ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
Revision: 1540
Committed: Mon Jan 17 21:34:36 2011 UTC (14 years, 3 months ago) by gezelter
File size: 12449 byte(s)
Log Message:
changes for new parallel architecture

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 /**
43 * @file ForceManager.cpp
44 * @author tlin
45 * @date 11/09/2004
46 * @time 10:39am
47 * @version 1.0
48 */
49
50 #include "brains/ForceManager.hpp"
51 #include "primitives/Molecule.hpp"
52 #include "UseTheForce/doForces_interface.h"
53 #define __OPENMD_C
54 #include "UseTheForce/DarkSide/fInteractionMap.h"
55 #include "utils/simError.h"
56 #include "primitives/Bond.hpp"
57 #include "primitives/Bend.hpp"
58 #include "primitives/Torsion.hpp"
59 #include "primitives/Inversion.hpp"
60
61 namespace OpenMD {
62
63 ForceManager::ForceManager(SimInfo * info) : info_(info),
64 NBforcesInitialized_(false) {
65 }
66
67 void ForceManager::calcForces() {
68
69
70 if (!info_->isFortranInitialized()) {
71 info_->update();
72 nbiMan_->setSimInfo(info_);
73 nbiMan_->initialize();
74 info_->setupFortran();
75 }
76
77 preCalculation();
78
79 calcShortRangeInteraction();
80
81 calcLongRangeInteraction();
82
83 postCalculation();
84
85 }
86
87 void ForceManager::preCalculation() {
88 SimInfo::MoleculeIterator mi;
89 Molecule* mol;
90 Molecule::AtomIterator ai;
91 Atom* atom;
92 Molecule::RigidBodyIterator rbIter;
93 RigidBody* rb;
94 Molecule::CutoffGroupIterator ci;
95 CutoffGroup* cg;
96
97 // forces are zeroed here, before any are accumulated.
98 // NOTE: do not rezero the forces in Fortran.
99
100 for (mol = info_->beginMolecule(mi); mol != NULL;
101 mol = info_->nextMolecule(mi)) {
102 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
103 atom->zeroForcesAndTorques();
104 }
105
106 //change the positions of atoms which belong to the rigidbodies
107 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
108 rb = mol->nextRigidBody(rbIter)) {
109 rb->zeroForcesAndTorques();
110 }
111
112 if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
113 std::cerr << "should not see me \n";
114 for(cg = mol->beginCutoffGroup(ci); cg != NULL;
115 cg = mol->nextCutoffGroup(ci)) {
116 //calculate the center of mass of cutoff group
117 cg->updateCOM();
118 }
119 }
120 }
121
122 // Zero out the stress tensor
123 tau *= 0.0;
124
125 }
126
127 void ForceManager::calcShortRangeInteraction() {
128 Molecule* mol;
129 RigidBody* rb;
130 Bond* bond;
131 Bend* bend;
132 Torsion* torsion;
133 Inversion* inversion;
134 SimInfo::MoleculeIterator mi;
135 Molecule::RigidBodyIterator rbIter;
136 Molecule::BondIterator bondIter;;
137 Molecule::BendIterator bendIter;
138 Molecule::TorsionIterator torsionIter;
139 Molecule::InversionIterator inversionIter;
140 RealType bondPotential = 0.0;
141 RealType bendPotential = 0.0;
142 RealType torsionPotential = 0.0;
143 RealType inversionPotential = 0.0;
144
145 //calculate short range interactions
146 for (mol = info_->beginMolecule(mi); mol != NULL;
147 mol = info_->nextMolecule(mi)) {
148
149 //change the positions of atoms which belong to the rigidbodies
150 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
151 rb = mol->nextRigidBody(rbIter)) {
152 rb->updateAtoms();
153 }
154
155 for (bond = mol->beginBond(bondIter); bond != NULL;
156 bond = mol->nextBond(bondIter)) {
157 bond->calcForce();
158 bondPotential += bond->getPotential();
159 }
160
161 for (bend = mol->beginBend(bendIter); bend != NULL;
162 bend = mol->nextBend(bendIter)) {
163
164 RealType angle;
165 bend->calcForce(angle);
166 RealType currBendPot = bend->getPotential();
167
168 bendPotential += bend->getPotential();
169 std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
170 if (i == bendDataSets.end()) {
171 BendDataSet dataSet;
172 dataSet.prev.angle = dataSet.curr.angle = angle;
173 dataSet.prev.potential = dataSet.curr.potential = currBendPot;
174 dataSet.deltaV = 0.0;
175 bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
176 }else {
177 i->second.prev.angle = i->second.curr.angle;
178 i->second.prev.potential = i->second.curr.potential;
179 i->second.curr.angle = angle;
180 i->second.curr.potential = currBendPot;
181 i->second.deltaV = fabs(i->second.curr.potential -
182 i->second.prev.potential);
183 }
184 }
185
186 for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
187 torsion = mol->nextTorsion(torsionIter)) {
188 RealType angle;
189 torsion->calcForce(angle);
190 RealType currTorsionPot = torsion->getPotential();
191 torsionPotential += torsion->getPotential();
192 std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
193 if (i == torsionDataSets.end()) {
194 TorsionDataSet dataSet;
195 dataSet.prev.angle = dataSet.curr.angle = angle;
196 dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
197 dataSet.deltaV = 0.0;
198 torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
199 }else {
200 i->second.prev.angle = i->second.curr.angle;
201 i->second.prev.potential = i->second.curr.potential;
202 i->second.curr.angle = angle;
203 i->second.curr.potential = currTorsionPot;
204 i->second.deltaV = fabs(i->second.curr.potential -
205 i->second.prev.potential);
206 }
207 }
208
209 for (inversion = mol->beginInversion(inversionIter);
210 inversion != NULL;
211 inversion = mol->nextInversion(inversionIter)) {
212 RealType angle;
213 inversion->calcForce(angle);
214 RealType currInversionPot = inversion->getPotential();
215 inversionPotential += inversion->getPotential();
216 std::map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
217 if (i == inversionDataSets.end()) {
218 InversionDataSet dataSet;
219 dataSet.prev.angle = dataSet.curr.angle = angle;
220 dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
221 dataSet.deltaV = 0.0;
222 inversionDataSets.insert(std::map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
223 }else {
224 i->second.prev.angle = i->second.curr.angle;
225 i->second.prev.potential = i->second.curr.potential;
226 i->second.curr.angle = angle;
227 i->second.curr.potential = currInversionPot;
228 i->second.deltaV = fabs(i->second.curr.potential -
229 i->second.prev.potential);
230 }
231 }
232 }
233
234 RealType shortRangePotential = bondPotential + bendPotential +
235 torsionPotential + inversionPotential;
236 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
237 curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
238 curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
239 curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
240 curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
241 curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;
242
243 }
244
245 void ForceManager::calcLongRangeInteraction() {
246 Snapshot* curSnapshot;
247 DataStorage* config;
248 DataStorage* cgConfig;
249 RealType* frc;
250 RealType* pos;
251 RealType* trq;
252 RealType* A;
253 RealType* electroFrame;
254 RealType* rc;
255 RealType* particlePot;
256
257 //get current snapshot from SimInfo
258 curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
259
260 //get array pointers
261 config = &(curSnapshot->atomData);
262 cgConfig = &(curSnapshot->cgData);
263 frc = config->getArrayPointer(DataStorage::dslForce);
264 pos = config->getArrayPointer(DataStorage::dslPosition);
265 trq = config->getArrayPointer(DataStorage::dslTorque);
266 A = config->getArrayPointer(DataStorage::dslAmat);
267 electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
268 particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
269
270 if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
271 std::cerr << "should not see me \n";
272 rc = cgConfig->getArrayPointer(DataStorage::dslPosition);
273 } else {
274 // center of mass of the group is the same as position of the atom
275 // if cutoff group does not exist
276 rc = pos;
277 }
278
279 //initialize data before passing to fortran
280 RealType longRangePotential[LR_POT_TYPES];
281 RealType lrPot = 0.0;
282 int isError = 0;
283
284 for (int i=0; i<LR_POT_TYPES;i++){
285 longRangePotential[i]=0.0; //Initialize array
286 }
287
288 doForceLoop(pos,
289 rc,
290 A,
291 electroFrame,
292 frc,
293 trq,
294 tau.getArrayPointer(),
295 longRangePotential,
296 particlePot,
297 &isError );
298
299 if( isError ){
300 sprintf( painCave.errMsg,
301 "Error returned from the fortran force calculation.\n" );
302 painCave.isFatal = 1;
303 simError();
304 }
305 for (int i=0; i<LR_POT_TYPES;i++){
306 lrPot += longRangePotential[i]; //Quick hack
307 }
308
309 //store the tau and long range potential
310 curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
311 curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
312 curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
313 }
314
315
316 void ForceManager::postCalculation() {
317 SimInfo::MoleculeIterator mi;
318 Molecule* mol;
319 Molecule::RigidBodyIterator rbIter;
320 RigidBody* rb;
321 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
322
323 // collect the atomic forces onto rigid bodies
324
325 for (mol = info_->beginMolecule(mi); mol != NULL;
326 mol = info_->nextMolecule(mi)) {
327 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
328 rb = mol->nextRigidBody(rbIter)) {
329 Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
330 tau += rbTau;
331 }
332 }
333
334 #ifdef IS_MPI
335 Mat3x3d tmpTau(tau);
336 MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
337 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
338 #endif
339 curSnapshot->statData.setTau(tau);
340 }
341
342 } //end namespace OpenMD

Properties

Name Value
svn:executable *
svn:keywords Author Id Revision Date