 |
electrostaticScale_[2] = fopts.getelectrostatic13scale(); |
296 |
electrostaticScale_[3] = fopts.getelectrostatic14scale(); |
297 |
|
298 |
fDecomp_->distributeInitialData(); |
299 |
|
300 |
initialized_ = true; |
301 |
|
302 |
} |
303 |
|
304 |
void ForceManager::calcForces() { |
305 |
|
306 |
if (!initialized_) initialize(); |
307 |
|
308 |
preCalculation(); |
309 |
shortRangeInteractions(); |
310 |
longRangeInteractions(); |
311 |
postCalculation(); |
312 |
} |
313 |
|
314 |
void ForceManager::preCalculation() { |
315 |
SimInfo::MoleculeIterator mi; |
316 |
Molecule* mol; |
317 |
Molecule::AtomIterator ai; |
318 |
Atom* atom; |
319 |
Molecule::RigidBodyIterator rbIter; |
320 |
RigidBody* rb; |
321 |
Molecule::CutoffGroupIterator ci; |
322 |
CutoffGroup* cg; |
323 |
|
324 |
// forces are zeroed here, before any are accumulated. |
325 |
|
326 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
327 |
mol = info_->nextMolecule(mi)) { |
328 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
329 |
atom->zeroForcesAndTorques(); |
330 |
} |
331 |
|
332 |
//change the positions of atoms which belong to the rigidbodies |
333 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
334 |
rb = mol->nextRigidBody(rbIter)) { |
335 |
rb->zeroForcesAndTorques(); |
336 |
} |
337 |
|
338 |
if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ |
339 |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
340 |
cg = mol->nextCutoffGroup(ci)) { |
341 |
//calculate the center of mass of cutoff group |
342 |
cg->updateCOM(); |
343 |
} |
344 |
} |
345 |
} |
346 |
|
347 |
// Zero out the stress tensor |
348 |
tau *= 0.0; |
349 |
|
350 |
} |
351 |
|
352 |
void ForceManager::shortRangeInteractions() { |
353 |
Molecule* mol; |
354 |
RigidBody* rb; |
355 |
Bond* bond; |
356 |
Bend* bend; |
357 |
Torsion* torsion; |
358 |
Inversion* inversion; |
359 |
SimInfo::MoleculeIterator mi; |
360 |
Molecule::RigidBodyIterator rbIter; |
361 |
Molecule::BondIterator bondIter;; |
362 |
Molecule::BendIterator bendIter; |
363 |
Molecule::TorsionIterator torsionIter; |
364 |
Molecule::InversionIterator inversionIter; |
365 |
RealType bondPotential = 0.0; |
366 |
RealType bendPotential = 0.0; |
367 |
RealType torsionPotential = 0.0; |
368 |
RealType inversionPotential = 0.0; |
369 |
|
370 |
//calculate short range interactions |
371 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
372 |
mol = info_->nextMolecule(mi)) { |
373 |
|
374 |
//change the positions of atoms which belong to the rigidbodies |
375 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
376 |
rb = mol->nextRigidBody(rbIter)) { |
377 |
rb->updateAtoms(); |
378 |
} |
379 |
|
380 |
for (bond = mol->beginBond(bondIter); bond != NULL; |
381 |
bond = mol->nextBond(bondIter)) { |
382 |
bond->calcForce(); |
383 |
bondPotential += bond->getPotential(); |
384 |
} |
385 |
|
386 |
for (bend = mol->beginBend(bendIter); bend != NULL; |
387 |
bend = mol->nextBend(bendIter)) { |
388 |
|
389 |
RealType angle; |
390 |
bend->calcForce(angle); |
391 |
RealType currBendPot = bend->getPotential(); |
392 |
|
393 |
bendPotential += bend->getPotential(); |
394 |
map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
395 |
if (i == bendDataSets.end()) { |
396 |
BendDataSet dataSet; |
397 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
398 |
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
399 |
dataSet.deltaV = 0.0; |
400 |
bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet)); |
401 |
}else { |
402 |
i->second.prev.angle = i->second.curr.angle; |
403 |
i->second.prev.potential = i->second.curr.potential; |
404 |
i->second.curr.angle = angle; |
405 |
i->second.curr.potential = currBendPot; |
406 |
i->second.deltaV = fabs(i->second.curr.potential - |
407 |
i->second.prev.potential); |
408 |
} |
409 |
} |
410 |
|
411 |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; |
412 |
torsion = mol->nextTorsion(torsionIter)) { |
413 |
RealType angle; |
414 |
torsion->calcForce(angle); |
415 |
RealType currTorsionPot = torsion->getPotential(); |
416 |
torsionPotential += torsion->getPotential(); |
417 |
map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
418 |
if (i == torsionDataSets.end()) { |
419 |
TorsionDataSet dataSet; |
420 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
421 |
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
422 |
dataSet.deltaV = 0.0; |
423 |
torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
424 |
}else { |
425 |
i->second.prev.angle = i->second.curr.angle; |
426 |
i->second.prev.potential = i->second.curr.potential; |
427 |
i->second.curr.angle = angle; |
428 |
i->second.curr.potential = currTorsionPot; |
429 |
i->second.deltaV = fabs(i->second.curr.potential - |
430 |
i->second.prev.potential); |
431 |
} |
432 |
} |
433 |
|
434 |
for (inversion = mol->beginInversion(inversionIter); |
435 |
inversion != NULL; |
436 |
inversion = mol->nextInversion(inversionIter)) { |
437 |
RealType angle; |
438 |
inversion->calcForce(angle); |
439 |
RealType currInversionPot = inversion->getPotential(); |
440 |
inversionPotential += inversion->getPotential(); |
441 |
map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
442 |
if (i == inversionDataSets.end()) { |
443 |
InversionDataSet dataSet; |
444 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
445 |
dataSet.prev.potential = dataSet.curr.potential = currInversionPot; |
446 |
dataSet.deltaV = 0.0; |
447 |
inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet)); |
448 |
}else { |
449 |
i->second.prev.angle = i->second.curr.angle; |
450 |
i->second.prev.potential = i->second.curr.potential; |
451 |
i->second.curr.angle = angle; |
452 |
i->second.curr.potential = currInversionPot; |
453 |
i->second.deltaV = fabs(i->second.curr.potential - |
454 |
i->second.prev.potential); |
455 |
} |
456 |
} |
457 |
} |
458 |
|
459 |
RealType shortRangePotential = bondPotential + bendPotential + |
460 |
torsionPotential + inversionPotential; |
461 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
462 |
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
463 |
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
464 |
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
465 |
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
466 |
curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential; |
467 |
} |
468 |
|
469 |
void ForceManager::longRangeInteractions() { |
470 |
|
471 |
// some of this initial stuff will go away: |
472 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
473 |
DataStorage* config = &(curSnapshot->atomData); |
474 |
DataStorage* cgConfig = &(curSnapshot->cgData); |
475 |
RealType* frc = config->getArrayPointer(DataStorage::dslForce); |
476 |
RealType* pos = config->getArrayPointer(DataStorage::dslPosition); |
477 |
RealType* trq = config->getArrayPointer(DataStorage::dslTorque); |
478 |
RealType* A = config->getArrayPointer(DataStorage::dslAmat); |
479 |
RealType* electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame); |
480 |
RealType* particlePot = config->getArrayPointer(DataStorage::dslParticlePot); |
481 |
RealType* rc; |
482 |
|
483 |
if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ |
484 |
rc = cgConfig->getArrayPointer(DataStorage::dslPosition); |
485 |
} else { |
486 |
// center of mass of the group is the same as position of the atom |
487 |
// if cutoff group does not exist |
488 |
rc = pos; |
489 |
} |
490 |
|
491 |
// new stuff starts here: |
492 |
fDecomp_->zeroWorkArrays(); |
493 |
fDecomp_->distributeData(); |
494 |
|
495 |
int cg1, cg2, atom1, atom2; |
496 |
Vector3d d_grp, dag; |
497 |
RealType rgrpsq, rgrp; |
498 |
RealType vij; |
499 |
Vector3d fij, fg; |
500 |
tuple3<RealType, RealType, RealType> cuts; |
501 |
RealType rCutSq; |
502 |
bool in_switching_region; |
503 |
RealType sw, dswdr, swderiv; |
504 |
vector<int> atomListColumn, atomListRow, atomListLocal; |
505 |
InteractionData idat; |
506 |
SelfData sdat; |
507 |
RealType mf; |
508 |
potVec pot(0.0); |
509 |
potVec longRangePotential(0.0); |
510 |
RealType lrPot; |
511 |
|
512 |
int loopStart, loopEnd; |
513 |
|
514 |
loopEnd = PAIR_LOOP; |
515 |
if (info_->requiresPrepair() ) { |
516 |
loopStart = PREPAIR_LOOP; |
517 |
} else { |
518 |
loopStart = PAIR_LOOP; |
519 |
} |
520 |
|
521 |
for (int iLoop = loopStart; iLoop < loopEnd; iLoop++) { |
522 |
|
523 |
if (iLoop == loopStart) { |
524 |
bool update_nlist = fDecomp_->checkNeighborList(); |
525 |
if (update_nlist) |
526 |
neighborList = fDecomp_->buildNeighborList(); |
527 |
} |
528 |
|
529 |
for (vector<pair<int, int> >::iterator it = neighborList.begin(); |
530 |
it != neighborList.end(); ++it) { |
531 |
|
532 |
cg1 = (*it).first; |
533 |
cg2 = (*it).second; |
534 |
|
535 |
cuts = fDecomp_->getGroupCutoffs(cg1, cg2); |
536 |
|
537 |
d_grp = fDecomp_->getIntergroupVector(cg1, cg2); |
538 |
curSnapshot->wrapVector(d_grp); |
539 |
rgrpsq = d_grp.lengthSquare(); |
540 |
|
541 |
rCutSq = cuts.second; |
542 |
|
543 |
if (rgrpsq < rCutSq) { |
544 |
*(idat.rcut) = cuts.first; |
545 |
if (iLoop == PAIR_LOOP) { |
546 |
vij *= 0.0; |
547 |
fij = V3Zero; |
548 |
} |
549 |
|
550 |
in_switching_region = switcher_->getSwitch(rgrpsq, *(idat.sw), dswdr, |
551 |
rgrp); |
552 |
|
553 |
atomListRow = fDecomp_->getAtomsInGroupRow(cg1); |
554 |
atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2); |
555 |
|
556 |
for (vector<int>::iterator ia = atomListRow.begin(); |
557 |
ia != atomListRow.end(); ++ia) { |
558 |
atom1 = (*ia); |
559 |
|
560 |
for (vector<int>::iterator jb = atomListColumn.begin(); |
561 |
jb != atomListColumn.end(); ++jb) { |
562 |
atom2 = (*jb); |
563 |
|
564 |
if (!fDecomp_->skipAtomPair(atom1, atom2)) { |
565 |
|
566 |
pot *= 0.0; |
567 |
|
568 |
idat = fDecomp_->fillInteractionData(atom1, atom2); |
569 |
*(idat.pot) = pot; |
570 |
|
571 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
572 |
*(idat.d) = d_grp; |
573 |
*(idat.r2) = rgrpsq; |
574 |
} else { |
575 |
*(idat.d) = fDecomp_->getInteratomicVector(atom1, atom2); |
576 |
curSnapshot->wrapVector( *(idat.d) ); |
577 |
*(idat.r2) = idat.d->lengthSquare(); |
578 |
} |
579 |
|
580 |
*(idat.rij) = sqrt( *(idat.r2) ); |
581 |
|
582 |
if (iLoop == PREPAIR_LOOP) { |
583 |
interactionMan_->doPrePair(idat); |
584 |
} else { |
585 |
interactionMan_->doPair(idat); |
586 |
fDecomp_->unpackInteractionData(idat, atom1, atom2); |
587 |
vij += *(idat.vpair); |
588 |
fij += *(idat.f1); |
589 |
tau -= outProduct( *(idat.d), *(idat.f1)); |
590 |
} |
591 |
} |
592 |
} |
593 |
} |
594 |
|
595 |
if (iLoop == PAIR_LOOP) { |
596 |
if (in_switching_region) { |
597 |
swderiv = vij * dswdr / rgrp; |
598 |
fg = swderiv * d_grp; |
599 |
|
600 |
fij += fg; |
601 |
|
602 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
603 |
tau -= outProduct( *(idat.d), fg); |
604 |
} |
605 |
|
606 |
for (vector<int>::iterator ia = atomListRow.begin(); |
607 |
ia != atomListRow.end(); ++ia) { |
608 |
atom1 = (*ia); |
609 |
mf = fDecomp_->getMassFactorRow(atom1); |
610 |
// fg is the force on atom ia due to cutoff group's |
611 |
// presence in switching region |
612 |
fg = swderiv * d_grp * mf; |
613 |
fDecomp_->addForceToAtomRow(atom1, fg); |
614 |
|
615 |
if (atomListRow.size() > 1) { |
616 |
if (info_->usesAtomicVirial()) { |
617 |
// find the distance between the atom |
618 |
// and the center of the cutoff group: |
619 |
dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1); |
620 |
tau -= outProduct(dag, fg); |
621 |
} |
622 |
} |
623 |
} |
624 |
for (vector<int>::iterator jb = atomListColumn.begin(); |
625 |
jb != atomListColumn.end(); ++jb) { |
626 |
atom2 = (*jb); |
627 |
mf = fDecomp_->getMassFactorColumn(atom2); |
628 |
// fg is the force on atom jb due to cutoff group's |
629 |
// presence in switching region |
630 |
fg = -swderiv * d_grp * mf; |
631 |
fDecomp_->addForceToAtomColumn(atom2, fg); |
632 |
|
633 |
if (atomListColumn.size() > 1) { |
634 |
if (info_->usesAtomicVirial()) { |
635 |
// find the distance between the atom |
636 |
// and the center of the cutoff group: |
637 |
dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2); |
638 |
tau -= outProduct(dag, fg); |
639 |
} |
640 |
} |
641 |
} |
642 |
} |
643 |
//if (!SIM_uses_AtomicVirial) { |
644 |
// tau -= outProduct(d_grp, fij); |
645 |
//} |
646 |
} |
647 |
} |
648 |
} |
649 |
|
650 |
if (iLoop == PREPAIR_LOOP) { |
651 |
if (info_->requiresPrepair()) { |
652 |
fDecomp_->collectIntermediateData(); |
653 |
|
654 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
655 |
sdat = fDecomp_->fillSelfData(atom1); |
656 |
interactionMan_->doPreForce(sdat); |
657 |
} |
658 |
|
659 |
fDecomp_->distributeIntermediateData(); |
660 |
} |
661 |
} |
662 |
|
663 |
} |
664 |
|
665 |
fDecomp_->collectData(); |
666 |
|
667 |
if ( info_->requiresSkipCorrection() ) { |
668 |
|
669 |
for (int atom1 = 0; atom1 < fDecomp_->getNAtomsInRow(); atom1++) { |
670 |
|
671 |
vector<int> skipList = fDecomp_->getSkipsForRowAtom( atom1 ); |
672 |
|
673 |
for (vector<int>::iterator jb = skipList.begin(); |
674 |
jb != skipList.end(); ++jb) { |
675 |
|
676 |
atom2 = (*jb); |
677 |
idat = fDecomp_->fillSkipData(atom1, atom2); |
678 |
interactionMan_->doSkipCorrection(idat); |
679 |
|
680 |
} |
681 |
} |
682 |
} |
683 |
|
684 |
if (info_->requiresSelfCorrection()) { |
685 |
|
686 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
687 |
sdat = fDecomp_->fillSelfData(atom1); |
688 |
interactionMan_->doSelfCorrection(sdat); |
689 |
} |
690 |
|
691 |
} |
692 |
|
693 |
longRangePotential = fDecomp_->getLongRangePotential(); |
694 |
lrPot = longRangePotential.sum(); |
695 |
|
696 |
//store the tau and long range potential |
697 |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
698 |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY]; |
699 |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY]; |
700 |
} |
701 |
|
702 |
|
703 |
void ForceManager::postCalculation() { |
704 |
SimInfo::MoleculeIterator mi; |
705 |
Molecule* mol; |
706 |
Molecule::RigidBodyIterator rbIter; |
707 |
RigidBody* rb; |
708 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
709 |
|
710 |
// collect the atomic forces onto rigid bodies |
711 |
|
712 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
713 |
mol = info_->nextMolecule(mi)) { |
714 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
715 |
rb = mol->nextRigidBody(rbIter)) { |
716 |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
717 |
tau += rbTau; |
718 |
} |
719 |
} |
720 |
|
721 |
#ifdef IS_MPI |
722 |
Mat3x3d tmpTau(tau); |
723 |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
724 |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
725 |
#endif |
726 |
curSnapshot->statData.setTau(tau); |
727 |
} |
728 |
|
729 |
} //end namespace OpenMD |