1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file ForceManager.cpp |
44 |
* @author tlin |
45 |
* @date 11/09/2004 |
46 |
* @time 10:39am |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
#include "brains/ForceManager.hpp" |
51 |
#include "primitives/Molecule.hpp" |
52 |
#define __OPENMD_C |
53 |
#include "utils/simError.h" |
54 |
#include "primitives/Bond.hpp" |
55 |
#include "primitives/Bend.hpp" |
56 |
#include "primitives/Torsion.hpp" |
57 |
#include "primitives/Inversion.hpp" |
58 |
#include "nonbonded/NonBondedInteraction.hpp" |
59 |
#include "parallel/ForceMatrixDecomposition.hpp" |
60 |
|
61 |
using namespace std; |
62 |
namespace OpenMD { |
63 |
|
64 |
ForceManager::ForceManager(SimInfo * info) : info_(info) { |
65 |
|
66 |
fDecomp_ = new ForceMatrixDecomposition(info_); |
67 |
} |
68 |
|
69 |
void ForceManager::calcForces() { |
70 |
|
71 |
if (!info_->isTopologyDone()) { |
72 |
info_->update(); |
73 |
interactionMan_->setSimInfo(info_); |
74 |
interactionMan_->initialize(); |
75 |
swfun_ = interactionMan_->getSwitchingFunction(); |
76 |
info_->prepareTopology(); |
77 |
fDecomp_->distributeInitialData(); |
78 |
} |
79 |
|
80 |
preCalculation(); |
81 |
shortRangeInteractions(); |
82 |
longRangeInteractions(); |
83 |
postCalculation(); |
84 |
|
85 |
} |
86 |
|
87 |
void ForceManager::preCalculation() { |
88 |
SimInfo::MoleculeIterator mi; |
89 |
Molecule* mol; |
90 |
Molecule::AtomIterator ai; |
91 |
Atom* atom; |
92 |
Molecule::RigidBodyIterator rbIter; |
93 |
RigidBody* rb; |
94 |
Molecule::CutoffGroupIterator ci; |
95 |
CutoffGroup* cg; |
96 |
|
97 |
// forces are zeroed here, before any are accumulated. |
98 |
|
99 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
100 |
mol = info_->nextMolecule(mi)) { |
101 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
102 |
atom->zeroForcesAndTorques(); |
103 |
} |
104 |
|
105 |
//change the positions of atoms which belong to the rigidbodies |
106 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
107 |
rb = mol->nextRigidBody(rbIter)) { |
108 |
rb->zeroForcesAndTorques(); |
109 |
} |
110 |
|
111 |
if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ |
112 |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
113 |
cg = mol->nextCutoffGroup(ci)) { |
114 |
//calculate the center of mass of cutoff group |
115 |
cg->updateCOM(); |
116 |
} |
117 |
} |
118 |
} |
119 |
|
120 |
// Zero out the stress tensor |
121 |
tau *= 0.0; |
122 |
|
123 |
} |
124 |
|
125 |
void ForceManager::shortRangeInteractions() { |
126 |
Molecule* mol; |
127 |
RigidBody* rb; |
128 |
Bond* bond; |
129 |
Bend* bend; |
130 |
Torsion* torsion; |
131 |
Inversion* inversion; |
132 |
SimInfo::MoleculeIterator mi; |
133 |
Molecule::RigidBodyIterator rbIter; |
134 |
Molecule::BondIterator bondIter;; |
135 |
Molecule::BendIterator bendIter; |
136 |
Molecule::TorsionIterator torsionIter; |
137 |
Molecule::InversionIterator inversionIter; |
138 |
RealType bondPotential = 0.0; |
139 |
RealType bendPotential = 0.0; |
140 |
RealType torsionPotential = 0.0; |
141 |
RealType inversionPotential = 0.0; |
142 |
|
143 |
//calculate short range interactions |
144 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
145 |
mol = info_->nextMolecule(mi)) { |
146 |
|
147 |
//change the positions of atoms which belong to the rigidbodies |
148 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
149 |
rb = mol->nextRigidBody(rbIter)) { |
150 |
rb->updateAtoms(); |
151 |
} |
152 |
|
153 |
for (bond = mol->beginBond(bondIter); bond != NULL; |
154 |
bond = mol->nextBond(bondIter)) { |
155 |
bond->calcForce(); |
156 |
bondPotential += bond->getPotential(); |
157 |
} |
158 |
|
159 |
for (bend = mol->beginBend(bendIter); bend != NULL; |
160 |
bend = mol->nextBend(bendIter)) { |
161 |
|
162 |
RealType angle; |
163 |
bend->calcForce(angle); |
164 |
RealType currBendPot = bend->getPotential(); |
165 |
|
166 |
bendPotential += bend->getPotential(); |
167 |
map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
168 |
if (i == bendDataSets.end()) { |
169 |
BendDataSet dataSet; |
170 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
171 |
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
172 |
dataSet.deltaV = 0.0; |
173 |
bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet)); |
174 |
}else { |
175 |
i->second.prev.angle = i->second.curr.angle; |
176 |
i->second.prev.potential = i->second.curr.potential; |
177 |
i->second.curr.angle = angle; |
178 |
i->second.curr.potential = currBendPot; |
179 |
i->second.deltaV = fabs(i->second.curr.potential - |
180 |
i->second.prev.potential); |
181 |
} |
182 |
} |
183 |
|
184 |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; |
185 |
torsion = mol->nextTorsion(torsionIter)) { |
186 |
RealType angle; |
187 |
torsion->calcForce(angle); |
188 |
RealType currTorsionPot = torsion->getPotential(); |
189 |
torsionPotential += torsion->getPotential(); |
190 |
map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
191 |
if (i == torsionDataSets.end()) { |
192 |
TorsionDataSet dataSet; |
193 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
194 |
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
195 |
dataSet.deltaV = 0.0; |
196 |
torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
197 |
}else { |
198 |
i->second.prev.angle = i->second.curr.angle; |
199 |
i->second.prev.potential = i->second.curr.potential; |
200 |
i->second.curr.angle = angle; |
201 |
i->second.curr.potential = currTorsionPot; |
202 |
i->second.deltaV = fabs(i->second.curr.potential - |
203 |
i->second.prev.potential); |
204 |
} |
205 |
} |
206 |
|
207 |
for (inversion = mol->beginInversion(inversionIter); |
208 |
inversion != NULL; |
209 |
inversion = mol->nextInversion(inversionIter)) { |
210 |
RealType angle; |
211 |
inversion->calcForce(angle); |
212 |
RealType currInversionPot = inversion->getPotential(); |
213 |
inversionPotential += inversion->getPotential(); |
214 |
map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
215 |
if (i == inversionDataSets.end()) { |
216 |
InversionDataSet dataSet; |
217 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
218 |
dataSet.prev.potential = dataSet.curr.potential = currInversionPot; |
219 |
dataSet.deltaV = 0.0; |
220 |
inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet)); |
221 |
}else { |
222 |
i->second.prev.angle = i->second.curr.angle; |
223 |
i->second.prev.potential = i->second.curr.potential; |
224 |
i->second.curr.angle = angle; |
225 |
i->second.curr.potential = currInversionPot; |
226 |
i->second.deltaV = fabs(i->second.curr.potential - |
227 |
i->second.prev.potential); |
228 |
} |
229 |
} |
230 |
} |
231 |
|
232 |
RealType shortRangePotential = bondPotential + bendPotential + |
233 |
torsionPotential + inversionPotential; |
234 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
235 |
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
236 |
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
237 |
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
238 |
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
239 |
curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential; |
240 |
} |
241 |
|
242 |
void ForceManager::longRangeInteractions() { |
243 |
|
244 |
// some of this initial stuff will go away: |
245 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
246 |
DataStorage* config = &(curSnapshot->atomData); |
247 |
DataStorage* cgConfig = &(curSnapshot->cgData); |
248 |
RealType* frc = config->getArrayPointer(DataStorage::dslForce); |
249 |
RealType* pos = config->getArrayPointer(DataStorage::dslPosition); |
250 |
RealType* trq = config->getArrayPointer(DataStorage::dslTorque); |
251 |
RealType* A = config->getArrayPointer(DataStorage::dslAmat); |
252 |
RealType* electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame); |
253 |
RealType* particlePot = config->getArrayPointer(DataStorage::dslParticlePot); |
254 |
RealType* rc; |
255 |
|
256 |
if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ |
257 |
rc = cgConfig->getArrayPointer(DataStorage::dslPosition); |
258 |
} else { |
259 |
// center of mass of the group is the same as position of the atom |
260 |
// if cutoff group does not exist |
261 |
rc = pos; |
262 |
} |
263 |
|
264 |
// new stuff starts here: |
265 |
fDecomp_->zeroWorkArrays(); |
266 |
fDecomp_->distributeData(); |
267 |
|
268 |
int cg1, cg2, atom1, atom2; |
269 |
Vector3d d_grp, dag; |
270 |
RealType rgrpsq, rgrp; |
271 |
RealType vij; |
272 |
Vector3d fij, fg; |
273 |
pair<int, int> gtypes; |
274 |
RealType rCutSq; |
275 |
bool in_switching_region; |
276 |
RealType sw, dswdr, swderiv; |
277 |
vector<int> atomListColumn, atomListRow, atomListLocal; |
278 |
InteractionData idat; |
279 |
SelfData sdat; |
280 |
RealType mf; |
281 |
potVec pot(0.0); |
282 |
potVec longRangePotential(0.0); |
283 |
RealType lrPot; |
284 |
|
285 |
int loopStart, loopEnd; |
286 |
|
287 |
loopEnd = PAIR_LOOP; |
288 |
if (info_->requiresPrepair() ) { |
289 |
loopStart = PREPAIR_LOOP; |
290 |
} else { |
291 |
loopStart = PAIR_LOOP; |
292 |
} |
293 |
|
294 |
for (int iLoop = loopStart; iLoop < loopEnd; iLoop++) { |
295 |
|
296 |
if (iLoop == loopStart) { |
297 |
bool update_nlist = fDecomp_->checkNeighborList(); |
298 |
if (update_nlist) |
299 |
neighborList = fDecomp_->buildNeighborList(); |
300 |
} |
301 |
|
302 |
for (vector<pair<int, int> >::iterator it = neighborList.begin(); |
303 |
it != neighborList.end(); ++it) { |
304 |
|
305 |
cg1 = (*it).first; |
306 |
cg2 = (*it).second; |
307 |
|
308 |
gtypes = fDecomp_->getGroupTypes(cg1, cg2); |
309 |
d_grp = fDecomp_->getIntergroupVector(cg1, cg2); |
310 |
curSnapshot->wrapVector(d_grp); |
311 |
rgrpsq = d_grp.lengthSquare(); |
312 |
rCutSq = groupCutoffMap[gtypes].first; |
313 |
|
314 |
if (rgrpsq < rCutSq) { |
315 |
*(idat.rcut) = groupCutoffMap[gtypes].second; |
316 |
if (iLoop == PAIR_LOOP) { |
317 |
vij *= 0.0; |
318 |
fij = V3Zero; |
319 |
} |
320 |
|
321 |
in_switching_region = swfun_->getSwitch(rgrpsq, *(idat.sw), dswdr, |
322 |
rgrp); |
323 |
atomListRow = fDecomp_->getAtomsInGroupRow(cg1); |
324 |
atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2); |
325 |
|
326 |
for (vector<int>::iterator ia = atomListRow.begin(); |
327 |
ia != atomListRow.end(); ++ia) { |
328 |
atom1 = (*ia); |
329 |
|
330 |
for (vector<int>::iterator jb = atomListColumn.begin(); |
331 |
jb != atomListColumn.end(); ++jb) { |
332 |
atom2 = (*jb); |
333 |
|
334 |
if (!fDecomp_->skipAtomPair(atom1, atom2)) { |
335 |
|
336 |
pot *= 0.0; |
337 |
|
338 |
idat = fDecomp_->fillInteractionData(atom1, atom2); |
339 |
*(idat.pot) = pot; |
340 |
|
341 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
342 |
*(idat.d) = d_grp; |
343 |
*(idat.r2) = rgrpsq; |
344 |
} else { |
345 |
*(idat.d) = fDecomp_->getInteratomicVector(atom1, atom2); |
346 |
curSnapshot->wrapVector( *(idat.d) ); |
347 |
*(idat.r2) = idat.d->lengthSquare(); |
348 |
} |
349 |
|
350 |
*(idat.rij) = sqrt( *(idat.r2) ); |
351 |
|
352 |
if (iLoop == PREPAIR_LOOP) { |
353 |
interactionMan_->doPrePair(idat); |
354 |
} else { |
355 |
interactionMan_->doPair(idat); |
356 |
fDecomp_->unpackInteractionData(idat, atom1, atom2); |
357 |
vij += *(idat.vpair); |
358 |
fij += *(idat.f1); |
359 |
tau -= outProduct( *(idat.d), *(idat.f1)); |
360 |
} |
361 |
} |
362 |
} |
363 |
} |
364 |
|
365 |
if (iLoop == PAIR_LOOP) { |
366 |
if (in_switching_region) { |
367 |
swderiv = vij * dswdr / rgrp; |
368 |
fg = swderiv * d_grp; |
369 |
|
370 |
fij += fg; |
371 |
|
372 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
373 |
tau -= outProduct( *(idat.d), fg); |
374 |
} |
375 |
|
376 |
for (vector<int>::iterator ia = atomListRow.begin(); |
377 |
ia != atomListRow.end(); ++ia) { |
378 |
atom1 = (*ia); |
379 |
mf = fDecomp_->getMassFactorRow(atom1); |
380 |
// fg is the force on atom ia due to cutoff group's |
381 |
// presence in switching region |
382 |
fg = swderiv * d_grp * mf; |
383 |
fDecomp_->addForceToAtomRow(atom1, fg); |
384 |
|
385 |
if (atomListRow.size() > 1) { |
386 |
if (info_->usesAtomicVirial()) { |
387 |
// find the distance between the atom |
388 |
// and the center of the cutoff group: |
389 |
dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1); |
390 |
tau -= outProduct(dag, fg); |
391 |
} |
392 |
} |
393 |
} |
394 |
for (vector<int>::iterator jb = atomListColumn.begin(); |
395 |
jb != atomListColumn.end(); ++jb) { |
396 |
atom2 = (*jb); |
397 |
mf = fDecomp_->getMassFactorColumn(atom2); |
398 |
// fg is the force on atom jb due to cutoff group's |
399 |
// presence in switching region |
400 |
fg = -swderiv * d_grp * mf; |
401 |
fDecomp_->addForceToAtomColumn(atom2, fg); |
402 |
|
403 |
if (atomListColumn.size() > 1) { |
404 |
if (info_->usesAtomicVirial()) { |
405 |
// find the distance between the atom |
406 |
// and the center of the cutoff group: |
407 |
dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2); |
408 |
tau -= outProduct(dag, fg); |
409 |
} |
410 |
} |
411 |
} |
412 |
} |
413 |
//if (!SIM_uses_AtomicVirial) { |
414 |
// tau -= outProduct(d_grp, fij); |
415 |
//} |
416 |
} |
417 |
} |
418 |
} |
419 |
|
420 |
if (iLoop == PREPAIR_LOOP) { |
421 |
if (info_->requiresPrepair()) { |
422 |
fDecomp_->collectIntermediateData(); |
423 |
|
424 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
425 |
sdat = fDecomp_->fillSelfData(atom1); |
426 |
interactionMan_->doPreForce(sdat); |
427 |
} |
428 |
|
429 |
fDecomp_->distributeIntermediateData(); |
430 |
} |
431 |
} |
432 |
|
433 |
} |
434 |
|
435 |
fDecomp_->collectData(); |
436 |
|
437 |
if ( info_->requiresSkipCorrection() ) { |
438 |
|
439 |
for (int atom1 = 0; atom1 < fDecomp_->getNAtomsInRow(); atom1++) { |
440 |
|
441 |
vector<int> skipList = fDecomp_->getSkipsForRowAtom( atom1 ); |
442 |
|
443 |
for (vector<int>::iterator jb = skipList.begin(); |
444 |
jb != skipList.end(); ++jb) { |
445 |
|
446 |
atom2 = (*jb); |
447 |
idat = fDecomp_->fillSkipData(atom1, atom2); |
448 |
interactionMan_->doSkipCorrection(idat); |
449 |
|
450 |
} |
451 |
} |
452 |
} |
453 |
|
454 |
if (info_->requiresSelfCorrection()) { |
455 |
|
456 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
457 |
sdat = fDecomp_->fillSelfData(atom1); |
458 |
interactionMan_->doSelfCorrection(sdat); |
459 |
} |
460 |
|
461 |
} |
462 |
|
463 |
longRangePotential = fDecomp_->getLongRangePotential(); |
464 |
lrPot = longRangePotential.sum(); |
465 |
|
466 |
//store the tau and long range potential |
467 |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
468 |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY]; |
469 |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY]; |
470 |
} |
471 |
|
472 |
|
473 |
void ForceManager::postCalculation() { |
474 |
SimInfo::MoleculeIterator mi; |
475 |
Molecule* mol; |
476 |
Molecule::RigidBodyIterator rbIter; |
477 |
RigidBody* rb; |
478 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
479 |
|
480 |
// collect the atomic forces onto rigid bodies |
481 |
|
482 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
483 |
mol = info_->nextMolecule(mi)) { |
484 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
485 |
rb = mol->nextRigidBody(rbIter)) { |
486 |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
487 |
tau += rbTau; |
488 |
} |
489 |
} |
490 |
|
491 |
#ifdef IS_MPI |
492 |
Mat3x3d tmpTau(tau); |
493 |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
494 |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
495 |
#endif |
496 |
curSnapshot->statData.setTau(tau); |
497 |
} |
498 |
|
499 |
} //end namespace OpenMD |