| 1 |
/* |
| 2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
* |
| 4 |
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
* non-exclusive, royalty free, license to use, modify and |
| 6 |
* redistribute this software in source and binary code form, provided |
| 7 |
* that the following conditions are met: |
| 8 |
* |
| 9 |
* 1. Redistributions of source code must retain the above copyright |
| 10 |
* notice, this list of conditions and the following disclaimer. |
| 11 |
* |
| 12 |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
* notice, this list of conditions and the following disclaimer in the |
| 14 |
* documentation and/or other materials provided with the |
| 15 |
* distribution. |
| 16 |
* |
| 17 |
* This software is provided "AS IS," without a warranty of any |
| 18 |
* kind. All express or implied conditions, representations and |
| 19 |
* warranties, including any implied warranty of merchantability, |
| 20 |
* fitness for a particular purpose or non-infringement, are hereby |
| 21 |
* excluded. The University of Notre Dame and its licensors shall not |
| 22 |
* be liable for any damages suffered by licensee as a result of |
| 23 |
* using, modifying or distributing the software or its |
| 24 |
* derivatives. In no event will the University of Notre Dame or its |
| 25 |
* licensors be liable for any lost revenue, profit or data, or for |
| 26 |
* direct, indirect, special, consequential, incidental or punitive |
| 27 |
* damages, however caused and regardless of the theory of liability, |
| 28 |
* arising out of the use of or inability to use software, even if the |
| 29 |
* University of Notre Dame has been advised of the possibility of |
| 30 |
* such damages. |
| 31 |
* |
| 32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
* research, please cite the appropriate papers when you publish your |
| 34 |
* work. Good starting points are: |
| 35 |
* |
| 36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
* [4] Vardeman & Gezelter, in progress (2009). |
| 40 |
*/ |
| 41 |
|
| 42 |
/** |
| 43 |
* @file ForceManager.cpp |
| 44 |
* @author tlin |
| 45 |
* @date 11/09/2004 |
| 46 |
* @time 10:39am |
| 47 |
* @version 1.0 |
| 48 |
*/ |
| 49 |
|
| 50 |
#include "brains/ForceManager.hpp" |
| 51 |
#include "primitives/Molecule.hpp" |
| 52 |
#define __OPENMD_C |
| 53 |
#include "utils/simError.h" |
| 54 |
#include "primitives/Bond.hpp" |
| 55 |
#include "primitives/Bend.hpp" |
| 56 |
#include "primitives/Torsion.hpp" |
| 57 |
#include "primitives/Inversion.hpp" |
| 58 |
#include "parallel/ForceMatrixDecomposition.hpp" |
| 59 |
#include "nonbonded/NonBondedInteraction.hpp" |
| 60 |
|
| 61 |
using namespace std; |
| 62 |
namespace OpenMD { |
| 63 |
|
| 64 |
ForceManager::ForceManager(SimInfo * info) : info_(info) { |
| 65 |
|
| 66 |
#ifdef IS_MPI |
| 67 |
fDecomp_ = new ForceMatrixDecomposition(info_); |
| 68 |
#else |
| 69 |
// fDecomp_ = new ForceSerialDecomposition(info); |
| 70 |
#endif |
| 71 |
} |
| 72 |
|
| 73 |
void ForceManager::calcForces() { |
| 74 |
|
| 75 |
if (!info_->isFortranInitialized()) { |
| 76 |
info_->update(); |
| 77 |
interactionMan_->setSimInfo(info_); |
| 78 |
interactionMan_->initialize(); |
| 79 |
swfun_ = interactionMan_->getSwitchingFunction(); |
| 80 |
fDecomp_->distributeInitialData(); |
| 81 |
info_->setupFortran(); |
| 82 |
} |
| 83 |
|
| 84 |
preCalculation(); |
| 85 |
shortRangeInteractions(); |
| 86 |
longRangeInteractions(); |
| 87 |
postCalculation(); |
| 88 |
|
| 89 |
} |
| 90 |
|
| 91 |
void ForceManager::preCalculation() { |
| 92 |
SimInfo::MoleculeIterator mi; |
| 93 |
Molecule* mol; |
| 94 |
Molecule::AtomIterator ai; |
| 95 |
Atom* atom; |
| 96 |
Molecule::RigidBodyIterator rbIter; |
| 97 |
RigidBody* rb; |
| 98 |
Molecule::CutoffGroupIterator ci; |
| 99 |
CutoffGroup* cg; |
| 100 |
|
| 101 |
// forces are zeroed here, before any are accumulated. |
| 102 |
|
| 103 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
| 104 |
mol = info_->nextMolecule(mi)) { |
| 105 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
| 106 |
atom->zeroForcesAndTorques(); |
| 107 |
} |
| 108 |
|
| 109 |
//change the positions of atoms which belong to the rigidbodies |
| 110 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
| 111 |
rb = mol->nextRigidBody(rbIter)) { |
| 112 |
rb->zeroForcesAndTorques(); |
| 113 |
} |
| 114 |
|
| 115 |
if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ |
| 116 |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
| 117 |
cg = mol->nextCutoffGroup(ci)) { |
| 118 |
//calculate the center of mass of cutoff group |
| 119 |
cg->updateCOM(); |
| 120 |
} |
| 121 |
} |
| 122 |
} |
| 123 |
|
| 124 |
// Zero out the stress tensor |
| 125 |
tau *= 0.0; |
| 126 |
|
| 127 |
} |
| 128 |
|
| 129 |
void ForceManager::shortRangeInteractions() { |
| 130 |
Molecule* mol; |
| 131 |
RigidBody* rb; |
| 132 |
Bond* bond; |
| 133 |
Bend* bend; |
| 134 |
Torsion* torsion; |
| 135 |
Inversion* inversion; |
| 136 |
SimInfo::MoleculeIterator mi; |
| 137 |
Molecule::RigidBodyIterator rbIter; |
| 138 |
Molecule::BondIterator bondIter;; |
| 139 |
Molecule::BendIterator bendIter; |
| 140 |
Molecule::TorsionIterator torsionIter; |
| 141 |
Molecule::InversionIterator inversionIter; |
| 142 |
RealType bondPotential = 0.0; |
| 143 |
RealType bendPotential = 0.0; |
| 144 |
RealType torsionPotential = 0.0; |
| 145 |
RealType inversionPotential = 0.0; |
| 146 |
|
| 147 |
//calculate short range interactions |
| 148 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
| 149 |
mol = info_->nextMolecule(mi)) { |
| 150 |
|
| 151 |
//change the positions of atoms which belong to the rigidbodies |
| 152 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
| 153 |
rb = mol->nextRigidBody(rbIter)) { |
| 154 |
rb->updateAtoms(); |
| 155 |
} |
| 156 |
|
| 157 |
for (bond = mol->beginBond(bondIter); bond != NULL; |
| 158 |
bond = mol->nextBond(bondIter)) { |
| 159 |
bond->calcForce(); |
| 160 |
bondPotential += bond->getPotential(); |
| 161 |
} |
| 162 |
|
| 163 |
for (bend = mol->beginBend(bendIter); bend != NULL; |
| 164 |
bend = mol->nextBend(bendIter)) { |
| 165 |
|
| 166 |
RealType angle; |
| 167 |
bend->calcForce(angle); |
| 168 |
RealType currBendPot = bend->getPotential(); |
| 169 |
|
| 170 |
bendPotential += bend->getPotential(); |
| 171 |
map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
| 172 |
if (i == bendDataSets.end()) { |
| 173 |
BendDataSet dataSet; |
| 174 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
| 175 |
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
| 176 |
dataSet.deltaV = 0.0; |
| 177 |
bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet)); |
| 178 |
}else { |
| 179 |
i->second.prev.angle = i->second.curr.angle; |
| 180 |
i->second.prev.potential = i->second.curr.potential; |
| 181 |
i->second.curr.angle = angle; |
| 182 |
i->second.curr.potential = currBendPot; |
| 183 |
i->second.deltaV = fabs(i->second.curr.potential - |
| 184 |
i->second.prev.potential); |
| 185 |
} |
| 186 |
} |
| 187 |
|
| 188 |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; |
| 189 |
torsion = mol->nextTorsion(torsionIter)) { |
| 190 |
RealType angle; |
| 191 |
torsion->calcForce(angle); |
| 192 |
RealType currTorsionPot = torsion->getPotential(); |
| 193 |
torsionPotential += torsion->getPotential(); |
| 194 |
map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
| 195 |
if (i == torsionDataSets.end()) { |
| 196 |
TorsionDataSet dataSet; |
| 197 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
| 198 |
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
| 199 |
dataSet.deltaV = 0.0; |
| 200 |
torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
| 201 |
}else { |
| 202 |
i->second.prev.angle = i->second.curr.angle; |
| 203 |
i->second.prev.potential = i->second.curr.potential; |
| 204 |
i->second.curr.angle = angle; |
| 205 |
i->second.curr.potential = currTorsionPot; |
| 206 |
i->second.deltaV = fabs(i->second.curr.potential - |
| 207 |
i->second.prev.potential); |
| 208 |
} |
| 209 |
} |
| 210 |
|
| 211 |
for (inversion = mol->beginInversion(inversionIter); |
| 212 |
inversion != NULL; |
| 213 |
inversion = mol->nextInversion(inversionIter)) { |
| 214 |
RealType angle; |
| 215 |
inversion->calcForce(angle); |
| 216 |
RealType currInversionPot = inversion->getPotential(); |
| 217 |
inversionPotential += inversion->getPotential(); |
| 218 |
map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
| 219 |
if (i == inversionDataSets.end()) { |
| 220 |
InversionDataSet dataSet; |
| 221 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
| 222 |
dataSet.prev.potential = dataSet.curr.potential = currInversionPot; |
| 223 |
dataSet.deltaV = 0.0; |
| 224 |
inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet)); |
| 225 |
}else { |
| 226 |
i->second.prev.angle = i->second.curr.angle; |
| 227 |
i->second.prev.potential = i->second.curr.potential; |
| 228 |
i->second.curr.angle = angle; |
| 229 |
i->second.curr.potential = currInversionPot; |
| 230 |
i->second.deltaV = fabs(i->second.curr.potential - |
| 231 |
i->second.prev.potential); |
| 232 |
} |
| 233 |
} |
| 234 |
} |
| 235 |
|
| 236 |
RealType shortRangePotential = bondPotential + bendPotential + |
| 237 |
torsionPotential + inversionPotential; |
| 238 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 239 |
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
| 240 |
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
| 241 |
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
| 242 |
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
| 243 |
curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential; |
| 244 |
} |
| 245 |
|
| 246 |
void ForceManager::longRangeInteractions() { |
| 247 |
|
| 248 |
// some of this initial stuff will go away: |
| 249 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 250 |
DataStorage* config = &(curSnapshot->atomData); |
| 251 |
DataStorage* cgConfig = &(curSnapshot->cgData); |
| 252 |
RealType* frc = config->getArrayPointer(DataStorage::dslForce); |
| 253 |
RealType* pos = config->getArrayPointer(DataStorage::dslPosition); |
| 254 |
RealType* trq = config->getArrayPointer(DataStorage::dslTorque); |
| 255 |
RealType* A = config->getArrayPointer(DataStorage::dslAmat); |
| 256 |
RealType* electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame); |
| 257 |
RealType* particlePot = config->getArrayPointer(DataStorage::dslParticlePot); |
| 258 |
RealType* rc; |
| 259 |
|
| 260 |
if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ |
| 261 |
rc = cgConfig->getArrayPointer(DataStorage::dslPosition); |
| 262 |
} else { |
| 263 |
// center of mass of the group is the same as position of the atom |
| 264 |
// if cutoff group does not exist |
| 265 |
rc = pos; |
| 266 |
} |
| 267 |
|
| 268 |
//initialize data before passing to fortran |
| 269 |
RealType longRangePotential[N_INTERACTION_FAMILIES]; |
| 270 |
RealType lrPot = 0.0; |
| 271 |
int isError = 0; |
| 272 |
|
| 273 |
// dangerous to iterate over enums, but we'll live on the edge: |
| 274 |
for (int i = NO_FAMILY; i != N_INTERACTION_FAMILIES; ++i){ |
| 275 |
longRangePotential[i]=0.0; //Initialize array |
| 276 |
} |
| 277 |
|
| 278 |
// new stuff starts here: |
| 279 |
|
| 280 |
fDecomp_->distributeData(); |
| 281 |
|
| 282 |
int cg1, cg2, atom1, atom2; |
| 283 |
Vector3d d_grp, dag; |
| 284 |
RealType rgrpsq, rgrp; |
| 285 |
RealType vij; |
| 286 |
Vector3d fij, fg; |
| 287 |
pair<int, int> gtypes; |
| 288 |
RealType rCutSq; |
| 289 |
bool in_switching_region; |
| 290 |
RealType sw, dswdr, swderiv; |
| 291 |
vector<int> atomListColumn, atomListRow, atomListLocal; |
| 292 |
InteractionData idat; |
| 293 |
SelfData sdat; |
| 294 |
RealType mf; |
| 295 |
|
| 296 |
int loopStart, loopEnd; |
| 297 |
|
| 298 |
loopEnd = PAIR_LOOP; |
| 299 |
if (info_->requiresPrepair() ) { |
| 300 |
loopStart = PREPAIR_LOOP; |
| 301 |
} else { |
| 302 |
loopStart = PAIR_LOOP; |
| 303 |
} |
| 304 |
|
| 305 |
for (int iLoop = loopStart; iLoop < loopEnd; iLoop++) { |
| 306 |
|
| 307 |
if (iLoop == loopStart) { |
| 308 |
bool update_nlist = fDecomp_->checkNeighborList(); |
| 309 |
if (update_nlist) |
| 310 |
neighborList = fDecomp_->buildNeighborList(); |
| 311 |
} |
| 312 |
|
| 313 |
for (vector<pair<int, int> >::iterator it = neighborList.begin(); |
| 314 |
it != neighborList.end(); ++it) { |
| 315 |
|
| 316 |
cg1 = (*it).first; |
| 317 |
cg2 = (*it).second; |
| 318 |
|
| 319 |
gtypes = fDecomp_->getGroupTypes(cg1, cg2); |
| 320 |
d_grp = fDecomp_->getIntergroupVector(cg1, cg2); |
| 321 |
curSnapshot->wrapVector(d_grp); |
| 322 |
rgrpsq = d_grp.lengthSquare(); |
| 323 |
rCutSq = groupCutoffMap[gtypes].first; |
| 324 |
|
| 325 |
if (rgrpsq < rCutSq) { |
| 326 |
idat.rcut = groupCutoffMap[gtypes].second; |
| 327 |
if (iLoop == PAIR_LOOP) { |
| 328 |
vij *= 0.0; |
| 329 |
fij = V3Zero; |
| 330 |
} |
| 331 |
|
| 332 |
in_switching_region = swfun_->getSwitch(rgrpsq, idat.sw, dswdr, rgrp); |
| 333 |
atomListRow = fDecomp_->getAtomsInGroupRow(cg1); |
| 334 |
atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2); |
| 335 |
|
| 336 |
for (vector<int>::iterator ia = atomListRow.begin(); |
| 337 |
ia != atomListRow.end(); ++ia) { |
| 338 |
atom1 = (*ia); |
| 339 |
|
| 340 |
for (vector<int>::iterator jb = atomListColumn.begin(); |
| 341 |
jb != atomListColumn.end(); ++jb) { |
| 342 |
atom2 = (*jb); |
| 343 |
|
| 344 |
if (!fDecomp_->skipAtomPair(atom1, atom2)) { |
| 345 |
|
| 346 |
idat = fDecomp_->fillInteractionData(atom1, atom2); |
| 347 |
|
| 348 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
| 349 |
idat.d = d_grp; |
| 350 |
idat.r2 = rgrpsq; |
| 351 |
} else { |
| 352 |
idat.d = fDecomp_->getInteratomicVector(atom1, atom2); |
| 353 |
curSnapshot->wrapVector(idat.d); |
| 354 |
idat.r2 = idat.d.lengthSquare(); |
| 355 |
} |
| 356 |
|
| 357 |
idat.rij = sqrt(idat.r2); |
| 358 |
|
| 359 |
if (iLoop == PREPAIR_LOOP) { |
| 360 |
interactionMan_->doPrePair(idat); |
| 361 |
} else { |
| 362 |
interactionMan_->doPair(idat); |
| 363 |
vij += idat.vpair; |
| 364 |
fij += idat.f1; |
| 365 |
tau -= outProduct(idat.d, idat.f1); |
| 366 |
} |
| 367 |
} |
| 368 |
} |
| 369 |
} |
| 370 |
|
| 371 |
if (iLoop == PAIR_LOOP) { |
| 372 |
if (in_switching_region) { |
| 373 |
swderiv = vij * dswdr / rgrp; |
| 374 |
fg = swderiv * d_grp; |
| 375 |
|
| 376 |
fij += fg; |
| 377 |
|
| 378 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
| 379 |
tau -= outProduct(idat.d, fg); |
| 380 |
} |
| 381 |
|
| 382 |
for (vector<int>::iterator ia = atomListRow.begin(); |
| 383 |
ia != atomListRow.end(); ++ia) { |
| 384 |
atom1 = (*ia); |
| 385 |
mf = fDecomp_->getMfactRow(atom1); |
| 386 |
// fg is the force on atom ia due to cutoff group's |
| 387 |
// presence in switching region |
| 388 |
fg = swderiv * d_grp * mf; |
| 389 |
fDecomp_->addForceToAtomRow(atom1, fg); |
| 390 |
|
| 391 |
if (atomListRow.size() > 1) { |
| 392 |
if (info_->usesAtomicVirial()) { |
| 393 |
// find the distance between the atom |
| 394 |
// and the center of the cutoff group: |
| 395 |
dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1); |
| 396 |
tau -= outProduct(dag, fg); |
| 397 |
} |
| 398 |
} |
| 399 |
} |
| 400 |
for (vector<int>::iterator jb = atomListColumn.begin(); |
| 401 |
jb != atomListColumn.end(); ++jb) { |
| 402 |
atom2 = (*jb); |
| 403 |
mf = fDecomp_->getMfactColumn(atom2); |
| 404 |
// fg is the force on atom jb due to cutoff group's |
| 405 |
// presence in switching region |
| 406 |
fg = -swderiv * d_grp * mf; |
| 407 |
fDecomp_->addForceToAtomColumn(atom2, fg); |
| 408 |
|
| 409 |
if (atomListColumn.size() > 1) { |
| 410 |
if (info_->usesAtomicVirial()) { |
| 411 |
// find the distance between the atom |
| 412 |
// and the center of the cutoff group: |
| 413 |
dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2); |
| 414 |
tau -= outProduct(dag, fg); |
| 415 |
} |
| 416 |
} |
| 417 |
} |
| 418 |
} |
| 419 |
//if (!SIM_uses_AtomicVirial) { |
| 420 |
// tau -= outProduct(d_grp, fij); |
| 421 |
//} |
| 422 |
} |
| 423 |
} |
| 424 |
} |
| 425 |
|
| 426 |
if (iLoop == PREPAIR_LOOP) { |
| 427 |
if (info_->requiresPrepair()) { |
| 428 |
fDecomp_->collectIntermediateData(); |
| 429 |
atomListLocal = fDecomp_->getAtomList(); |
| 430 |
for (vector<int>::iterator ia = atomListLocal.begin(); |
| 431 |
ia != atomListLocal.end(); ++ia) { |
| 432 |
atom1 = (*ia); |
| 433 |
sdat = fDecomp_->fillSelfData(atom1); |
| 434 |
interactionMan_->doPreForce(sdat); |
| 435 |
} |
| 436 |
fDecomp_->distributeIntermediateData(); |
| 437 |
} |
| 438 |
} |
| 439 |
|
| 440 |
} |
| 441 |
|
| 442 |
fDecomp_->collectData(); |
| 443 |
|
| 444 |
if (info_->requiresSkipCorrection() || info_->requiresSelfCorrection()) { |
| 445 |
atomListLocal = fDecomp_->getAtomList(); |
| 446 |
for (vector<int>::iterator ia = atomListLocal.begin(); |
| 447 |
ia != atomListLocal.end(); ++ia) { |
| 448 |
atom1 = (*ia); |
| 449 |
|
| 450 |
if (info_->requiresSkipCorrection()) { |
| 451 |
vector<int> skipList = fDecomp_->getSkipsForAtom(atom1); |
| 452 |
for (vector<int>::iterator jb = skipList.begin(); |
| 453 |
jb != skipList.end(); ++jb) { |
| 454 |
atom2 = (*jb); |
| 455 |
idat = fDecomp_->fillSkipData(atom1, atom2); |
| 456 |
interactionMan_->doSkipCorrection(idat); |
| 457 |
} |
| 458 |
} |
| 459 |
|
| 460 |
if (info_->requiresSelfCorrection()) { |
| 461 |
sdat = fDecomp_->fillSelfData(atom1); |
| 462 |
interactionMan_->doSelfCorrection(sdat); |
| 463 |
} |
| 464 |
} |
| 465 |
} |
| 466 |
|
| 467 |
// dangerous to iterate over enums, but we'll live on the edge: |
| 468 |
for (int i = NO_FAMILY; i != N_INTERACTION_FAMILIES; ++i){ |
| 469 |
lrPot += longRangePotential[i]; //Quick hack |
| 470 |
} |
| 471 |
|
| 472 |
//store the tau and long range potential |
| 473 |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
| 474 |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY]; |
| 475 |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY]; |
| 476 |
} |
| 477 |
|
| 478 |
|
| 479 |
void ForceManager::postCalculation() { |
| 480 |
SimInfo::MoleculeIterator mi; |
| 481 |
Molecule* mol; |
| 482 |
Molecule::RigidBodyIterator rbIter; |
| 483 |
RigidBody* rb; |
| 484 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 485 |
|
| 486 |
// collect the atomic forces onto rigid bodies |
| 487 |
|
| 488 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
| 489 |
mol = info_->nextMolecule(mi)) { |
| 490 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
| 491 |
rb = mol->nextRigidBody(rbIter)) { |
| 492 |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
| 493 |
tau += rbTau; |
| 494 |
} |
| 495 |
} |
| 496 |
|
| 497 |
#ifdef IS_MPI |
| 498 |
Mat3x3d tmpTau(tau); |
| 499 |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
| 500 |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
| 501 |
#endif |
| 502 |
curSnapshot->statData.setTau(tau); |
| 503 |
} |
| 504 |
|
| 505 |
} //end namespace OpenMD |