1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file ForceManager.cpp |
44 |
* @author tlin |
45 |
* @date 11/09/2004 |
46 |
* @time 10:39am |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
#include "brains/ForceManager.hpp" |
51 |
#include "primitives/Molecule.hpp" |
52 |
#include "UseTheForce/doForces_interface.h" |
53 |
#define __OPENMD_C |
54 |
#include "UseTheForce/DarkSide/fInteractionMap.h" |
55 |
#include "utils/simError.h" |
56 |
#include "primitives/Bond.hpp" |
57 |
#include "primitives/Bend.hpp" |
58 |
#include "primitives/Torsion.hpp" |
59 |
#include "primitives/Inversion.hpp" |
60 |
#include "parallel/ForceDecomposition.hpp" |
61 |
//#include "parallel/SerialDecomposition.hpp" |
62 |
|
63 |
using namespace std; |
64 |
namespace OpenMD { |
65 |
|
66 |
ForceManager::ForceManager(SimInfo * info) : info_(info) { |
67 |
|
68 |
#ifdef IS_MPI |
69 |
decomp_ = new ForceDecomposition(info_); |
70 |
#else |
71 |
// decomp_ = new SerialDecomposition(info); |
72 |
#endif |
73 |
} |
74 |
|
75 |
void ForceManager::calcForces() { |
76 |
|
77 |
if (!info_->isFortranInitialized()) { |
78 |
info_->update(); |
79 |
nbiMan_->setSimInfo(info_); |
80 |
nbiMan_->initialize(); |
81 |
swfun_ = nbiMan_->getSwitchingFunction(); |
82 |
decomp_->distributeInitialData(); |
83 |
info_->setupFortran(); |
84 |
} |
85 |
|
86 |
preCalculation(); |
87 |
calcShortRangeInteraction(); |
88 |
calcLongRangeInteraction(); |
89 |
postCalculation(); |
90 |
|
91 |
} |
92 |
|
93 |
void ForceManager::preCalculation() { |
94 |
SimInfo::MoleculeIterator mi; |
95 |
Molecule* mol; |
96 |
Molecule::AtomIterator ai; |
97 |
Atom* atom; |
98 |
Molecule::RigidBodyIterator rbIter; |
99 |
RigidBody* rb; |
100 |
Molecule::CutoffGroupIterator ci; |
101 |
CutoffGroup* cg; |
102 |
|
103 |
// forces are zeroed here, before any are accumulated. |
104 |
|
105 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
106 |
mol = info_->nextMolecule(mi)) { |
107 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
108 |
atom->zeroForcesAndTorques(); |
109 |
} |
110 |
|
111 |
//change the positions of atoms which belong to the rigidbodies |
112 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
113 |
rb = mol->nextRigidBody(rbIter)) { |
114 |
rb->zeroForcesAndTorques(); |
115 |
} |
116 |
|
117 |
if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ |
118 |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
119 |
cg = mol->nextCutoffGroup(ci)) { |
120 |
//calculate the center of mass of cutoff group |
121 |
cg->updateCOM(); |
122 |
} |
123 |
} |
124 |
} |
125 |
|
126 |
// Zero out the stress tensor |
127 |
tau *= 0.0; |
128 |
|
129 |
} |
130 |
|
131 |
void ForceManager::calcShortRangeInteraction() { |
132 |
Molecule* mol; |
133 |
RigidBody* rb; |
134 |
Bond* bond; |
135 |
Bend* bend; |
136 |
Torsion* torsion; |
137 |
Inversion* inversion; |
138 |
SimInfo::MoleculeIterator mi; |
139 |
Molecule::RigidBodyIterator rbIter; |
140 |
Molecule::BondIterator bondIter;; |
141 |
Molecule::BendIterator bendIter; |
142 |
Molecule::TorsionIterator torsionIter; |
143 |
Molecule::InversionIterator inversionIter; |
144 |
RealType bondPotential = 0.0; |
145 |
RealType bendPotential = 0.0; |
146 |
RealType torsionPotential = 0.0; |
147 |
RealType inversionPotential = 0.0; |
148 |
|
149 |
//calculate short range interactions |
150 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
151 |
mol = info_->nextMolecule(mi)) { |
152 |
|
153 |
//change the positions of atoms which belong to the rigidbodies |
154 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
155 |
rb = mol->nextRigidBody(rbIter)) { |
156 |
rb->updateAtoms(); |
157 |
} |
158 |
|
159 |
for (bond = mol->beginBond(bondIter); bond != NULL; |
160 |
bond = mol->nextBond(bondIter)) { |
161 |
bond->calcForce(); |
162 |
bondPotential += bond->getPotential(); |
163 |
} |
164 |
|
165 |
for (bend = mol->beginBend(bendIter); bend != NULL; |
166 |
bend = mol->nextBend(bendIter)) { |
167 |
|
168 |
RealType angle; |
169 |
bend->calcForce(angle); |
170 |
RealType currBendPot = bend->getPotential(); |
171 |
|
172 |
bendPotential += bend->getPotential(); |
173 |
map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
174 |
if (i == bendDataSets.end()) { |
175 |
BendDataSet dataSet; |
176 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
177 |
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
178 |
dataSet.deltaV = 0.0; |
179 |
bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet)); |
180 |
}else { |
181 |
i->second.prev.angle = i->second.curr.angle; |
182 |
i->second.prev.potential = i->second.curr.potential; |
183 |
i->second.curr.angle = angle; |
184 |
i->second.curr.potential = currBendPot; |
185 |
i->second.deltaV = fabs(i->second.curr.potential - |
186 |
i->second.prev.potential); |
187 |
} |
188 |
} |
189 |
|
190 |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; |
191 |
torsion = mol->nextTorsion(torsionIter)) { |
192 |
RealType angle; |
193 |
torsion->calcForce(angle); |
194 |
RealType currTorsionPot = torsion->getPotential(); |
195 |
torsionPotential += torsion->getPotential(); |
196 |
map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
197 |
if (i == torsionDataSets.end()) { |
198 |
TorsionDataSet dataSet; |
199 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
200 |
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
201 |
dataSet.deltaV = 0.0; |
202 |
torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
203 |
}else { |
204 |
i->second.prev.angle = i->second.curr.angle; |
205 |
i->second.prev.potential = i->second.curr.potential; |
206 |
i->second.curr.angle = angle; |
207 |
i->second.curr.potential = currTorsionPot; |
208 |
i->second.deltaV = fabs(i->second.curr.potential - |
209 |
i->second.prev.potential); |
210 |
} |
211 |
} |
212 |
|
213 |
for (inversion = mol->beginInversion(inversionIter); |
214 |
inversion != NULL; |
215 |
inversion = mol->nextInversion(inversionIter)) { |
216 |
RealType angle; |
217 |
inversion->calcForce(angle); |
218 |
RealType currInversionPot = inversion->getPotential(); |
219 |
inversionPotential += inversion->getPotential(); |
220 |
map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
221 |
if (i == inversionDataSets.end()) { |
222 |
InversionDataSet dataSet; |
223 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
224 |
dataSet.prev.potential = dataSet.curr.potential = currInversionPot; |
225 |
dataSet.deltaV = 0.0; |
226 |
inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet)); |
227 |
}else { |
228 |
i->second.prev.angle = i->second.curr.angle; |
229 |
i->second.prev.potential = i->second.curr.potential; |
230 |
i->second.curr.angle = angle; |
231 |
i->second.curr.potential = currInversionPot; |
232 |
i->second.deltaV = fabs(i->second.curr.potential - |
233 |
i->second.prev.potential); |
234 |
} |
235 |
} |
236 |
} |
237 |
|
238 |
RealType shortRangePotential = bondPotential + bendPotential + |
239 |
torsionPotential + inversionPotential; |
240 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
241 |
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
242 |
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
243 |
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
244 |
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
245 |
curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential; |
246 |
} |
247 |
|
248 |
void ForceManager::calcLongRangeInteraction() { |
249 |
|
250 |
// some of this initial stuff will go away: |
251 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
252 |
DataStorage* config = &(curSnapshot->atomData); |
253 |
DataStorage* cgConfig = &(curSnapshot->cgData); |
254 |
RealType* frc = config->getArrayPointer(DataStorage::dslForce); |
255 |
RealType* pos = config->getArrayPointer(DataStorage::dslPosition); |
256 |
RealType* trq = config->getArrayPointer(DataStorage::dslTorque); |
257 |
RealType* A = config->getArrayPointer(DataStorage::dslAmat); |
258 |
RealType* electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame); |
259 |
RealType* particlePot = config->getArrayPointer(DataStorage::dslParticlePot); |
260 |
RealType* rc; |
261 |
|
262 |
if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ |
263 |
rc = cgConfig->getArrayPointer(DataStorage::dslPosition); |
264 |
} else { |
265 |
// center of mass of the group is the same as position of the atom |
266 |
// if cutoff group does not exist |
267 |
rc = pos; |
268 |
} |
269 |
|
270 |
//initialize data before passing to fortran |
271 |
RealType longRangePotential[LR_POT_TYPES]; |
272 |
RealType lrPot = 0.0; |
273 |
int isError = 0; |
274 |
|
275 |
for (int i=0; i<LR_POT_TYPES;i++){ |
276 |
longRangePotential[i]=0.0; //Initialize array |
277 |
} |
278 |
|
279 |
// new stuff starts here: |
280 |
|
281 |
decomp_->distributeData(); |
282 |
|
283 |
int cg1, cg2; |
284 |
Vector3d d_grp; |
285 |
RealType rgrpsq, rgrp; |
286 |
RealType vij; |
287 |
Vector3d fij, fg; |
288 |
pair<int, int> gtypes; |
289 |
RealType rCutSq; |
290 |
bool in_switching_region; |
291 |
RealType sw, dswdr, swderiv; |
292 |
vector<int> atomListI; |
293 |
vector<int> atomListJ; |
294 |
InteractionData idat; |
295 |
|
296 |
int loopStart, loopEnd; |
297 |
|
298 |
loopEnd = PAIR_LOOP; |
299 |
if (info_->requiresPrepair_) { |
300 |
loopStart = PREPAIR_LOOP; |
301 |
} else { |
302 |
loopStart = PAIR_LOOP; |
303 |
} |
304 |
|
305 |
for (int iLoop = loopStart; iLoop < loopEnd; iLoop++) { |
306 |
|
307 |
if (iLoop == loopStart) { |
308 |
bool update_nlist = decomp_->checkNeighborList(); |
309 |
if (update_nlist) |
310 |
neighborList = decomp_->buildNeighborList(); |
311 |
} |
312 |
|
313 |
for (vector<pair<int, int> >::iterator it = neighborList.begin(); |
314 |
it != neighborList.end(); ++it) { |
315 |
|
316 |
cg1 = (*it).first; |
317 |
cg2 = (*it).second; |
318 |
|
319 |
gtypes = decomp_->getGroupTypes(cg1, cg2); |
320 |
d_grp = decomp_->getIntergroupVector(cg1, cg2); |
321 |
curSnapshot->wrapVector(d_grp); |
322 |
rgrpsq = d_grp.lengthSquare(); |
323 |
rCutSq = groupCutoffMap(gtypes).first; |
324 |
|
325 |
if (rgrpsq < rCutSq) { |
326 |
idat.rcut = groupCutoffMap(gtypes).second; |
327 |
if (iLoop == PAIR_LOOP) { |
328 |
vij = 0.0; |
329 |
fij = V3Zero; |
330 |
} |
331 |
|
332 |
in_switching_region = swfun_->getSwitch(rgrpsq, idat.sw, idat.dswdr, rgrp); |
333 |
|
334 |
atomListI = decomp_->getAtomsInGroupI(cg1); |
335 |
atomListJ = decomp_->getAtomsInGroupJ(cg2); |
336 |
|
337 |
for (vector<int>::iterator ia = atomListI.begin(); |
338 |
ia != atomListI.end(); ++ia) { |
339 |
atom1 = (*ia); |
340 |
|
341 |
for (vector<int>::iterator jb = atomListJ.begin(); |
342 |
jb != atomListJ.end(); ++jb) { |
343 |
atom2 = (*jb); |
344 |
|
345 |
if (!decomp_->skipAtomPair(atom1, atom2)) { |
346 |
|
347 |
if (atomListI.size() == 1 && atomListJ.size() == 1) { |
348 |
idat.d = d_grp; |
349 |
idat.r2 = rgrpsq; |
350 |
} else { |
351 |
idat.d = decomp_->getInteratomicVector(atom1, atom2); |
352 |
curSnapshot->wrapVector(idat.d); |
353 |
idat.r2 = idat.d.lengthSquare(); |
354 |
} |
355 |
|
356 |
idat.r = sqrt(idat.r2); |
357 |
decomp_->fillInteractionData(atom1, atom2, idat); |
358 |
|
359 |
if (iLoop == PREPAIR_LOOP) { |
360 |
interactionMan_->doPrePair(idat); |
361 |
} else { |
362 |
interactionMan_->doPair(idat); |
363 |
vij += idat.vpair; |
364 |
fij += idat.f1; |
365 |
tau -= outProduct(idat.d, idat.f); |
366 |
} |
367 |
} |
368 |
} |
369 |
} |
370 |
|
371 |
if (iLoop == PAIR_LOOP) { |
372 |
if (in_switching_region) { |
373 |
swderiv = vij * dswdr / rgrp; |
374 |
fg = swderiv * d_grp; |
375 |
|
376 |
fij += fg; |
377 |
|
378 |
if (atomListI.size() == 1 && atomListJ.size() == 1) { |
379 |
tau -= outProduct(idat.d, fg); |
380 |
} |
381 |
|
382 |
for (vector<int>::iterator ia = atomListI.begin(); |
383 |
ia != atomListI.end(); ++ia) { |
384 |
atom1 = (*ia); |
385 |
mf = decomp_->getMfactI(atom1); |
386 |
// fg is the force on atom ia due to cutoff group's |
387 |
// presence in switching region |
388 |
fg = swderiv * d_grp * mf; |
389 |
decomp_->addForceToAtomI(atom1, fg); |
390 |
|
391 |
if (atomListI.size() > 1) { |
392 |
if (info_->usesAtomicVirial_) { |
393 |
// find the distance between the atom |
394 |
// and the center of the cutoff group: |
395 |
dag = decomp_->getAtomToGroupVectorI(atom1, cg1); |
396 |
tau -= outProduct(dag, fg); |
397 |
} |
398 |
} |
399 |
} |
400 |
for (vector<int>::iterator jb = atomListJ.begin(); |
401 |
jb != atomListJ.end(); ++jb) { |
402 |
atom2 = (*jb); |
403 |
mf = decomp_->getMfactJ(atom2); |
404 |
// fg is the force on atom jb due to cutoff group's |
405 |
// presence in switching region |
406 |
fg = -swderiv * d_grp * mf; |
407 |
decomp_->addForceToAtomJ(atom2, fg); |
408 |
|
409 |
if (atomListJ.size() > 1) { |
410 |
if (info_->usesAtomicVirial_) { |
411 |
// find the distance between the atom |
412 |
// and the center of the cutoff group: |
413 |
dag = decomp_->getAtomToGroupVectorJ(atom2, cg2); |
414 |
tau -= outProduct(dag, fg); |
415 |
} |
416 |
} |
417 |
} |
418 |
} |
419 |
//if (!SIM_uses_AtomicVirial) { |
420 |
// tau -= outProduct(d_grp, fij); |
421 |
//} |
422 |
} |
423 |
} |
424 |
} |
425 |
|
426 |
if (iLoop == PREPAIR_LOOP) { |
427 |
if (info_->requiresPrepair_) { |
428 |
decomp_->collectIntermediateData(); |
429 |
atomList = decomp_->getAtomList(); |
430 |
for (vector<int>::iterator ia = atomList.begin(); |
431 |
ia != atomList.end(); ++ia) { |
432 |
atom1 = (*ia); |
433 |
decomp_->populateSelfData(atom1, SelfData sdat); |
434 |
interactionMan_->doPreForce(sdat); |
435 |
} |
436 |
decomp_->distributeIntermediateData(); |
437 |
} |
438 |
} |
439 |
|
440 |
} |
441 |
|
442 |
decomp_->collectData(); |
443 |
|
444 |
if (info_->requiresSkipCorrection_ || info_->requiresSelfCorrection_) { |
445 |
atomList = decomp_->getAtomList(); |
446 |
for (vector<int>::iterator ia = atomList.begin(); |
447 |
ia != atomList.end(); ++ia) { |
448 |
atom1 = (*ia); |
449 |
|
450 |
if (info_->requiresSkipCorrection_) { |
451 |
vector<int> skipList = decomp_->getSkipsForAtom(atom1); |
452 |
for (vector<int>::iterator jb = skipList.begin(); |
453 |
jb != skipList.end(); ++jb) { |
454 |
atom2 = (*jb); |
455 |
decomp_->populateSkipData(atom1, atom2, InteractionData idat); |
456 |
interactionMan_->doSkipCorrection(idat); |
457 |
} |
458 |
} |
459 |
|
460 |
if (info_->requiresSelfCorrection_) { |
461 |
decomp_->populateSelfData(atom1, SelfData sdat); |
462 |
interactionMan_->doSelfCorrection(sdat); |
463 |
} |
464 |
|
465 |
|
466 |
} |
467 |
|
468 |
for (int i=0; i<LR_POT_TYPES;i++){ |
469 |
lrPot += longRangePotential[i]; //Quick hack |
470 |
} |
471 |
|
472 |
//store the tau and long range potential |
473 |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
474 |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT]; |
475 |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT]; |
476 |
} |
477 |
|
478 |
|
479 |
void ForceManager::postCalculation() { |
480 |
SimInfo::MoleculeIterator mi; |
481 |
Molecule* mol; |
482 |
Molecule::RigidBodyIterator rbIter; |
483 |
RigidBody* rb; |
484 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
485 |
|
486 |
// collect the atomic forces onto rigid bodies |
487 |
|
488 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
489 |
mol = info_->nextMolecule(mi)) { |
490 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
491 |
rb = mol->nextRigidBody(rbIter)) { |
492 |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
493 |
tau += rbTau; |
494 |
} |
495 |
} |
496 |
|
497 |
#ifdef IS_MPI |
498 |
Mat3x3d tmpTau(tau); |
499 |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
500 |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
501 |
#endif |
502 |
curSnapshot->statData.setTau(tau); |
503 |
} |
504 |
|
505 |
} //end namespace OpenMD |