1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file ForceManager.cpp |
44 |
* @author tlin |
45 |
* @date 11/09/2004 |
46 |
* @time 10:39am |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
#include "brains/ForceManager.hpp" |
51 |
#include "primitives/Molecule.hpp" |
52 |
#include "UseTheForce/doForces_interface.h" |
53 |
#define __OPENMD_C |
54 |
#include "UseTheForce/DarkSide/fInteractionMap.h" |
55 |
#include "utils/simError.h" |
56 |
#include "primitives/Bond.hpp" |
57 |
#include "primitives/Bend.hpp" |
58 |
#include "primitives/Torsion.hpp" |
59 |
#include "primitives/Inversion.hpp" |
60 |
#include "parallel/ForceDecomposition.hpp" |
61 |
//#include "parallel/SerialDecomposition.hpp" |
62 |
|
63 |
namespace OpenMD { |
64 |
|
65 |
ForceManager::ForceManager(SimInfo * info) : info_(info), |
66 |
NBforcesInitialized_(false) { |
67 |
#ifdef IS_MPI |
68 |
decomp_ = new ForceDecomposition(info_); |
69 |
#else |
70 |
// decomp_ = new SerialDecomposition(info); |
71 |
#endif |
72 |
} |
73 |
|
74 |
void ForceManager::calcForces() { |
75 |
|
76 |
|
77 |
if (!info_->isFortranInitialized()) { |
78 |
info_->update(); |
79 |
nbiMan_->setSimInfo(info_); |
80 |
nbiMan_->initialize(); |
81 |
decomp_->distributeInitialData(); |
82 |
info_->setupFortran(); |
83 |
} |
84 |
|
85 |
preCalculation(); |
86 |
calcShortRangeInteraction(); |
87 |
calcLongRangeInteraction(); |
88 |
postCalculation(); |
89 |
|
90 |
} |
91 |
|
92 |
void ForceManager::preCalculation() { |
93 |
SimInfo::MoleculeIterator mi; |
94 |
Molecule* mol; |
95 |
Molecule::AtomIterator ai; |
96 |
Atom* atom; |
97 |
Molecule::RigidBodyIterator rbIter; |
98 |
RigidBody* rb; |
99 |
Molecule::CutoffGroupIterator ci; |
100 |
CutoffGroup* cg; |
101 |
|
102 |
// forces are zeroed here, before any are accumulated. |
103 |
// NOTE: do not rezero the forces in Fortran. |
104 |
|
105 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
106 |
mol = info_->nextMolecule(mi)) { |
107 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
108 |
atom->zeroForcesAndTorques(); |
109 |
} |
110 |
|
111 |
//change the positions of atoms which belong to the rigidbodies |
112 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
113 |
rb = mol->nextRigidBody(rbIter)) { |
114 |
rb->zeroForcesAndTorques(); |
115 |
} |
116 |
|
117 |
if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ |
118 |
std::cerr << "should not see me \n"; |
119 |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
120 |
cg = mol->nextCutoffGroup(ci)) { |
121 |
//calculate the center of mass of cutoff group |
122 |
cg->updateCOM(); |
123 |
} |
124 |
} |
125 |
} |
126 |
|
127 |
// Zero out the stress tensor |
128 |
tau *= 0.0; |
129 |
|
130 |
} |
131 |
|
132 |
void ForceManager::calcShortRangeInteraction() { |
133 |
Molecule* mol; |
134 |
RigidBody* rb; |
135 |
Bond* bond; |
136 |
Bend* bend; |
137 |
Torsion* torsion; |
138 |
Inversion* inversion; |
139 |
SimInfo::MoleculeIterator mi; |
140 |
Molecule::RigidBodyIterator rbIter; |
141 |
Molecule::BondIterator bondIter;; |
142 |
Molecule::BendIterator bendIter; |
143 |
Molecule::TorsionIterator torsionIter; |
144 |
Molecule::InversionIterator inversionIter; |
145 |
RealType bondPotential = 0.0; |
146 |
RealType bendPotential = 0.0; |
147 |
RealType torsionPotential = 0.0; |
148 |
RealType inversionPotential = 0.0; |
149 |
|
150 |
//calculate short range interactions |
151 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
152 |
mol = info_->nextMolecule(mi)) { |
153 |
|
154 |
//change the positions of atoms which belong to the rigidbodies |
155 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
156 |
rb = mol->nextRigidBody(rbIter)) { |
157 |
rb->updateAtoms(); |
158 |
} |
159 |
|
160 |
for (bond = mol->beginBond(bondIter); bond != NULL; |
161 |
bond = mol->nextBond(bondIter)) { |
162 |
bond->calcForce(); |
163 |
bondPotential += bond->getPotential(); |
164 |
} |
165 |
|
166 |
for (bend = mol->beginBend(bendIter); bend != NULL; |
167 |
bend = mol->nextBend(bendIter)) { |
168 |
|
169 |
RealType angle; |
170 |
bend->calcForce(angle); |
171 |
RealType currBendPot = bend->getPotential(); |
172 |
|
173 |
bendPotential += bend->getPotential(); |
174 |
std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
175 |
if (i == bendDataSets.end()) { |
176 |
BendDataSet dataSet; |
177 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
178 |
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
179 |
dataSet.deltaV = 0.0; |
180 |
bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet)); |
181 |
}else { |
182 |
i->second.prev.angle = i->second.curr.angle; |
183 |
i->second.prev.potential = i->second.curr.potential; |
184 |
i->second.curr.angle = angle; |
185 |
i->second.curr.potential = currBendPot; |
186 |
i->second.deltaV = fabs(i->second.curr.potential - |
187 |
i->second.prev.potential); |
188 |
} |
189 |
} |
190 |
|
191 |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; |
192 |
torsion = mol->nextTorsion(torsionIter)) { |
193 |
RealType angle; |
194 |
torsion->calcForce(angle); |
195 |
RealType currTorsionPot = torsion->getPotential(); |
196 |
torsionPotential += torsion->getPotential(); |
197 |
std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
198 |
if (i == torsionDataSets.end()) { |
199 |
TorsionDataSet dataSet; |
200 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
201 |
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
202 |
dataSet.deltaV = 0.0; |
203 |
torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
204 |
}else { |
205 |
i->second.prev.angle = i->second.curr.angle; |
206 |
i->second.prev.potential = i->second.curr.potential; |
207 |
i->second.curr.angle = angle; |
208 |
i->second.curr.potential = currTorsionPot; |
209 |
i->second.deltaV = fabs(i->second.curr.potential - |
210 |
i->second.prev.potential); |
211 |
} |
212 |
} |
213 |
|
214 |
for (inversion = mol->beginInversion(inversionIter); |
215 |
inversion != NULL; |
216 |
inversion = mol->nextInversion(inversionIter)) { |
217 |
RealType angle; |
218 |
inversion->calcForce(angle); |
219 |
RealType currInversionPot = inversion->getPotential(); |
220 |
inversionPotential += inversion->getPotential(); |
221 |
std::map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
222 |
if (i == inversionDataSets.end()) { |
223 |
InversionDataSet dataSet; |
224 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
225 |
dataSet.prev.potential = dataSet.curr.potential = currInversionPot; |
226 |
dataSet.deltaV = 0.0; |
227 |
inversionDataSets.insert(std::map<Inversion*, InversionDataSet>::value_type(inversion, dataSet)); |
228 |
}else { |
229 |
i->second.prev.angle = i->second.curr.angle; |
230 |
i->second.prev.potential = i->second.curr.potential; |
231 |
i->second.curr.angle = angle; |
232 |
i->second.curr.potential = currInversionPot; |
233 |
i->second.deltaV = fabs(i->second.curr.potential - |
234 |
i->second.prev.potential); |
235 |
} |
236 |
} |
237 |
} |
238 |
|
239 |
RealType shortRangePotential = bondPotential + bendPotential + |
240 |
torsionPotential + inversionPotential; |
241 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
242 |
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
243 |
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
244 |
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
245 |
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
246 |
curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential; |
247 |
|
248 |
} |
249 |
|
250 |
void ForceManager::calcLongRangeInteraction() { |
251 |
Snapshot* curSnapshot; |
252 |
DataStorage* config; |
253 |
DataStorage* cgConfig; |
254 |
RealType* frc; |
255 |
RealType* pos; |
256 |
RealType* trq; |
257 |
RealType* A; |
258 |
RealType* electroFrame; |
259 |
RealType* rc; |
260 |
RealType* particlePot; |
261 |
|
262 |
//get current snapshot from SimInfo |
263 |
curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
264 |
|
265 |
//get array pointers |
266 |
config = &(curSnapshot->atomData); |
267 |
cgConfig = &(curSnapshot->cgData); |
268 |
frc = config->getArrayPointer(DataStorage::dslForce); |
269 |
pos = config->getArrayPointer(DataStorage::dslPosition); |
270 |
trq = config->getArrayPointer(DataStorage::dslTorque); |
271 |
A = config->getArrayPointer(DataStorage::dslAmat); |
272 |
electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame); |
273 |
particlePot = config->getArrayPointer(DataStorage::dslParticlePot); |
274 |
|
275 |
if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ |
276 |
std::cerr << "should not see me \n"; |
277 |
rc = cgConfig->getArrayPointer(DataStorage::dslPosition); |
278 |
} else { |
279 |
// center of mass of the group is the same as position of the atom |
280 |
// if cutoff group does not exist |
281 |
rc = pos; |
282 |
} |
283 |
|
284 |
//initialize data before passing to fortran |
285 |
RealType longRangePotential[LR_POT_TYPES]; |
286 |
RealType lrPot = 0.0; |
287 |
int isError = 0; |
288 |
|
289 |
for (int i=0; i<LR_POT_TYPES;i++){ |
290 |
longRangePotential[i]=0.0; //Initialize array |
291 |
} |
292 |
|
293 |
decomp_->distributeData(); |
294 |
|
295 |
int nLoops = 1; |
296 |
for (int iLoop = 0; iLoop < nLoops; iLoop++) { |
297 |
doForceLoop(pos, |
298 |
rc, |
299 |
A, |
300 |
electroFrame, |
301 |
frc, |
302 |
trq, |
303 |
tau.getArrayPointer(), |
304 |
longRangePotential, |
305 |
particlePot, |
306 |
&isError ); |
307 |
|
308 |
if (nLoops > 1) { |
309 |
decomp_->collectIntermediateData(); |
310 |
decomp_->distributeIntermediateData(); |
311 |
} |
312 |
} |
313 |
|
314 |
decomp_->collectData(); |
315 |
|
316 |
if( isError ){ |
317 |
sprintf( painCave.errMsg, |
318 |
"Error returned from the fortran force calculation.\n" ); |
319 |
painCave.isFatal = 1; |
320 |
simError(); |
321 |
} |
322 |
for (int i=0; i<LR_POT_TYPES;i++){ |
323 |
lrPot += longRangePotential[i]; //Quick hack |
324 |
} |
325 |
|
326 |
//store the tau and long range potential |
327 |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
328 |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT]; |
329 |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT]; |
330 |
} |
331 |
|
332 |
|
333 |
void ForceManager::postCalculation() { |
334 |
SimInfo::MoleculeIterator mi; |
335 |
Molecule* mol; |
336 |
Molecule::RigidBodyIterator rbIter; |
337 |
RigidBody* rb; |
338 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
339 |
|
340 |
// collect the atomic forces onto rigid bodies |
341 |
|
342 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
343 |
mol = info_->nextMolecule(mi)) { |
344 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
345 |
rb = mol->nextRigidBody(rbIter)) { |
346 |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
347 |
tau += rbTau; |
348 |
} |
349 |
} |
350 |
|
351 |
#ifdef IS_MPI |
352 |
Mat3x3d tmpTau(tau); |
353 |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
354 |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
355 |
#endif |
356 |
curSnapshot->statData.setTau(tau); |
357 |
} |
358 |
|
359 |
} //end namespace OpenMD |